Физический смысл уравнений математической физики

Уравнения математической физики в действии

Сегодня поговорим о примерах в дисциплине уравнения математической физики общими словами без погружения в сухой, академический язык и множества формул.

По шкале сложности для чистой математики эта дисциплина на мой субъективный взгляд получает 7/10. Но это не значит, что эти формулы легки для зазубривания и запоминания. Тем более говорить о том, что я могу сделать открытие в данной области которое попадет в учебники, например объясняя физику какого — либо нового процесса или уточняя уже существующий. Если подумать, то, например выбирая какой-либо параграф учебника по данному предмету, то он исписан формулами, которые если провести аналогию похож на модуль по программированию. Скажу сразу мне преподавали данный предмет очень плохо, не объясняя, что данные формулы значат, точнее заглавие было например: «Уравнение волны» или «Колебание мембраны», а дальше переписывали все формулы в параграфе с короткими комментариями что откуда, весьма скудными в полной тишине. Препод перелистывал страницы презентации и ходил туда-обратно пока мы переписывали. Видно, что не ему, ни мне это было не нужно, как бы для общего развития. Скорее всего надо было читать дополнительную литературу чтобы понять, но там уровень для подкованного студента, предметов было много и где-то были пробелы и особо не было времени на все распылиться. Ну это так, к слову. К слову, чем больше людей надо учить в промежутке времени, тем меньше времени уделяется каждому студенту и тем хуже уровень знаний у каждого студента, ну это в пределе.

Ну это было уже давно, лекций не осталось, практика забылась, из головы все выветрилось как талая вода. Вот пример волны наглядный:

Физический смысл уравнений математической физикиВолна

Как бы это уравнение бегущей волны с незакрепленными концами. Я мало что знаю об волнах, даже на уровне физики школьного курса, что-то типа амплитуды, периода, волнового числа и всего такого. Волны бывают продольные, поперечные, сферические, спиральные и другие. Это я только что прочитал на википедии.

Данный код ниже представляет практический интерес.

Как видите есть две функции, ksi и fi, они заданы тригонометрическими функциями sin, cos. Они характеризуют нашу волну. Там же есть аргументы функций 15*x и 18*x. Если, например увеличивать число 15 или число 18, то количество холмов будет увеличиваться, по-умному это значит, что чем большее число мы впишем в скобки, тем самым мы увеличиваем количество периодов функций данных, которые уместятся в заданный промежуток числа x. При увеличении будет сжиматься график вдоль оси Ox.

Физический смысл уравнений математической физики

Икс то мы не увеличивали, шаг остался тем же около 0.01. Если мы будем уменьшать данные аргументы, то количество полных периодов функций будет меньше и как бы график растянется вдоль оси Ox.

Физический смысл уравнений математической физики

А если мы вынесем за скобки и будем увеличивать/уменьшать само значение функции, как на коде выше, то будет растягиваться/сжиматься вдоль оси ординат, то есть вдоль оси Oy. Что показано на графиках ниже.

Физический смысл уравнений математической физики

Здесь растяжение настолько большое что не вмещается в рабочее пространство и надо увеличивать рабочее пространство сцены и отдалять наблюдательное око.

А ниже наоборот сжатие относительно оси ординат.

Физический смысл уравнений математической физики

Дело в том, я вот заметил, что каждое объяснение волн очень сложное, трудно выстроить в голове какие-либо упорядоченные знания об этом. Но я решил, что буду заниматься теперь только самыми насущными вещами, а не чтением гуманитарных статеек в интернете. Я очень много времени потратил на безделье и чтение всяких новостей, я превратился в гуманитария и не заметил.

С другой стороны, а как реализовать эти знания и монетизировать их? Не думаю, что есть вакансии, с требованием к программисту рисовать волны в браузере.

А вот второй пример посложнее, где уравнение окружность:

Физический смысл уравнений математической физикиВолновая окружность

Хотелось сделать такой круг с волнами в виде, который похож на ютубе видел, как анимация голосовых волн от микрофона, но не получилось.

Здесь также можно увеличивать аргумент или/и значение функции и будет весьма интересно просмотреть результат.

Перейдем к следующему примеру, это концентрические окружности с волновым движением по оси Y:

Физический смысл уравнений математической физикиПсевдо-мембрана

Чем-то похоже на изделие №1. Тот же принцип, но уже по массиву колец изменяется график, все кольцо увеличивается и уменьшается на одно значение, а другое кольцо уже на другое.

Чтобы улучшить вид, надо уменьшить шаг до тысячной доли, увеличить размер массива vertices в 10 раз, тогда не будет видно разрезов и будет идеально.

Физический смысл уравнений математической физикиГлаз в положении 0,0,2

Резюмируя, хочу сказать вот многие говорили: «Зачем эти синусы и косинусы нужны?»

Вот для этого и многих других вещей, я, например написал об этом здесь, кто-то еще что-то придумает получше. Хотя трудно найти веб-программиста-математика-физика-художника, адская смесь получается.

Да, статья получилась не особо научной и в некотором роде объективной, но надо было чем-то заполнить пространство между картинками, спасибо у меня все!

Видео:Физический смысл производной. За 40 секСкачать

Физический смысл производной. За 40 сек

Основные типы уравнений математической физики

Физический смысл уравнений математической физики

Основные типы уравнений

К основным уравнениям математической физики относятся следующие дифференциальные уравнения в частных производных второго порядка.

1. Волновое уравнение:

Физический смысл уравнений математической физики.

Это уравнение является простейшим уравнением гиперболического типа. К его исследованию приводит изучение процессов поперечных колебаний струны, продольных колебаний стержня, электрических колебаний в проводах и т. д.

2. Уравнение теплопроводности, или уравнение Фурье:

Физический смысл уравнений математической физики.

Это уравнение является простейшим уравнением параболического типа. К его исследованию приводит рассмотрение процессов распространения тепла, фильтрации жидкости и газа в пористой среде, изучение некоторых вопросов теории вероятностей и т. д.

3. Уравнение Лапласа:

Физический смысл уравнений математической физики.

Это уравнение относится к простейшим уравнениям эллиптического типа. К его исследованию приводит изучение задач об электрических и магнитных полях, о стационарном тепловом состоянии, задач гидродинамики и т. д.

В выписанных уравнениях искомая функция u зависит от двух переменных t, x или x, y. Рассматриваются также уравнения и для функций с большим числом переменных. Например, волновое уравнение с тремя независимыми переменными имеет вид

Физический смысл уравнений математической физики,

Физический смысл уравнений математической физики

и уравнение Лапласа

Физический смысл уравнений математической физики.

Уравнение колебаний струны.

Видео:Откуда появляются дифференциальные уравнения и как их решатьСкачать

Откуда появляются дифференциальные уравнения и как их решать

Формулировка краевой задачи

В математической физике струной называют гибкую упругую нить. Пусть струна в начальный момент времени расположена на отрезке 0≤xl оси Физический смысл уравнений математической физикиOx. Предположим, что ее концы закреплены в точках x=0 и x=l. Если струну отклонить от первоначального положения, а потом предоставить самой себе или придать ее точкам некоторую скорость, то точки струны будут совершать движение. Задача заключается в определении формы струны в любой момент времени и в определении закона движения каждой точки струны в зависимости от времени.

Если предположить, что движение точек струны происходит перпендикулярно оси Ox и в одной плоскости, то процесс колебания струны описывается одной функцией u(x,t), которая определяет величину перемещения точки струны с абсциссой x в момент t.

Доказано, что при отсутствии внешней силы функция u(x,t) должна удовлетворять дифференциальному уравнению в частных производных второго порядка

Физический смысл уравнений математической физики.

Для полного определения движения струны одного уравнения недостаточно. Искомая функция u(x,t) должна удовлетворять граничным условиям, указывающим, что делается на концах струны (при x=0 и x=l), и начальным условиям, описывающим состояние струны в начальный момент (t=0). Совокупность граничных и начальных условий называется краевыми условиями.

Пусть, например, концы струны при x=0 и x=l неподвижны. Тогда при любом t должны выполняться равенства

Это – граничные условия для рассматриваемой задачи. В начальный момент t=0 струна имеет определенную форму, которую мы ей придали. Пусть эта форма определяется функцией f(x), т. е.

Далее в начальный момент должна быть задана скорость в каждой точке струны, которая определяется функцией φ(x), т. е.

Физический смысл уравнений математической физики.

Эти два условия называются начальными условиями.

Колебания бесконечной струны.

Формула Даламбера решения задачи Коши

для волнового уравнения

Прежде чем решать задачу о колебаниях закрепленной струны, рассмотрим более простую задачу – о колебаниях бесконечной струны. Если представить очень длинную струну, то ясно, что на колебания, возникающие в ее средней части, концы струны не будут оказывать заметного влияния.

Рассматривая свободные колебания, мы должны решить однородное уравнение

Физический смысл уравнений математической физики

при начальных условиях

Физический смысл уравнений математической физики, Физический смысл уравнений математической физики,

где функции f(x) и g(x) заданы на всей числовой оси. Такая задача называется задачей с начальными условиями или задачей Коши.

Преобразуем волновое уравнение к каноническому виду, содержащему смешанную производную. Уравнение характеристик

Физический смысл уравнений математической физики

распадается на два уравнения:

интегралами которых служат прямые

Введем новые переменные ξ=xat, η=x + at и запишем волновое уравнение для переменных ξ и η.

Физический смысл уравнений математической физики, Физический смысл уравнений математической физики,

Физический смысл уравнений математической физики,

Физический смысл уравнений математической физики,

и подставляя их в исходное уравнение, видим, что уравнение колебания струны в новых координатах будет

Физический смысл уравнений математической физики.

Интегрируя полученное равенство по η при фиксированном ξ, придем к равенству Физический смысл уравнений математической физики. Интегрируя это равенство по ξ при фиксированном η, получим

Физический смысл уравнений математической физики,

где φ и ψ являются функциями только переменных ξ и η соответственно. Следовательно, общим решением исходного уравнения является функция

Физический смысл уравнений математической физики. (8)

Найдем функции φ и ψ так, чтобы удовлетворялись начальные условия:

Физический смысл уравнений математической физики.

Физический смысл уравнений математической физики,

Физический смысл уравнений математической физики.

Интегрируя последнее равенство, получим:

Физический смысл уравнений математической физики,

где х0 и С – постоянные. Из системы уравнений

Физический смысл уравнений математической физики

Физический смысл уравнений математической физики

Таким образом, мы определили функции φ и ψ через заданные функции f и g, причем полученные равенства должны иметь место для любого значения аргумента. Подставляя в (8) найденные значения φ и ψ, будем иметь

Физический смысл уравнений математической физики

Физический смысл уравнений математической физики.

Найденное решение называется формулой Даламбера решения задачи Коши для волнового уравнения

Пример. Решить уравнение Физический смысл уравнений математической физикипри начальных условиях Физический смысл уравнений математической физики, Физический смысл уравнений математической физики.

Видео:ЧК_МИФ: 4.1.1.ДФ_1 Физический смысл уравнений МаксвеллаСкачать

ЧК_МИФ: 4.1.1.ДФ_1 Физический смысл уравнений  Максвелла

Используя формулу Даламбера, сразу получаем

Физический смысл уравнений математической физики

Физический смысл уравнений математической физики.

Решение волнового уравнения

методом разделения переменных

Метод разделения переменных применяется для решения многих задач математической физики. Пусть требуется найти решение волнового уравнения

Физический смысл уравнений математической физики, (9)

удовлетворяющее краевым условиям

u(x,0)=f(x), Физический смысл уравнений математической физики. (12),(13)

Частное решение уравнения (9), удовлетворяющее граничным условиям (10) и (11), ищут в виде произведения двух функций:

Подставляя функцию u(x,t) в уравнение (9) и преобразовывая его, получим

Физический смысл уравнений математической физики.

В левой части этого уравнения стоит функция, которая не зависит от x, а в правой – функция, не зависящая от t. Равенство возможно только в том случае, когда левая и правая части не зависят ни от x, ни от t, т. е. равны постоянному числу. Обозначим

Физический смысл уравнений математической физики, где λ>0. (14)

Из этих уравнений получаем два однородных дифференциальных уравнения второго порядка с постоянными коэффициентами

Физический смысл уравнений математической физикии Физический смысл уравнений математической физики. (15)

Общее решение этих уравнений

Физический смысл уравнений математической физики,

Физический смысл уравнений математической физики,

где A, B, C, D – произвольные постоянные.

Постоянные A и B подбирают так, чтобы выполнялись условия (10) и (11), из которых следует, что X(0)=X(l)=0, так как T(t)≠0 (в противном случае u(x,t)=0). Учитывая полученные равенства, находим

А=0 и Физический смысл уравнений математической физики.

Так как B≠0 (иначе, было бы X=0 и u=0, что противоречит условию), то должно выполняться равенство

Физический смысл уравнений математической физики,

Физический смысл уравнений математической физики.

Найденные значения λ называют собственными значениями для данной краевой задачи. Соответствующие им функции X(x) называются собственными функциями.

Заметим, что, если в равенстве (14) вместо – λ взять число λ (λ>0), то первое из уравнений (15) будет иметь решение в виде

Физический смысл уравнений математической физики.

Отличное от нуля решение в такой форме не может удовлетворять граничным условиям (10) и (11).

Зная Физический смысл уравнений математической физики, можем записать

Физический смысл уравнений математической физики.

Для каждого n получаем решение уравнения (9)

Физический смысл уравнений математической физики.

Так как исходное уравнение (9) линейное и однородное, то сумма решений также является решением, и потому функция

Физический смысл уравнений математической физики(16)

будет решением дифференциального уравнения (9), удовлетворяющим граничным условиям (10) и (11).

Найденное частное решение должно еще удовлетворять начальным условиям (12) и (13). Из условия (12) получим

Физический смысл уравнений математической физики.

Далее, дифференцируя члены ряда (16) по переменной t, из условия (13) будем иметь

Физический смысл уравнений математической физики.

Правые части двух последних равенств есть ряды Фурье для функций f(x) и φ(x), разложенных по синусам на интервале (0, l). Поэтому

Физический смысл уравнений математической физики. (17)

Итак, ряд (16), для которого коэффициенты Cn и Dn определяются по выписанным формулам, если он допускает двукратное почленное дифференцирование, представляет решение уравнения (9), удовлетворяющее граничным и начальным условиям.

Пример. Найти решение краевой задачи для волнового уравнения

Физический смысл уравнений математической физики, 0

🎦 Видео

Физический смысл производной в ЕГЭ | первая частьСкачать

Физический смысл производной в ЕГЭ | первая часть

Интенсив к РЭ Максвелла для 7-8 классов | Тепловые явления (8 класс)Скачать

Интенсив к РЭ Максвелла для 7-8 классов | Тепловые явления (8 класс)

ФИЗИЧЕСКИЙ СМЫСЛ ПРОИЗВОДНОЙ. Подготовка к ЕГЭ по математике с Артуром ШарифовымСкачать

ФИЗИЧЕСКИЙ СМЫСЛ ПРОИЗВОДНОЙ. Подготовка к ЕГЭ по математике с Артуром Шарифовым

Билеты №32, 33 "Уравнения Максвелла"Скачать

Билеты №32, 33 "Уравнения Максвелла"

Физический смысл производной 1Скачать

Физический смысл производной 1

Горицкий А. Ю. - Уравнения математической физики - Уравнение струныСкачать

Горицкий А. Ю. - Уравнения математической физики - Уравнение струны

О чем говорят уравнения Максвелла? Видео 1/2Скачать

О чем говорят уравнения Максвелла? Видео 1/2

Физический смысл производной с НУЛЯ /подробно и легкоСкачать

Физический смысл производной с НУЛЯ /подробно и легко
Поделиться или сохранить к себе: