В данной статье рассмотрим принцип решения таких уравнений как линейные уравнения. Запишем определение этих уравнений, зададим общий вид. Разберем все условия нахождения решений линейных уравнений, используя, в том числе, практические примеры.
Обратим внимание, что материал ниже содержит информацию по линейным уравнениям с одной переменной. Линейные уравнения с двумя переменными рассматриваются в отдельной статье.
Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать
Что такое линейное уравнение
Линейное уравнение – это уравнение, запись которого такова:
a · x = b , где x – переменная, a и b – некоторые числа.
Такая формулировка использована в учебнике алгебры ( 7 класс) Ю.Н.Макарычева.
Примерами линейных уравнений будут:
3 · x = 11 (уравнение с одной переменной x при а = 5 и b = 10 );
− 3 , 1 · y = 0 (линейное уравнение с переменной y, где а = — 3 , 1 и b = 0 );
x = − 4 и − x = 5 , 37 (линейные уравнения, где число a записано в явном виде и равно 1 и — 1 соответственно. Для первого уравнения b = — 4 ; для второго — b = 5 , 37 ) и т.п.
В различных учебных материалах могут встречаться разные определения. К примеру, Виленкин Н.Я. к линейным относит также те уравнения, которые возможно преобразовать в вид a · x = b при помощи переноса слагаемых из одной части в другую со сменой знака и приведения подобных слагаемых. Если следовать такой трактовке, уравнение 5 · x = 2 · x + 6 – также линейное.
А вот учебник алгебры ( 7 класс) Мордковича А.Г. задает такое описание:
Линейное уравнение с одной переменной x – это уравнение вида a · x + b = 0 , где a и b – некоторые числа, называемые коэффициентами линейного уравнения.
Примером линейных уравнений подобного вида могут быть:
3 · x − 7 = 0 ( a = 3 , b = − 7 ) ;
1 , 8 · y + 7 , 9 = 0 ( a = 1 , 8 , b = 7 , 9 ) .
Но также там приведены примеры линейных уравнений, которые мы уже использовали выше: вида a · x = b , например, 6 · x = 35 .
Мы сразу условимся, что в данной статье под линейным уравнением с одной переменной мы будем понимать уравнение записи a · x + b = 0 , где x – переменная; a , b – коэффициенты. Подобная форма линейного уравнения нам видится наиболее оправданной, поскольку линейные уравнения – это алгебраические уравнения первой степени. А прочие уравнения, указанные выше, и уравнения, приведенные равносильными преобразованиями в вид a · x + b = 0 , определим, как уравнения, сводящиеся к линейным уравнениям.
При таком подходе уравнение 5 · x + 8 = 0 – линейное, а 5 · x = − 8 — уравнение, сводящееся к линейному.
Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать
Принцип решения линейных уравнений
Рассмотрим, как определить, будет ли заданное линейное уравнение иметь корни и, если да, то сколько и как их определить.
Факт наличия корней линейного уравнения определятся значениями коэффициентов a и b . Запишем эти условия:
- при a ≠ 0 линейное уравнение имеет единственный корень x = — b a ;
- при a = 0 и b ≠ 0 линейное уравнение не имеет корней;
- при a = 0 и b = 0 линейное уравнение имеет бесконечно много корней. По сути в данном случае любое число может стать корнем линейного уравнения.
Дадим пояснение. Нам известно, что в процессе решения уравнения возможно осуществлять преобразование заданного уравнения в равносильное ему, а значит имеющее те же корни, что исходное уравнение, или также не имеющее корней. Мы можем производить следующие равносильные преобразования:
- перенести слагаемое из одной части в другую, сменив знак на противоположный;
- умножить или разделить обе части уравнения на одно и то же число, не равное нулю.
Таким образом, преобразуем линейное уравнение a · x + b = 0 , перенеся слагаемое b из левой части в правую часть со сменой знака. Получим: a · x = − b .
Далее мы разделим обе части равенства на число а , при этом условившись, что это число отлично от нуля, иначе деление станет невозможным. Случай, когда а = 0 , рассмотрим позже.
Итак, производим деление обеих частей уравнения на не равное нулю число а, получив в итоге равенство вида x = — b a . Т.е., когда a ≠ 0 , исходное уравнение a · x + b = 0 равносильно равенству x = — b a , в котором очевиден корень — b a .
Методом от противного возможно продемонстрировать, что найденный корень – единственный. Зададим обозначение найденного корня — b a как x 1 . Выскажем предположение, что имеется еще один корень линейного уравнения с обозначением x 2 . И конечно: x 2 ≠ x 1 , а это, в свою очередь, опираясь на определение равных чисел через разность, равносильно условию x 1 − x 2 ≠ 0 . С учетом вышесказанного мы можем составить следующие равенства, подставив корни:
a · x 1 + b = 0 и a · x 2 + b = 0 .
Свойство числовых равенств дает возможность произвести почленное вычитание частей равенств:
a · x 1 + b − ( a · x 2 + b ) = 0 − 0 , отсюда: a · ( x 1 − x 2 ) + ( b − b ) = 0 и далее a · ( x 1 − x 2 ) = 0 . Равенство a · ( x 1 − x 2 ) = 0 является неверным, поскольку ранее условием было задано, что a ≠ 0 и x 1 − x 2 ≠ 0 . Полученное противоречие и служит доказательством того, что при a ≠ 0 линейное уравнение a · x + b = 0 имеет лишь один корень.
Обоснуем еще два пункта условий, содержащие a = 0 .
Когда a = 0 линейное уравнение a · x + b = 0 запишется как 0 · x + b = 0 . Свойство умножения числа на нуль дает нам право утверждать, что какое бы число не было взято в качестве x, подставив его в равенство 0 · x + b = 0 , получим b = 0 . Равенство справедливо при b = 0 ; в прочих случаях, когда b ≠ 0 , равенство становится неверным.
Таким образом, когда a = 0 и b = 0 , любое число может стать корнем линейного уравнения a · x + b = 0 , поскольку при выполнении этих условий, подставляя вместо x любое число, получаем верное числовое равенство 0 = 0 . Когда же a = 0 и b ≠ 0 линейное уравнение a · x + b = 0 вовсе не будет иметь корней, поскольку при выполнении указанных условий, подставляя вместо x любое число, получаем неверное числовое равенство b = 0 .
Все приведенные рассуждения дают нам возможность записать алгоритм, дающий возможность найти решение любого линейного уравнения:
- по виду записи определяем значения коэффициентов a и b и анализируем их;
- при a = 0 и b = 0 уравнение будет иметь бесконечно много корней, т.е. любое число станет корнем заданного уравнения;
- при a = 0 и b ≠ 0 заданное уравнение не будет иметь корней;
- при a , отличном от нуля, начинаем поиск единственного корня исходного линейного уравнения:
- перенесем коэффициент b в правую часть со сменой знака на противоположный, приводя линейное уравнение к виду a · x = − b ;
- обе части полученного равенства делим на число a , что даст нам искомый корень заданного уравнения: x = — b a .
Собственно, описанная последовательность действий и есть ответ на вопрос, как находить решение линейного уравнения.
Напоследок уточним, что уравнения вида a · x = b решаются по похожему алгоритму с единственным отличием, что число b в такой записи уже перенесено в нужную часть уравнения, и при a ≠ 0 можно сразу выполнять деление частей уравнения на число a .
Таким образом, чтобы найти решение уравнения a · x = b , используем такой алгоритм:
- при a = 0 и b = 0 уравнение будет иметь бесконечно много корней, т.е. любое число может стать его корнем;
- при a = 0 и b ≠ 0 заданное уравнение не будет иметь корней;
- при a , не равном нулю, обе части уравнения делятся на число a , что дает возможность найти единственный корень, который равен b a .
Видео:Решение системы трех уравнений по формулам КрамераСкачать
Примеры решения линейных уравнений
Необходимо решить линейное уравнение 0 · x − 0 = 0 .
Решение
По записи заданного уравнения мы видим, что a = 0 и b = − 0 (или b = 0 , что то же самое). Таким образом, заданное уравнение может иметь бесконечно много корней или любое число.
Ответ: x – любое число.
Видео:Решение системы уравнений методом Крамера.Скачать
Линейные уравнения
Линейное уравнение – уравнение вида a x = b , где x – переменная, a и b некоторые числа, причем a ≠ 0 .
Примеры линейных уравнений:
- 3 x = 2
- 2 7 x = − 5
Линейными уравнениями называют не только уравнения вида a x = b , но и любые уравнения, которые при помощи преобразований и упрощений сводятся к этому виду.
Как же решать уравнения, которые приведены к виду a x = b ? Достаточно поделить левую и правую часть уравнения на величину a . В результате получим ответ: x = b a .
Как распознать, является ли произвольное уравнение линейным или нет? Надо обратить внимание на переменную, которая присутствует в нем. Если старшая степень, в которой стоит переменная, равна единице, то такое уравнение является линейным уравнением.
Для того, чтобы решить линейное уравнение , необходимо раскрыть скобки (если они есть), перенести «иксы» в левую часть, числа – в правую, привести подобные слагаемые. Получится уравнение вида a x = b . Решение данного линейного уравнения: x = b a .
Примеры решения линейных уравнений:
- 2 x + 1 = 2 ( x − 3 ) + 8
Это линейное уравнение, так как переменная стоит в первое степени.
Попробуем преобразовать его к виду a x = b :
Для начала раскроем скобки:
2 x + 1 = 4 x − 6 + 8
В левую часть переносятся все слагаемые с x , в правую – числа:
Теперь поделим левую и правую часть на число ( -2 ) :
− 2 x − 2 = 1 − 2 = − 1 2 = − 0,5
Это уравнение не является линейным уравнением, так как старшая степень, в которой стоит переменная x равна двум.
Это уравнение выглядит линейным на первый взгляд, но после раскрытия скобок старшая степень становится равна двум:
x 2 + 3 x − 8 = x − 1
Это уравнение не является линейным уравнением.
Особые случаи (встречаются редко, но знать их полезно).
- 2 x − 4 = 2 ( x − 2 )
Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:
2 x − 2 x = − 4 + 4
И как же здесь искать x , если его нет? После выполнения преобразований мы получили верное равенство (тождество), которое не зависит от значения переменной x . Какое бы значение x мы ни подставляли бы в исходное уравнение, в результате всегда получается верное равенство (тождество). Значит x может быть любым числом. Запишем ответ к данном линейному уравнению.
Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:
2 x − 4 = 2 x − 16
2 x − 2 x = − 16 + 4
В результате преобразований x сократился, но в итоге получилось неверное равенство, так как . Какое бы значение x мы ни подставляли бы в исходное уравнение, в результате всегда будет неверное равенство. А это означает, что нет таких значений x , при которых равенство становилось бы верным. Запишем ответ к данному линейному уравнению.
Видео:Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать
Задания для самостоятельного решения
№1. Найдите корни уравнения 2 − 3 ( 2 x + 2 ) = 5 − 4 x .
Если корней несколько, запишите их через точку с запятой в порядке возрастания.
Решение:
2 − 3 ( 2 x + 2 ) = 5 − 4 x
2 − 6 x − 6 = 5 − 4 x
Переносим иксы влево, числа вправо:
− 6 x + 4 x = 5 + 6 − 2
x = 9 − 2 = − 9 2 = − 4,5
№2. При каком значении x значения выражений 7 x − 2 и 3 x + 6 равны?
Решение:
Приравниваем эти два выражения:
№3. Решите уравнение ( − 5 x + 3 ) ( − x + 6 ) = 0.
Если корней несколько, запишите их через точку с запятой в порядке возрастания.
Решение:
Произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю. Чтобы найти все корни данного уравнения, надо приравнять каждый множитель к нулю и оба корня взять в ответ.
( − 5 x + 3 ) ( − x + 6 ) = 0 ⇔ [ − 5 x + 3 = 0 − x + 6 = 0 ⇒ [ − 5 x = − 3 ; − x = − 6 ; ⇒ [ x = − 3 − 5 = 3 5 = 0,6 x = − 6 − 1 = 6 1 = 6
В задании указано, что в ответ надо записать корни в порядке возрастания 0,6 6.
№4. Решите уравнение ( x − 4 ) 2 + ( x + 9 ) 2 = 2 x 2 .
Если корней несколько, запишите их через точку с запятой в порядке возрастания.
Решение:
Раскроем квадраты, используя ФСУ (формулы сокращенного умножения):
x 2 − 2 ⋅ x ⋅ 4 + 4 2 + x 2 + 2 ⋅ x ⋅ 9 + 9 2 − 2 x 2 = 0
Замечаем, что x 2 сокращается:
x 2 − 8 x + 4 2 + x 2 + 18 x + 9 2 − 2 x 2 = 0
− 8 x + 18 x + 16 + 81 = 0
№5. Решите уравнение ( x + 10 ) 2 = ( 5 − x ) 2 .
Решение:
Раскроем скобки, используя ФСУ.
( x + 10 ) 2 = ( 5 − x ) 2
x 2 + 2 ⋅ x ⋅ 10 + 10 2 = 5 2 − 2 ⋅ 5 ⋅ x + x 2
x 2 + 20 x + 100 = 25 − 10 x + x 2
x 2 + 20 x + 100 − x 2 + 10 x − 25 = 0
№6. Решите уравнение x − 11 = x + 7 7 .
Решение:
Домножим левую и правую часть уравнение на 7 . Получим:
Видео:ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать
Решение простых линейных уравнений
О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать
Понятие уравнения
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Какие бывают виды уравнений
Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.
Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа. Что поможет в решении:
|
---|---|
Квадратное уравнение выглядит так: | ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0. |
Числовой коэффициент — число, которое стоит при неизвестной переменной.
Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:
Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.
Видео:Математика без Ху!ни. Метод Гаусса.Скачать
Как решать простые уравнения
Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.
1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.
Для примера рассмотрим простейшее уравнение: x+3=5
Начнем с того, что в каждом уравнении есть левая и правая часть.
Перенесем 3 из левой части в правую и меняем знак на противоположный.
Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.
Решим еще один пример: 6x = 5x + 10.
Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.
Приведем подобные и завершим решение.
2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.
Применим правило при решении примера: 4x=8.
При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.
Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.
Разделим каждую часть на 4. Как это выглядит:
Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:
Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12
- Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.
−4x = 12 | : (−4)
x = −3
Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.
Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.
Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.
Алгоритм решения простого линейного уравнения |
---|
|
Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.
Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать
Примеры линейных уравнений
Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!
Пример 1. Как правильно решить уравнение: 6х + 1 = 19.
- Перенести 1 из левой части в правую со знаком минус.
Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.
Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.
5х − 15 + 2 = 3х − 12 + 2х − 1
Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.
5х − 3х − 2х = −12 − 1 + 15 − 2
Приведем подобные члены.
Ответ: х — любое число.
Пример 3. Решить: 4х = 1/8.
- Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.
Пример 4. Решить: 4(х + 2) = 6 − 7х.
- 4х + 8 = 6 − 7х
- 4х + 7х = 6 − 8
- 11х = −2
- х = −2 : 11
- х = −2/11
Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.
Пример 5. Решить:
- 3(3х — 4) = 4 · 7х + 24
- 9х — 12 = 28х + 24
- 9х — 28х = 24 + 12
- -19х = 36
- х = 36 : (-19)
- х = — 36/19
Пример 6. Как решить линейное уравнение: х + 7 = х + 4.
5х — 15 + 2 = 3х — 2 + 2х — 1
Сгруппировать в левой части неизвестные члены, в правой — свободные члены:
Приведем подобные члены.
Ответ: нет решений.
Пример 7. Решить: 2(х + 3) = 5 − 7х.
🌟 Видео
Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать
Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать
Математика Без Ху!ни. Система линейных уравнений. Метод Крамера.Скачать
Линейное уравнение с одной переменной. 6 класс.Скачать
Решение системы уравнений методом ГауссаСкачать
Решение квадратных уравнений. Дискриминант. 8 класс.Скачать
2 минуты на формулы Крамера ➜ Решение систем уравнений методом КрамераСкачать
10. Метод Крамера решения систем линейных уравнений.Скачать
Алгебра 7 Линейное уравнение с одной переменнойСкачать
Решение системы уравнений методом Крамера 2x2Скачать