Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

Уравнение неразрывности и уравнение Бернулли.

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

Уравнение неразрывности потока и уравнения Бернулли являются основными уравнениями гидродинамики. При изучении потоков жидкости вводится ряд понятий, характеризующий потоки с гидравлической и геометрической точек зрения.

Такими понятиями являются: площадь живого сечения потока(или живое сечение потока), расход и средняя скорость.

Площадью живого сечения потока, называют площадь сечения потока, приведенную нормально к направлению линии тока, т.е. перпендикулярно движению струйки жидкости. Живое сечение может быть ограничено твердыми стенками полностью или частично. Если стенки ограничивают поток полностью, то движение жидкости называют напорным; Если же ограничение частичное, то движение называется безнапорным.

Напорное движение характеризуется тем, что гидродинамическое давление в любой точке потока отлично от атмосферного и может быть как больше, так и меньше него. Безнапорное движение характеризуется постоянным давлением на свободной поверхности, обычно равным атмосферному.

Содержание статьи

Расходом потока называется количество жидкости, протекающей через поперечное сечение в единицу времени. Если рассматривать поток жидкости, представляющий собой совокупность большого числа элементарных струек, то очевидно, общий расход жидкости для всего потока в целом представляет собой сумму расходов всех отдельных струек.

Для нахождения этой суммы необходимо знать закон распределения скоростей в сечении потока. Так как во многих случаях движения такой закон неизвестен, в общем случае суммирование становится невозможным. Поэтому в гидродинамике вводится предположение, что все частицы жидкости по всему поперечному сечению потока движутся с одинаковой скоростью. Эту воображаемую фиктивную скорость называют средней скоростью потока υср .

Таким образом уравнение расхода для потока будет

υср – средняя скорость потока

F – площадь сечения потока.

Видео:Закон БернуллиСкачать

Закон Бернулли

Уравнение неразрывности потока жидкости

Теперь вооружившись основными понятиями перейдем к определению уравнения неразрывности потока.

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

Отделим сечениями 1-1 и 2-2 некоторый отрезок элементарной струйки. В этот отрезок в единицу времени через сечение 1-1 втекает объем жидкости равный

а через сечение 2-2 из него же вытекает объем, равный

Примем, что жидкость несжимаема и что в ней невозможно образование незаполненных жидкостью пространств – т.е. будем считать, что соблюдается условие сплошности или неразрывности движения.

Учитывая, что форма элементарной струйки с течением времени не изменяется и поперечный приток в струйку или отток из ней отсутствуют, приходим к выводу, что элементарные расходы жидкости, проходящие через сечение 1-1 и 2-2, должны быть одинаковы.

Такие соотношения можно составить для любых двух сечений струйки. Поэтому в более общем виде получаем, что всюду вдоль струйки

Это уравнение называется уравнением неразрывности жидкости – оно является первым основным уравнением гидродинамики. Переходя далее к потоку жидкости в целом получаем, что

т.е. средние скорости в поперечных сечениях потока при неразрывности движения обратно пропорциональны площади этих сечений.

Уравнение неразрывности струи жидкости. Уравнение Бернулли.

Вторым основным уравнением гидродинамики является уравнение Бернулли, устанавливающее взаимосвязь между скоростью и давлением в различных сечениях одной и той же струйки.

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

При рассмотрении уравнения Бернулли также как и в предыдущем случае ограничимся установившемся медленно изменяющимся движением. Выделим в объеме некоторой жидкости одну элементарную струйку и ограничим её в какой-то определенный момент времени Т сечениями 1-1 и 2-2.

Допустим, что через какой-то промежуток времени ΔТ указанный объем переместится в положение 1’ – 1’ и 2’ – 2’. Тогда применяя к движению этого сечению теорему кинетической энергии, определяем, что приращение кинетической энергии движущейся системы материальных частиц равняется сумме работ всех сил, действующих на систему.

Если всё это записать в виде формулы, то

где W – приращение кинетической энергии = m * υ 2 / 2

ΣA – сумма работ действующих сил = P *ΔS

В этих выражениях
m – масса
υ – скорость материальной точки
P – равнодействующая всех сил, приложенных к точке,
ΔS – проекция перемещения точки на направление силы.

Теперь рассмотрим обе части этого выражения по порядку.

Приращение кинетической энергии ΔW

В нашем случае приращение кинетической энергии определяется как разность значений кинетической энергии в двух положениях перемещающегося объема, т.е. как разность кинетической энергии объема образованного сечениями 1-1’ и объема, образованного сечениями 2 – 2’.

Эти объемы являются результатом перемещения за время ΔТ сечений выделенного участка элементарной струйки.

Вспоминая, что по условию неразрывности расход во всех сечениях элементарной струйки одинаков, а следовательно будет равен

масса в этом случае получается равной

Подставляя все это в выражение для кинетической энергии получаем цепочку

ΔW = m * υ 2 2 / 2 — m * υ 2 1 / 2 = ρ * q * ΔТ * υ 2 2 / 2 — ρ * q * ΔТ * υ 2 1 / 2

Работа сил действующих на систему ΣA

Теперь перейдем к рассмотрению работы сил, действующих на рассматриваемый объем жидкости. Работа сил тяжести AТ равна произведению этой силы на путь, пройденный центром массы движущегося объема жидкости по вертикали.

Для рассматриваемой в нашем примере струйки работа сил тяжести будет равна произведению сил тяжести объема занимаемого сечениями 1-1’ и 2 – 2’ на расстояние Z1 –Z2.

Где Z1 и Z2 – расстояния по вертикали от горизонтальной плоскости, называемой плоскостью сравнения до центров масс объемов 1-1’ и 2 – 2’.

Силы давления АД , действующие на объем жидкости складываются из сил давления на его боковую поверхность и на концевые поперечные сечения. Работа сил давления на боковую поверхность равна нулю, так как эти силы за все время движения нормальны к перемещению их точек приложения.

Суммарно работа сил давления будет

Подставляя в начальное уравнение

Полученные выражения для ΔW и ΣA получаем

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

Разделим обе части этого уравнения на m = ρ*q*ΔТ и перегруппируем слагаемые

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

Учитывая, что сечения 1-1 и 2-2 взяты нами совершенно произвольным образом, это уравнение возможно распространить на всю струйку. Применив его для любых поперечных сечений, взятых по её длине, и представить в общем виде:

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

Записанные выше два уравнения представляют собой уравнение Бернулли для элементарной струйки жидкости. Сумма трех слагаемых, входящих в это уравнение, называется удельной энергией жидкости в данном сечении струйки. Различают такие энергии как:
Удельная энергия положения = qz
Удельная энергия давления = p/ ρ
Кинетическая удельная энергия = υ 2 / 2

В соответствии с этим уравнение Бернулли для струйки жидкости можно сформулировать следующим образом: для элементарной струйки идеальной жидкости полная удельная энергия, т.е. сумма удельной энергии положения, удельной энергии давления и кинетической удельной энергии – есть величина постоянная во всех сечениях струйки.

Видео по теме уравнение неразрывности

Полученные в результате многочисленных экспериментов данные из уравнения Бернулли и уравнения неразрывности потока жидкости нашли широкое применение в повседневной жизни.

Уравнение Бернулли широко используется для нахождения скорости истечения жидкости через отверстия.

Уравнение неразрывности обладает широкой универсальностью и справедливо для любой сплошной среды. Принцип уравнения неразрывности используется для формирования сильной и дальнобойной струи воды при тушении пожаров.

Видео:Основы гидродинамики и аэродинамики | условие неразрывностиСкачать

Основы гидродинамики и аэродинамики | условие неразрывности

Уравнение неразрывности

Уравнение неразрывности движения жидкости представляет собой закон сохранения массы изолированной системы. В общем виде: Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

где Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести— дивергенция вектора скорости, т. е. относительное изменение объема с течением времени, р — плотность.

В случае, когда жидкость является несжимаемой (dpi dt = 0), уравнение (1.32) упрощается:

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

Элементарный расход жидкости при установившемся движении есть величина постоянная для всей элементарной струйки.

Уравнение неразрывности для потока жидкости: расход жидкости через любое сечение потока при установившемся движении есть величина постоянная.

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

Видео:Урок 132. Основные понятия гидродинамики. Уравнение непрерывностиСкачать

Урок 132. Основные понятия гидродинамики. Уравнение непрерывности

Уравнения Бернулли

Уравнение Даниила Бернулли, полученное в 1738 г., является фундаментальным уравнением гидродинамики и выражает закон сохранения энергии движущейся жидкости. Уравнение Бернулли определяет применение этого закона к установившемуся одномерному потоку несжимаемой жидкости. Индексами (1) и (2) обозначены величины, соответственно относящиеся к сечению потока 1—1, взятому выше по течению, и к сечению 2-2, взятому ниже по течению (рис. 1.11-1.13).

Уравнением Бернулли для элементарной струйки идеальной (невязкой) жидкости называется следующее выражение:

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

где и — скорость движения жидкости в поперечном сечении элементарной струйки, Н — гидродинамический напор, равный полной энергии потока Е (рис. 1.12).

Для реальной (вязкой) жидкости напор в любом вышележащем сечении всегда будет больше напора в нижележащем по течению сечении, т. к. часть энергии затрачивается на преодоление сил сопротивления (рис. 1.13), т. е. можно записать уравнение Бернулли для элементарной струйки реальной (вязкой) жидкости в следующем виде:

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

где Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести— удельные потери напора на преодоление всех сопротивлений (преодоление сил вязкости и сил трения между жидкостью и стенкой).

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

Рис. 1.12. К уравнению Бернулли для струйки невязкой жидкости [38]

Для решения задач практической гидравлики выбирают два сечения по длине потока так, чтобы для одного из них были известны величины z,p и v, а для другого одна или две подлежали определению.

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

Рис. 1.13. К уравнению Бернулли для струйки вязкой жидкости (штриховкой показаны потери напора по пути движения) [38]

При переходе от элементарной струйки к потоку вязкой жидкости, имеющему конечные размеры, необходимо учесть неравномерность распределения скоростей в живых сечениях и иметь представление о случаях возможного и невозможного применения уравнения Бернулли.

Решение этих вопросов сводится к установлению поправочных коэффициентов и выделению потоков с плавно изменяющимся движением, т. е. таким движением, при котором угол расхождения между соседними элементарными струйками настолько мал, что составляющими скорости в поперечном сечении можно пренебречь.

При движении вязкой жидкости вдоль твердой стенки ее скорость достигает максимального значения в центральной части потока и уменьшается до нуля возле стенки. Неравномерное распределение скоростей означает неодинаковое скольжение одних элементарных струек по другим, движение вязкой жидкости сопровождается вращением частиц, вих- реобразованием и перемешиванием. Поэтому, приходится вводить среднюю по сечению скорость v. Для приведения результатов расчетов по средней скорости в соответствие с действительными скоростями вводится коэффициент Кориолиса а, характеризующий неравномерное распределение скоростей в живом сечении потока, представляющий собой отношение кинетической энергии, подсчитанной по истинным скоростям сечения, к той же энергии, вычисленной по средней скорости в этом же сечении потока. Обычно в трубопроводах и каналах а = 1,05. 1,1, иногда приближенно принимают а = 1.

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

Рис. 1.14. К уравнению Бернулли для потока вязкой жидкости [32]

Поэтому уравнение Бернулли для потока вязкой жидкости (рис. 1.14) с учетом неравномерности распределения скоростей по живому сечению запишется следующим образом:

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

где zi, z2 — геометрический напор или геометрическая высота положения центра тяжести живого сечения потока над произвольно взятой горизонтальной плоскостью сравнения Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести— высота давления,

пьезометрическая высота, т. е. высота такого столба жидкости, который соответствует гидродинамическому давлению в центре тяжести

живого сечения потока; Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести— скоростной напор или скоростная

высота; hw потерянный напор; а коэффициент Кориолиса, характеризующий неравномерное распределение скоростей в живом сечении потока; vi, V2 — средняя скорость в 1 и 2 живом сечении соответственно.

Уравнение Бернулли устанавливает связь между высотными положениями частиц жидкости, давлением и скоростями в разных сечениях потока жидкости. Причем каждая из входящих в уравнение величин может изменяться, но сумма остается постоянной.

Видео:Урок 133. Закон Бернулли. Уравнение БернуллиСкачать

Урок 133. Закон Бернулли. Уравнение Бернулли

Кратко о гидродинамике: уравнения движения

Написав предыдущий пост, исторический и отчасти рекламный (хотя потенциальные абитуриенты такое вряд ли читают), можно перейти и к разговору «по существу». К сожалению, высокой степени популярности описания добиться вряд ли получится, но всё же постараюсь не устраивать курс сухих лекций. Хотя, от сухости избавиться не удалось, да и пост писался в результате ровно месяц.

В нынешней публикации описаны основные уравнения движения идеальной и вязкой жидкости. По возможности кратко рассмотрен их вывод и физический смысл, а также описаны несколько простейших примеров их точных решений. Увы, этими несколькими примерами доступные аналитически решения уравнений Навье-Стокса в значительной мере исчерпываются. Напомню, что Институт Клэя отнёс доказательство существования и гладкости решений к проблемам тысячелетия. Гении уровня Перельмана и выше — задача вас ждёт.

Понятие сплошной среды

В, если можно так выразиться, «традиционной» гидродинамике, сложившейся исторически, фундаментом является модель сплошной среды. Она отвлекается от молекулярной структуры вещества, и описывает среду несколькими непрерывными полевыми величинами: плотностью, скоростью (определяемой через суммарный импульс молекул в заданном элементе объёма) и давлением. Модель сплошной среды предполагает, что в любом бесконечно малом объёме содержится ещё достаточно много частиц (как принято говорить, термодинамически много — числа, близкие по порядку величины к числу Авогадро — 10 23 шт.). Таким образом, модель ограничена снизу дискретностью молекулярной структуры жидкости, что в задачах типичных пространственных масштабов совершенно несущественно.

Однако, такой подход позволяет описать не только воду в пробирке или водоёме, и оказывается куда более универсальным. Поскольку наша Вселенная на больших масштабах практически однородна, то, как ни странно, она начиная с некоторого масштаба превосходно описывается как сплошная среда, с учётом, конечно же, самогравитации.

Другими, более приземлёнными применениями сплошной среды являются описание свойств упругих тел, динамики плазмы, сыпучих тел. Также можно описывать топлу людей как сжимаемую жидкость.

Параллельно с приближением сплошной среды, в последние годы набирает обороты кинетическая модель, основанная на дискретизации среды на небольшие частицы, взаимодействующие между собой (в простейшем случае — как твердые шарики, отталкивающиеся при столкновении). Такой подход возник в первую очередь благодаря развитию вычислительной техники, однако существенно новых результатов в чистую гидродинамику не превнёс, хотя оказался крайне полезен для задач физики плазмы, которая на микроуровне не является однородной, а содержит электроны и положительно заряженные ионы. Ну и опять же для моделирования Вселенной.

Уравнение неразрывности. Закон сохранения массы

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

Самый элементарный закон. Пусть у нас есть какой-то совершенно произвольный, но макроскопический объём жидкости V, ограниченный поверхностью F (см. рис.). Масса жидкости внутри него определяется интегралом:

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

И пусть с жидкостью внутри него не происходит ничего, кроме движения. То есть, там нет химических реакций и фазовых переходов, нет трубок с насосами или чёрных дыр. Ну и всё происходит с маленькими скоростями и для малых масс вещества, потому никакой теории относительности, искривления пространства, самогравитации жидкости (она становится существенна на звёздных масштабах). И пусть сам объём и границы еего неподвижны. Тогда единственное, что может изменить массу жидкости в нашем объёме — это её перетекание через границу объёма (для определённости — пусть масса в объёме убывает):

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

где вектор j — поток вещества через границу. Точкой, напомним, обозначается скалярное произведение. Поскольку границы объёма, как было сказано, неподвижны, то производную по времени можно внести под интеграл. А правую часть можно преобразовать к такому же, как слева, интегралу по объёму по теореме Гаусса-Остроградского.

В итоге, в обеих частях равенства получается интеграл по одному и тому же совершенно произвольному объёму, что позволяет приравнять подинтегральные выражения и перейти к дифференциальной форме уравнения:

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

Здесь (и далее) использован векторный оператор Гамильтона. Образно говоря, это условный вектор, компоненты которого — операторы дифференцирования по соответствующим координатам. С его помощью можно очень кратко обозначать разного рода операции над скалярами, векторами, тензорами высших рангов и прочей математической нечистью, основные среди которых — градиент, дивергенция и ротор. Не буду останавливаться на них детально, поскольку это отвлекает от основной темы.

Наконец, поток вещества равен массе, переносимой через единичную площадку за единицу времени:

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

Окончательно, закон сохранения массы (называемый также уравнением неразрывности) для сплошной среды таков:

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

Это выражение наиболее общее, для среды, обладающей переменной плотностью. В реальности, эксперимент свидетельствует о крайне слабой сжимаемости жидкости и практически постоянном значении плотности, что с высокой точностью позволяет применять закон сохранения массы в виде условия несжимаемости:

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

которое с не менее хорошей точностью работает и для газов, пока скорость течения мала по сравнению со звуковой.

Уравнение Эйлера. Закон сохранения импульса

Весь относительно громоздкий процесс колдовства преобразования интегралов, использованный выше, даёт нам не только уравнение неразрывности. Точно такие же по сути преобразования позволяют выразить законы сохранения импульса и энергии, и получить в итоге уравнения для скорости жидкости и для переноса тепла в ней. Однако пока не будем сильно торопиться, и займёмся не просто сохранением импульса, а даже сохранением импульса в идеальной несжимаемой жидкости — т.е. рассмотрим модель с полным отсутствием вязкости.

Рассуждения практически те же самые, только теперь нас интересует не масса, а полный импульс жидкости в том же самом объёме V. Он равен:

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

При тех же самых условиях, что и выше, импульс в объёме может меняться за счёт:

  • конвективного переноса — т.е. импульс «утекает» вместе со скоростью через границу
  • давления окружающих элементов жидкости
  • просто за счёт внешних сил, например — от силы тяжести.

Соответствующие интегралы (порядок отвечает списку) дают такое соотношение:

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

Начнём их преобразовывать. Правда, для этого нужно воспользоваться тензорным анализом и правилами работы с индексами. Конкретнее, к первому и второму интегралам применяется теорема Гаусса-Остроградского в обобщённой форме (она работает не только для векторных полей). И если перейти к дифференциальной форме уравнения, то получится следующее:

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

Крестик в кружочке обозначает тензорное произведение, в данном случае — векторов.

В принципе, это уже уравнение Эйлера, однако его можно чуток упростить — ведь закон сохранения массы никто не отменял. Раскрыв здесь скобки в дифференциальных операторах и приведя затем подобные слагаемые, мы увидим, что три слагаемых благополучно собираются в уравнение неразрывности, и потому дают в сумме ноль. Итоговое уравнение оказывается таким:

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

Если перейти в систему отсчёта, связанную с движущейся жидкостью (не будем заострять внимание на том, как это делается), мы увидим, что уравнение Эйлера выражает второй закон Ньютона для единицы объёма среды.

Учёт вязкости. Уравнение Навье-Стокса

Идеальная жидкость, это, конечно, хорошо (правда, всё равно точно не решается), но во многих случаях учёт вязкости необходим. Даже в той же конвекции, в течении жидкости по трубам. Без вязкости вода вытекала бы из наших кранов с космическими скоростями, а малейшая неоднородность температуры в воде приводила бы к её крайне быстрому и бурному перемешиванию. Потому давайте учтём сопротивление жидкости самой себе.

Дополнить уравнение Эйлера можно различными (но эквивалентными, конечно же) путями. Воспользуемся базовой техникой тензорного анализа — индексной формой записи уравнения. И пока также отбросим внешние силы, чтобы не путались под руками / под ногами / перед глазами (нужное подчеркнуть). При таком раскладе всё, кроме производной по времени, можно собрать в виде дивергенции одного такого тензора:

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

По смыслу, это плотность потока импульса в жидкости. К нему и нужно добавить вязкие силы в виде ещё одного тензорного слагаемого. Поскольку они явно приводят к потере энергии (и импульса), то они должны вычитаться:

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

Идя обратно в уравнение с таким тензором, мы получим обобщённое уравнение движения вязкой жидкости:

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

Оно допускает любой закон для вязкости.

Принято считать очевидным, что сопротивление зависит от скорости движения. Вязкость же, как перенос импульса между участками жидкости с различными скоростями, зависит от градиента скорости (но не от самой скорости — тому мешает принцип относительности). Если ограничиться разложением этой зависимости до линейных слагаемых, получится вот такой жутковатый объект:

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

в котором величина перед производной содержит 81 коэффициент. Однако, используя ряд совершенно разумных предположений об однородности и изотропности жидкости, от 81 коэффициента можно перейти всего к двум, и в общем случае для сжимаемой среды, тензор вязких напряжений равен:

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

где η (эта) — сдвиговая вязкость, а ζ (зета или дзета) — объёмная вязкость. Если же среда ещё и несжимаема, то достаточно одного коэффициента сдвиговой вязкости, т.к. второе слагаемое при этом уходит. Такой закон вязкости

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

носит название закона Навье, а полученное при его подстановке уравнение движения — это уравнение Навье-Стокса:

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

Точные решения

Главной проблемой гидродинамики является отсутствие точных решений её уравнений. Как бы с этим ни боролись, но получить действительно всеобщих результатов не удаётся до сих пор, и, напомню, вопрос существования и гладкости решений уравнений Навье-Стокса входит в список Проблем тысячелетия института Клэя.

Однако, несмотря на столь грустные факты, некоторые результаты есть. Здесь будут представлены далеко не все, а лишь самые простые случаи.

Потенциальные течения

Особый интерес представляют течения, в которых жидкость не завихряется. Для такой ситуации можно отказаться от рассмотрения векторного поля скорости, поскольку она выражается через градиент скалярной функции — потенциала. Потенциал же удовлетворяет хорошо изученному уравнению Лапласа, решение которого полностью определяется тем, что задано на границах рассматриваемой области:

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

Более того, при отсутствии вязкости из уравнения Эйлера можно однозначно выразить и давление, что вовсе замечательно и приводит нас к полному решению задачи. Ах, если бы так было всегда… то гидродинамики, наверное, уже бы и не было как современной и актуальной отрасли.

Дополнительно можно упростить задачу предположением, что течение жидкости двумерно — скажем, всё движется в плоскости (x,y), и ни одна частица не перемещается вдоль оси z. Можно показать, что в таком случае скорость может быть также заменена скалярной функцией (на этот раз — функцией тока):

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

которая при потенциальном течении удовлетворяет условиям Коши-Лагранжа из теории функций комплексной переменной и воспользоваться соответствующим математическим аппаратом. Полностью совпадающим с аппаратом электростатики. Теория потенциальных течений развита на высоком уровне, и в принципе хорошо описывает большой спектр задач.

Простые течения вязкой жидкости

Решения для вязкой жидкости чаще всего удаётся получить, когда из уравнения Навье-Стокса благодаря свойствам симметрии задачи выпадает нелинейное слагаемое.

Сдвиговое течение Куэтта

Самая элементарная задачка. Канал с неподвижной нижней и подвижной верхней стенкой, которая движется равномерно с некоторой скоростью. На границах жидкость прилипает к ним, так что скорость жидкости равна скорости границы. Этот результат является экспериментальным фактом, и как-то даже авторы первых экспериментов не упоминаются, просто — по совокупности экспериментов.

В такой ситуации от уравнения Навье-Стокса останется уравнение вида v» = 0, и потому профиль скорости в канале окажется линейным:

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

Данная задача является практически базовой для теории смазки, т.к. позволяет непосредственно определить силу, которую требуется приложить к верхней стенке для её движения с конкретной скоростью.

Течение Пуазейля

Вторая по элементарности — ламинарное течение в канале. Или в трубе. Результат оказывается один — профиль скорости является параболическим:

Физический смысл уравнения неразрывности для несжимаемой жидкости и как его вывести

На основе решения Пуазейля можно определить расход жидкости через сечение канала, но, правда, только при ламинарном течении и гладких стенках. С другой стороны, для турбулентного потока и шероховатых стенок точных решений нет, а есть лишь приближённые эмпирические закономерности.

Стекание слоя жидкости по наклонной плоскости

Тут — почти как в задаче Пуазейля, только верхняя граница жидкости будет свободной. Если предположить, что по ней не бегут никакие волны, и вообще сверху нет трения, то профиль скорости будет практически нижней половинкой предыдущего рисунка. Правда, если из полученной зависимости вычислить скорость течения для средней равнинной речки, она составит около 10 км/с, и вода должна самопроизвольно отправляться в космос. Наблюдаемые в природе низкие скорости течения связаны с развитой завихренностью и турбулентностью потока, которые эффективно увеличивают вязкость воды примерно в 1 млн. раз.

В следующем посте планируется рассказать о законе сохранения энергии и соответствующих ему уравнениях переноса тепла при течении жидкости.

🎦 Видео

Дифференциальное уравнение Эйлера. Основное уравнение гидростатикиСкачать

Дифференциальное уравнение Эйлера. Основное уравнение гидростатики

Вывод уравнения неразрывности - Лекция 1Скачать

Вывод уравнения неразрывности - Лекция 1

Вязкость. Ламинарное и турбулентное течения жидкостей. 10 класс.Скачать

Вязкость. Ламинарное и турбулентное течения жидкостей. 10 класс.

Закон БернуллиСкачать

Закон Бернулли

Галилео. Эксперимент. Закон БернуллиСкачать

Галилео. Эксперимент. Закон Бернулли

Основы гидродинамики и аэродинамики | уравнение БернуллиСкачать

Основы гидродинамики и аэродинамики | уравнение Бернулли

Уравнение Бернулли гидравликаСкачать

Уравнение Бернулли гидравлика

Гидродинамика. Уравнение Бернулли. Физика 10 классСкачать

Гидродинамика. Уравнение Бернулли. Физика 10 класс

Вывод уравнений движения идеальной жидкости - Лекция 2Скачать

Вывод уравнений движения идеальной жидкости - Лекция 2

Уравнение БернуллиСкачать

Уравнение Бернулли

Уравнение Бернулли для потока жидкостиСкачать

Уравнение Бернулли для потока жидкости

Теорема Эйлера о движении жидкостиСкачать

Теорема Эйлера о  движении жидкости

Физика. 10 класс. Уравнение неразрывности. Уравнение Бернулли. Подъёмная сила /29.10.2020/Скачать

Физика. 10 класс. Уравнение неразрывности. Уравнение Бернулли. Подъёмная сила /29.10.2020/

Лекция 2. Уравнение неразрывностиСкачать

Лекция 2.  Уравнение неразрывности

Вязкость и течение Пуазёйля (видео 14) | Жидкости | ФизикаСкачать

Вязкость и течение Пуазёйля (видео 14) | Жидкости  | Физика

Уравнение Бернулли. Практическая часть. 10 класс.Скачать

Уравнение Бернулли. Практическая часть. 10 класс.
Поделиться или сохранить к себе: