Формула корней квадратного уравнения 2 b d x a где 2 d b ac

Формула корней квадратного уравнения 2 b d x a где 2 d b ac

Формула №1:

b ± √D
x
= ————, где
D = b 2 – 4ac.
2
a

Латинской буквой D обозначают дискриминант.

Дискриминант — это выражение, от которого зависит число корней данного уравнения.

Если D 0, то уравнение имеет два корня.

Пример . Решим уравнение 12x 2 + 7x + 1 = 0.

Сначала вычислим дискриминант.

D = b 2 – 4ac = 7 2 – 4 · 12 · 1 = 49 – 48 = 1.

D > 0. Значит, уравнение имеет корни (причем два корня), а значит, можно вычислять дальше.

Чтобы найти корни, применим формулу корней квадратного уравнения:

Находим оба значения x:

Формула №2.

Из формулы №1 можно получить другую формулу, которой удобно пользоваться в случаях, когда второй коэффициент – четное число. В этом случае раскладываем его на множители, один из которых – множитель 2. То есть второй коэффициент представляем в виде 2k, где k – это половина изначально заданного числа. Тогда удобно пользоваться формулой:

k ± √D1
x = ———
, где D1 = k 2 – ac
a

Пример . Решим уравнение 5x 2 – 16x + 3 = 0.

Записываем -16x в виде 2 · (-8x). Тогда k = -8, a = 5, c = 3. Мы уже можем найти дискриминант D1:

Теперь находим оба значения x:

При решении квадратного уравнения по данным формулам целесообразно поступать следующим образом:

1) вычислить дискриминант и сравнить его с нулем;

2) если дискриминант положителен или равен нулю, то воспользоваться формулой корней; если дискриминант отрицателен, то записать, что корней нет.

Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Как найти дискриминант квадратного уравнения

Формула корней квадратного уравнения 2 b d x a где 2 d b ac

О чем эта статья:

Видео:Формула корней квадратного уравнения – 8 класс алгебраСкачать

Формула корней квадратного уравнения – 8 класс алгебра

Понятие квадратного уравнения

Уравнение — это равенство, содержащее переменную, значение которой нужно найти.

Например, х + 8 = 12 — это уравнение, содержащее переменную х.

Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.

Например, если х = 5, то при подстановке в уравнение мы получим:

13 = 12 — противоречие.

Значит, х = 5 не является корнем уравнения.

Если же х = 4, то при подстановке в уравнение мы получим:

12 = 12 — верное равенство.

Значит, х = 4 является корнем уравнения.

Решить уравнение — значит найти все его корни или доказать, что их не существует.

Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Если все коэффициенты в уравнении отличны от нуля, то уравнение называется полным.

Такое уравнение можно решить с помощью формулы дискриминанта.

Видео:Формула корней квадратного уравнения. Алгебра, 8 классСкачать

Формула корней квадратного уравнения. Алгебра, 8 класс

Понятие дискриминанта

Дискриминант квадратного уравнения — это выражение, равное b 2 − 4ac. Дискриминант в переводе с латинского означает «отличающий» или «различающий» и обозначается буквой D.

Дискриминант — отличный помощник, чтобы понять, сколько в уравнении корней.

Формула корней квадратного уравнения 2 b d x a где 2 d b ac

Видео:ФОРМУЛА КОРНЕЙ КВАДРАТНОГО УРАВНЕНИЯ. §20 алгебра 8 классСкачать

ФОРМУЛА КОРНЕЙ КВАДРАТНОГО УРАВНЕНИЯ. §20  алгебра 8 класс

Как решать квадратные уравнения через дискриминант

Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

Определим, чему равны коэффициенты a, b, c.

Вычислим значение дискриминанта по формуле D = b2 − 4ac.

Если дискриминант D 0, то у уравнения две корня, равные

Чтобы запомнить алгоритм решения полных квадратных уравнений и с легкостью его использовать, сохраните себе шпаргалку:

Формула корней квадратного уравнения 2 b d x a где 2 d b ac

Видео:Алгебра 8 класс. Ещё одна формула корней квадратного уравненияСкачать

Алгебра 8 класс. Ещё одна формула корней квадратного уравнения

Примеры решения квадратных уравнений с помощью дискриминанта

Пример 1. Решить уравнение: 3x 2 — 4x + 2 = 0.

  1. Определим коэффициенты: a = 3, b = -4, c = 2.
  2. Найдем дискриминант: D = b 2 — 4ac = (-4) 2 — 4 * 3 * 2 = 16 — 24 = -8.

Ответ: D 2 — 6x + 9 = 0.

  1. Определим коэффициенты: a = 1, b = -6, c = 9.
  2. Найдем дискриминант: D = b 2 — 4ac = (-6) 2 — 4 * 1 * 9 = 36 — 36 = 0.

D = 0, значит уравнение имеет один корень:

Формула корней квадратного уравнения 2 b d x a где 2 d b ac

Ответ: корень уравнения 3.

Пример 3. Решить уравнение: x 2 — 4x — 5 = 0.

  1. Определим коэффициенты: a = 1, b = -4, c = -5.
  2. Найдем дискриминант: D = b 2 — 4ac = (-4) 2 — 4 * 1 * (-5) = 16 + 20 = 36.

D > 0, значит уравнение имеет два корня:

Формула корней квадратного уравнения 2 b d x a где 2 d b ac

Ответ: два корня x1 = 5, x2 = -1.

Разобраться в решении квадратных уравнений на практике с классным преподавателем можно на курсах по математике в Skysmart.

Видео:Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика

Дискриминант квадратного уравнения

Дискриминант квадратного уравнения — это выражение, находящееся под корнем в формуле нахождения корней квадратного уравнения. Дискриминант обозначается латинской буквой D.

Вид уравненияФормула корнейФормула
дискриминанта
ax 2 + bx + c = 0Формула корней квадратного уравнения 2 b d x a где 2 d b acb 2 — 4ac
ax 2 + 2kx + c = 0Формула корней квадратного уравнения 2 b d x a где 2 d b ack 2 — ac
x 2 + px + q = 0Формула корней квадратного уравнения 2 b d x a где 2 d b acФормула корней квадратного уравнения 2 b d x a где 2 d b ac
Формула корней квадратного уравнения 2 b d x a где 2 d b acp 2 — 4q

Все формулы нахождения корней квадратных уравнений можно записать короче с помощью дискриминанта:

Вид уравненияФормула
ax 2 + bx + c = 0Формула корней квадратного уравнения 2 b d x a где 2 d b ac, где D = b 2 — 4ac
ax 2 + 2kx + c = 0Формула корней квадратного уравнения 2 b d x a где 2 d b ac, где D = k 2 — ac
x 2 + px + q = 0Формула корней квадратного уравнения 2 b d x a где 2 d b ac, где D = Формула корней квадратного уравнения 2 b d x a где 2 d b ac
Формула корней квадратного уравнения 2 b d x a где 2 d b ac, где D = p 2 — 4q

Дискриминант позволяет определить, имеет ли уравнение корни и сколько их, не решая само уравнение:

  1. Если дискриминант больше нуля, то уравнение имеет два корня.
  2. Если дискриминант равен нулю, то уравнение имеет один корень.
  3. Если дискриминант меньше нуля, то уравнение не имеет корней.

Несмотря на то, что есть несколько формул дискриминанта, чаще всего используют первую:

так как она относится к формуле:

Формула корней квадратного уравнения 2 b d x a где 2 d b ac,

которая является универсальной формулой нахождения корней квадратного уравнения. Данная формула подходит даже для неполных квадратных уравнений.

Видео:Формула корней квадратного уравнения 2Скачать

Формула корней квадратного уравнения 2

Решение квадратных уравнений через дискриминант

Для решения квадратного уравнения по формуле можно сначала вычислить дискриминант и сравнить его с нулём. В зависимости от результата, либо искать корни по формуле, либо сделать вывод, что корней нет.

Пример 1. Решить уравнение:

Определим, чему равны коэффициенты:

D = b 2 — 4ac = (-4) 2 — 4 · 3 · 2 = 16 — 24 = -8,

Определим, чему равны коэффициенты:

D = b 2 — 4ac = (-6) 2 — 4 · 1 · 9 = 36 — 36 = 0,

Уравнение имеет всего один корень:

Формула корней квадратного уравнения 2 b d x a где 2 d b ac

Определим, чему равны коэффициенты:

D = b 2 — 4ac = (-4) 2 — 4 · 1 · (-5) = 16 + 20 = 36,

🎥 Видео

Алгебра 8 класс (Урок№28 - Решение квадратных уравнений вида ax2 + bx + c = 0.Формула корней кв.ур.)Скачать

Алгебра 8 класс (Урок№28 - Решение квадратных уравнений вида ax2 + bx + c = 0.Формула корней кв.ур.)

Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать

Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Урок 95 Формулы корней квадратного уравнения (8 класс)Скачать

Урок 95  Формулы корней квадратного уравнения (8 класс)

МАТЕМАТИКА 8 класс - Квадратные Уравнения. Как решать Квадратные Уравнения? Формула КорнейСкачать

МАТЕМАТИКА 8 класс - Квадратные Уравнения. Как решать Квадратные Уравнения? Формула Корней

Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать

Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполные

Алгебра 8 класс : Формулы корней квадратного уравненияСкачать

Алгебра 8 класс : Формулы корней квадратного уравнения

Решение квадратного уравнения с выводом формулы корнейСкачать

Решение квадратного уравнения с выводом формулы корней

Формула корней квадратного уравнения. Алгебра 8клСкачать

Формула корней квадратного уравнения.  Алгебра 8кл

Неполные квадратные уравнения. Алгебра, 8 классСкачать

Неполные квадратные уравнения. Алгебра, 8 класс

Как решать квадратные уравнения без дискриминантаСкачать

Как решать квадратные уравнения без дискриминанта

Быстрый способ решения квадратного уравненияСкачать

Быстрый способ решения квадратного уравнения

Откуда взялись ФОРМУЛЫ КОРНЕЙ квадратного уравнения? | МатематикаСкачать

Откуда взялись ФОРМУЛЫ КОРНЕЙ квадратного уравнения? | Математика
Поделиться или сохранить к себе: