Физические свойства алюминия уравнения реакций

Содержание
  1. Алюминий. Химия алюминия и его соединений
  2. Алюминий
  3. Положение в периодической системе химических элементов
  4. Электронное строение алюминия и свойства
  5. Физические свойства
  6. Нахождение в природе
  7. Способы получения
  8. Качественные реакции
  9. Химические свойства
  10. Алюминий. Строение атома алюминия. Физические и химические свойства простого вещества.
  11. Алюминий
  12. Содержание
  13. История
  14. Нахождение в природе
  15. Распространённость
  16. Природные соединения алюминия
  17. Изотопы алюминия
  18. Получение
  19. Физические свойства
  20. Химические свойства
  21. Производство и рынок
  22. Применение
  23. В качестве восстановителя
  24. Сплавы на основе алюминия
  25. Алюминий как добавка в другие сплавы
  26. Ювелирные изделия
  27. Столовые приборы
  28. Стекловарение
  29. Пищевая промышленность
  30. Военная промышленность
  31. Алюминий и его соединения в ракетной технике
  32. Алюмоэнергетика
  33. Алюминий в мировой культуре
  34. Токсичность
  35. 🎥 Видео

Видео:Химия 9 класс (Урок№25 - Алюминий. Свойства алюминия. Амфотерность оксида и гидроксида алюминия.)Скачать

Химия 9 класс (Урок№25 - Алюминий. Свойства алюминия. Амфотерность оксида и гидроксида алюминия.)

Алюминий. Химия алюминия и его соединений

Физические свойства алюминия уравнения реакций

Бинарные соединения алюминия

Алюминий

Положение в периодической системе химических элементов

Алюминий расположен в главной подгруппе III группы (или в 13 группе в современной форме ПСХЭ) и в третьем периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение алюминия и свойства

Электронная конфигурация алюминия в основном состоянии :

+13Al 1s 2 2s 2 2p 6 3s 2 3p 1 1s Физические свойства алюминия уравнения реакций 2s Физические свойства алюминия уравнения реакций 2p Физические свойства алюминия уравнения реакций 3s Физические свойства алюминия уравнения реакций 3p Физические свойства алюминия уравнения реакций

Электронная конфигурация алюминия в возбужденном состоянии :

+13Al * 1s 2 2s 2 2p 6 3s 1 3p 2 1s Физические свойства алюминия уравнения реакций 2s Физические свойства алюминия уравнения реакций 2p Физические свойства алюминия уравнения реакций 3s Физические свойства алюминия уравнения реакций 3p Физические свойства алюминия уравнения реакций

Алюминий проявляет парамагнитные свойства. Алюминий на воздухе быстро образует прочные оксидные плёнки, защищающие поверхность от дальнейшего взаимодействия, поэтому устойчив к коррозии.

Физические свойства

Алюминий – лёгкий металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Обладает высокой тепло- и электропроводностью.

Физические свойства алюминия уравнения реакций

Температура плавления 660 о С, температура кипения 1450 о С, плотность алюминия 2,7 г/см 3 .

Алюминий — один из наиболее ценных цветных металлов для вторичной переработки. На протяжении последних лет, цена на лом алюминия в пунктах приема непреклонно растет. По ссылке можно узнать о том, как сдать лом алюминия.

Нахождение в природе

Алюминий — самый распространенный металл в природе, и 3-й по распространенности среди всех элементов (после кислорода и кремния). Содержание в земной коре — около 8%.

В природе алюминий встречается в виде соединений:

Физические свойства алюминия уравнения реакций

Корунд Al2O3. Красный корунд называют рубином, синий корунд называют сапфиром.

Физические свойства алюминия уравнения реакций

Способы получения

Алюминий образует прочную химическую связь с кислородом. Поэтому традиционные способы получения алюминия восстановлением из оксида протекают требуют больших затрат энергии. Для промышленного получения алюминия используют процесс Холла-Эру. Для понижения температуры плавления оксид алюминия растворяют в расплавленном криолите (при температуре 960-970 о С) Na3AlF6, а затем подвергают электролизу с углеродными электродами. При растворении в расплаве криолита оксид алюминия распадается на ионы:

На катоде происходит восстановление ионов алюминия:

Катод: Al 3+ +3e → Al 0

На аноде происходит окисление алюминат-ионов:

Суммарное уравнение электролиза расплава оксида алюминия:

Лабораторный способ получения алюминия заключается в восстановлении алюминия из безводного хлорида алюминия металлическим калием:

AlCl3 + 3K → Al + 3KCl

Качественные реакции

Качественная реакция на ионы алюминия — взаимодействие избытка солей алюминия с щелочами . При этом образуется белый аморфный осадок гидроксида алюминия.

Например , хлорид алюминия взаимодействует с гидроксидом натрия:

AlCl3 + 3NaOH → Al(OH)3 + 3NaCl

Физические свойства алюминия уравнения реакций

При дальнейшем добавлении щелочи амфотерный гидроксид алюминия растворяется с образованием тетрагидроксоалюмината:Физические свойства алюминия уравнения реакций

Обратите внимание , если мы поместим соль алюминия в избыток раствора щелочи, то белый осадок гидроксида алюминия не образуется, т.к. в избытке щелочи соединения алюминия сразу переходят в комплекс:

AlCl3 + 4NaOH = Na[Al(OH)4] + 3NaCl

Соли алюминия можно обнаружить с помощью водного раствора аммиака. При взаимодействии растворимых солей алюминия с водным раствором аммиака также в ыпадает полупрозрачный студенистый осадок гидроксида алюминия.

AlCl3 + 3NH3·H2O = Al(OH)3 ↓ + 3NH4Cl

Al 3+ + 3NH3·H2O = Al(OH)3 ↓ + 3NH4 +

Видеоопыт взаимодействия раствора хлорида алюминия с раствором аммиака можно посмотреть здесь.

Химические свойства

1. Алюминий – сильный восстановитель . Поэтому он реагирует со многими неметаллами .

1.1. Алюминий реагируют с галогенами с образованием галогенидов:

1.2. Алюминий реагирует с серой с образованием сульфидов:

1.3. Алюминий реагируют с фосфором . При этом образуются бинарные соединения — фосфиды:

Al + P → AlP

1.4. С азотом алюминий реагирует при нагревании до 1000 о С с образованием нитрида:

2Al + N2 → 2AlN

1.5. Алюминий реагирует с углеродом с образованием карбида алюминия:

1.6. Алюминий взаимодействует с кислородом с образованием оксида:

Видеоопыт взаимодействия алюминия с кислородом воздуха (горение алюминия на воздухе) можно посмотреть здесь.

2. Алюминий взаимодействует со сложными веществами:

2.1. Реагирует ли алюминий с водой? Ответ на этот вопрос вы без труда найдете, если покопаетесь немного в своей памяти. Наверняка хотя бы раз в жизни вы встречались с алюминиевыми кастрюлями или алюминиевыми столовыми приборами. Такой вопрос я любил задавать студентам на экзаменах. Что самое удивительное, ответы я получал разные — у кого-то алюминий таки реагировал с водой. И очень, очень многие сдавались после вопроса: «Может быть, алюминий реагирует с водой при нагревании?» При нагревании алюминий реагировал с водой уже у половины респондентов))

Тем не менее, несложно понять, что алюминий все-таки с водой в обычных условиях (да и при нагревании) не взаимодействует. И мы уже упоминали, почему: из-за образования оксидной пленки . А вот если алюминий очистить от оксидной пленки (например, амальгамировать), то он будет взаимодействовать с водой очень активно с образованием гидроксида алюминия и водорода:

2Al 0 + 6 H2 + O → 2 Al +3 ( OH)3 + 3 H2 0

Физические свойства алюминия уравнения реакций

Амальгаму алюминия можно получить, выдержав кусочки алюминия в растворе хлорида ртути ( II ):

3HgCl2 + 2Al → 2AlCl3 + 3Hg

Физические свойства алюминия уравнения реакций

Видеоопыт взаимодействия амальгамы алюминия с водой можно посмотреть здесь.

2.2. Алюминий взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой). При этом образуются соль и водород.

Например , алюминий бурно реагирует с соляной кислотой :

2Al + 6HCl = 2AlCl3 + 3H2

Физические свойства алюминия уравнения реакций

2.3. При обычных условиях алюминий не реагирует с концентрированной серной кислотой из-за пассивации – образования плотной оксидной пленки. При нагревании реакция идет, образуются оксид серы (IV), сульфат алюминия и вода:

2.4. Алюминий не реагирует с концентрированной азотной кислотой также из-за пассивации.

С разбавленной азотной кислотой алюминий реагирует с образованием молекулярного азота:

При взаимодействии алюминия в виде порошка с очень разбавленной азотной кислотой может образоваться нитрат аммония:

2.5. Алюминий – амфотерный металл, поэтому он взаимодействует с щелочами . При взаимодействии алюминия с раствором щелочи образуется тетрагидроксоалюминат и водород:

2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2

Физические свойства алюминия уравнения реакций

Видеоопыт взаимодействия алюминия со щелочью и водой можно посмотреть здесь.

Алюминий реагирует с расплавом щелочи с образованием алюмината и водорода:

2Al + 6NaOH → 2Na3AlO3 + 3H2

Эту же реакцию можно записать в другом виде (в ЕГЭ рекомендую записывать реакцию именно в таком виде):

2Al + 6NaOH → 2NaAlO2 + 3H2↑ + 2Na2O

2.6. Алюминий восстанавливает менее активные металлы из оксидов . Процесс восстановления металлов из оксидов называется алюмотермия .

Например , алюминий вытесняет медь из оксида меди (II). Реакция очень экзотермическая:

2Al + 3CuO → 3Cu + Al2O3

Физические свойства алюминия уравнения реакций

Еще пример : алюминий восстанавливает железо из железной окалины, оксида железа (II, III):

Восстановительные свойства алюминия также проявляются при взаимодействии его с сильными окислителями: пероксидом натрия, нитратами и нитритами в щелочной среде, перманганатами, соединениями хрома (VI):

Видео:Свойства алюминияСкачать

Свойства алюминия

Алюминий. Строение атома алюминия. Физические и химические свойства простого вещества.

Алюминий

Элементы главной подгруппы III группы периодической системы:

бор (В), алюминий (Аl), галлий (Ga), индий (In) и таллий (Тl).

Открытие металлов главной подгруппы III группы

Бор представляет собой неметалл. Алюминий — переход­ный металл, а галлий, индий и таллий — полноценные метал­лы. Таким образом, с ростом радиусов атомов элементов каждой группы периодической системы металлические свой­ства простых веществ усиливаются.

Рассмотрим подробнее свойства алюминия.

1. Положение алюминия в таблице Д. И. Менделеева. Строение атома, проявляемые степени окисления.

Элемент алюминий расположен в III группе, главной «А» подгруппе, 3 периоде периодической системы, порядковый номер №13, относительная атомная масса Ar(Al) = 27. Его соседом слева в таблице является магний – типичный металл, а справа – кремний – уже неметалл. Следовательно, алюминий должен проявлять свойства некоторого промежуточного характера и его соединения являются амфотерными.

Al 0 – 3 e — → Al +3 Алюминий проявляет в соединениях степень окисления +3:

2. Физические свойства алюминия

Алюминий в свободном виде — се­ребристо-белый металл, обладающий высокой тепло- и электро­проводностью. Температура плавления 650 о С. Алюминий имеет невысокую плотность (2,7 г/см 3 ) — при­мерно втрое меньше, чем у железа или меди, и одновременно — это прочный металл.

3. Нахождение в природе

По распространённости в природе занимает 1-е среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Процент содержания алюминия в земной коре по данным различных исследователей составляет от 7,45 до 8,14 % от массы земной коры.

В природе алюминий встречается только в соединениях (минералах).

Некоторые из них:

Бокситы Al 2O 3 • H 2O (с примесями SiO 2, Fe 2O 3, CaCO 3); Нефелины — Na 3[AlSiO 4] 4; Алуниты — KAl(SO 4) 2 • 2Al(OH) 3; Глинозёмы (смеси каолинов с песком SiO 2, известняком CaCO 3, магнезитом MgCO 3); Корунд — Al 2O 3; Полевой шпат (ортоклаз) — K 2O•Al 2O 3•6SiO 2; Каолинит — Al 2O 3•2SiO 2 • 2H 2O; Алунит — (Na,K) 2SO 4•Al 2(SO 4) 3•4Al(OH) 3; Берилл — 3ВеО • Al 2О 3 • 6SiO 2

4. Химические свойства алюминия и его соединений

Алюминий легко взаимодействует с кислородом при обычных условиях и покрыт оксидной пленкой (она придает матовый вид).

Её толщина 0,00001 мм, но благодаря ней алюминий не коррозирует. Для изучения химических свойств алюминия оксидную пленку удаляют. (При помощи наждачной бумаги, или химически: сначала опуская в раствор щелочи для удаления оксидной пленки, а затем в раствор солей ртути для образования сплава алюминия со ртутью – амальгамы).

I. Взаимодействие с простыми веществами — неметаллами

Алюминий уже при комнатной температуре активно реагирует со всеми галогенами, образуя галогениды.

при нагревании он взаимодействует с серой (200 °С) 2Аl + 3S = Аl 2 S 3 (сульфид алюминия),

азотом (800 °С) 2Аl + N 2 = 2АlN (нитрид алюминия),

фосфором (500 °С) Аl + Р = АlР (фосфид алюминия)

углеродом (2000 °С) 4Аl + 3С = Аl 4 С 3 (карбид алюминия)

с йодом в присутствии катализатора — воды (видео) 2Аl + 3I 2 = 2 AlI 3 (йодид алюминия)

Все эти соединения полностью гидролизуются с образованием гидроксида алюминия и, соответственно, сероводорода, аммиака, фосфина и метана:

Al 2 S 3 + 6H 2 O = 2Al(OH) 3 + 3H 2

Al 4 C 3 + 12H 2 O = 4Al(OH) 3 + 3CH 4 ­

В виде стружек или порошка он ярко горит на воздухе, выде­ляя большое количество теплоты:

4Аl + 3O 2 = 2Аl 2 О 3 + 1676 кДж.

II. Взаимодействие алюминия со сложными веществами

Взаимодействие с водой:

2Al + 6H 2 O = 2 Al(OH) 3 + 3H 2 без оксидной пленки!!

Взаимодействие с оксидами металлов:

Алюминий – хороший восстановитель, так как является одним из активных металлов. Стоит в ряду активности сразу после щелочно-земельных металлов. Поэтому восстанавливает металлы из их оксидов . Такая реакция – алюмотермия – используется для получения чистых редких металлов, например таких, как вольфрам, ваннадий и др.

3 Fe 3 O 4 + 8Al = 4Al 2 O 3 + 9Fe +Q

Термитная смесь Fe 3O 4 и Al (порошок) –используется ещё и в термитной сварке.

Сr 2 О 3 + 2Аl = 2Сr + Аl 2 О 3

Взаимодействие с кислотами, например с раствором серной кислоты с образованием соли и водорода:

2 Al + 3 H 2 SO 4 = Al 2 (SO 4 ) 3 + 3 H 2

С холодными концентрированными серной и азотной не реагирует (пассивирует). Поэтому азотную кислоту перевозят в алюминиевых цистернах. При нагревании алюминий способен восстанавливать эти кислоты без выделения водорода:

Взаимодействие алюминия с щелочами (видео) .

2Al + 2NaOH + 6H 2 O = 2 Na[Al(OH) 4 ] + 3H 2

Na[Аl(ОН) 4] – тетрагидроксоалюминат натрия

По предложению химика Горбова, в русско-японскую войну эту реакцию использовали для получения водорода для аэростатов.

Взаимодействие алюминия с растворами солей:

2Al + 3CuSO 4 = Al 2 (SO 4 ) 3 + 3Cu

Если поверхность алюминия потереть солью ртути, то происходит реакция:

2Al + 3HgCl 2 = 2AlCl 3 + 3Hg

Выделившаяся ртуть растворяет алюминий, образуя амальгаму.

5. Применение алюминия и его соединений: РИСУНОК 1 и РИСУНОК 2

Физические и химические свойства алюминия обусловили его широкое применение в технике. Крупным потребителем алюминия является авиационная промышленность: самолет на 2/3 состоит из алюминия и его сплавов. Самолет из стали оказался бы слишком тяжелым и смог бы нести гораздо меньше пассажиров. Поэтому алюминий называют крылатым металлом. Из алюминия изготовляют кабели и провода: при одинаковой электрической проводимости их масса в 2 раза меньше, чем соответствующих изделий из меди.

Учитывая коррозионную устойчивость алюминия, из него изготовляют детали аппаратов и тару для азотной кислоты. Порошок алюминия является основой при изготовлении серебристой краски для защиты железных изделий от коррозии, а также для отражения тепловых лучей такой краской покрывают нефтехранилища, костюмы пожарных.

Оксид алюминия используется для получения алюминия, а также как огнеупорный материал.

Гидроксид алюминия – основной компонент всем известных лекарств маалокса, альмагеля, которые понижают кислотность желудочного сока.

Соли алюминия сильно гидролизуются. Данное свойство применяют в процессе очистки воды. В очищаемую воду вводят сульфат алюминия и небольшое количество гашеной извести для нейтрализации образующейся кислоты. В результате выделяется объемный осадок гидроксида алюминия, который, оседая, уносит с собой взвешенные частицы мути и бактерии.

Таким образом, сульфат алюминия является коагулянтом.

6. Получение алюминия

1) Современный рентабельный способ получения алюминия был изобретен американцем Холлом и французом Эру в 1886 году. Он заключается в электролизе раствора оксида алюминия в расплавленном криолите. Расплавленный криолит Na 3AlF 6 растворяет Al 2O 3, как вода растворяет сахар. Электролиз “раствора” оксида алюминия в расплавленном криолите происходит так, как если бы криолит был только растворителем, а оксид алюминия — электролитом.

2Al 2O 3 эл.ток → 4Al + 3O 2

В английской “Энциклопедии для мальчиков и девочек” статья об алюминии начинается следующими словами: “23 февраля 1886 года в истории цивилизации начался новый металлический век — век алюминия. В этот день Чарльз Холл, 22-летний химик, явился в лабораторию своего первого учителя с дюжиной маленьких шариков серебристо-белого алюминия в руке и с новостью, что он нашел способ изготовлять этот металл дешево и в больших количествах”. Так Холл сделался основоположником американской алюминиевой промышленности и англосаксонским национальным героем, как человек, сделавшим из науки великолепный бизнес.

2) 2Al 2O 3 + 3 C = 4 Al + 3 CO 2

Металлический алюминий первым выделил в 1825 году датский физик Ханс Кристиан Эрстед. Пропустив газообразный хлор через слой раскаленного оксида алюминия, смешанного с углем, Эрстед выделил хлорид алюминия без малейших следов влаги. Чтобы восстановить металлический алюминий, Эрстеду понадобилось обработать хлорид алюминия амальгамой калия. Через 2 года немецкий химик Фридрих Вёллер. Усовершенствовал метод, заменив амальгаму калия чистым калием.

В 18-19 веках алюминий был главным ювелирным металлом. В 1889 году Д.И.Менделеев в Лондоне за заслуги в развитии химии был награжден ценным подарком – весами, сделанными из золота и алюминия.

К 1855 году французский ученый Сен- Клер Девиль разработал способ получения металлического алюминия в технических масштабах. Но способ был очень дорогостоящий. Девиль пользовался особым покровительством Наполеона III, императора Франции. В знак своей преданности и благодарности Девиль изготовил для сына Наполеона, новорожденного принца, изящно гравированную погремушку – первое «изделие ширпотреба» из алюминия. Наполеон намеревался даже снарядить своих гвардейцев алюминиевыми кирасами, но цена оказалась непомерно высокой. В то время 1 кг алюминия стоил 1000 марок, т.е. в 5 раз дороже серебра. Только после изобретения электролитического процесса алюминий по своей стоимости сравнялся с обычными металлами.

А знаете ли вы, что алюминий, поступая в организм человека, вызывает расстройство нервной системы. При его избытке нарушается обмен веществ. А защитными средствами является витамин С, соединения кальция, цинка.

При сгорании алюминия в кислороде и фторе выделяется много тепла. Поэтому его используют как присадку к ракетному топливу. Ракета «Сатурн» сжигает за время полёта 36 тонн алюминиевого порошка. Идея использования металлов в качестве компонента ракетного топлива впервые высказал Ф. А. Цандер.

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

№1. Для получения алюминия из хлорида алюминия в качестве восстановителя можно использовать металлический кальций. Составьте уравнение данной химической реакции, охарактеризуйте этот процесс при помощи электронного баланса.

Подумайте! Почему эту реакцию нельзя проводить в водном растворе?

№2. Закончите уравнения химических реакций:

Al + H 2SO 4 (раствор) →

Al + H 2SO 4 (раствор)→

Al + HNO 3(конц) — t ->

№3. Осуществите превращения:

Al → AlCl 3→ Al → Al 2S 3 → Al(OH) 3 — t ->Al 2O 3 → Al

Видео:Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 класс

Алюминий

Физические свойства алюминия уравнения реакций

Название, символ, номерАлюминий / Aluminium (Al), 13Группа, период, блок13, 3,Атомная масса
(молярная масса)26,9815386(8) а. е. м. (г/моль)Электронная конфигурация[Ne] 3s 2 3p 1Электроны по оболочкам2, 8, 3Радиус атома143 пмКовалентный радиус121 ± 4 пмРадиус Ван-дер-Ваальса184 пмРадиус иона51 (+3e) пмЭлектроотрицательность1,61 (шкала Полинга)Электродный потенциал−1,66 ВСтепени окисления0; +3Энергия ионизации

1‑я: 577,5 (5,984) кДж/моль (эВ)

2‑я: 1816,7 (18,828) кДж/моль (эВ)Термодинамическая фазаТвёрдое веществоПлотность (при н. у.)2,6989 г/см³Температура плавления660 °C, 933,5 KТемпература кипения2518,82 °C, 2792 KУд. теплота плавления10,75 кДж/мольУд. теплота испарения284,1 кДж/мольМолярная теплоёмкость24,35 24,2 Дж/(K·моль)Молярный объём10,0 см³/мольСтруктура решёткикубическая гранецентрированаяПараметры решётки4,050 ÅТемпература Дебая394 KТеплопроводность(300 K) 237 Вт/(м·К)Скорость звука5200 м/сНомер CAS7429-90-5

Физические свойства алюминия уравнения реакций

Видео:Алюминий. Химические и физические свойства.Скачать

Алюминий. Химические и физические свойства.

Содержание

  • 1 История
  • 2 Нахождение в природе
    • 2.1 Распространённость
    • 2.2 Природные соединения алюминия
    • 2.3 Изотопы алюминия
  • 3 Получение
  • 4 Физические свойства
  • 5 Химические свойства
  • 6 Производство и рынок
  • 7 Применение
    • 7.1 В качестве восстановителя
    • 7.2 Сплавы на основе алюминия
    • 7.3 Алюминий как добавка в другие сплавы
    • 7.4 Ювелирные изделия
    • 7.5 Столовые приборы
    • 7.6 Стекловарение
    • 7.7 Пищевая промышленность
    • 7.8 Военная промышленность
    • 7.9 Алюминий и его соединения в ракетной технике
    • 7.10 Алюмоэнергетика
  • 8 Алюминий в мировой культуре
  • 9 Токсичность

Физические свойства алюминия уравнения реакций

Видео:физические свойства алюминияСкачать

физические свойства алюминия

История

Впервые алюминий был получен датским физиком Гансом Эрстедом в 1825 году действием амальгамы калия на хлорид алюминия с последующей отгонкой ртути.

Название элемента образовано от лат. alumen — квасцы.

До развития промышленного электролитического способа получения алюминия этот металл был дороже золота. В 1889 году британцы, желая почтить богатым подарком великого русского химика Д. И. Менделеева, подарили ему аналитические весы у которых чашки были изготовлены из золота и алюминия.

Видео:Составление уравнений химических реакций. 1 часть. 8 класс.Скачать

Составление уравнений химических реакций.  1 часть. 8 класс.

Нахождение в природе

Распространённость

По распространённости в земной коре занимает 1-е место среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Массовая концентрация алюминия в земной коре, по данным различных исследователей, оценивается от 7,45 до 8,14 %.

Природные соединения алюминия

В природе алюминий, в связи с высокой химической активностью, встречается почти исключительно в виде соединений. Некоторые из природных минералов алюминия:

Тем не менее, в некоторых специфических восстановительных условиях (жерла вулканов) найдены ничтожные количества самородного металлического алюминия.

В природных водах алюминий содержится в виде малотоксичных химических соединений, например, фторида алюминия. Вид катиона или аниона зависит, в первую очередь, от кислотности водной среды. Концентрации алюминия в водоёмах России колеблются от 0,001 до 10 мг/л. В морской воде его концентрация 0,01 мг/л.

Изотопы алюминия

Природный алюминий состоит практически полностью из единственного стабильного изотопа 27 Al с ничтожными следами 26 Al, наиболее долгоживущего радиоактивного изотопа с периодом полураспада 720 тыс. лет, образующегося в атмосфере при расщеплении ядер аргона 40 Arпротонами космических лучей с высокими энергиями.

Видео:8 класс. Составление уравнений химических реакций.Скачать

8 класс. Составление уравнений химических реакций.

Получение

Алюминий образует прочную химическую связь с кислородом. По сравнению с другими металлами, восстановление алюминия до металла из природных оксидов и алюмосиликатов более сложно в связи с его высокой реакционной способностью и с высокой температурой плавления всех его руд, например таких, как бокситы, корунды.

Обычное восстановление до металла обжигом оксида с углеродом (как например, в металлургических процессах восстановления железа) — невозможно, так как сродство к кислороду у алюминия выше, чем у углерода.

Возможно получение алюминия посредством неполного восстановления алюминия с образованием промежуточного продукта — карбида алюминия Al4C3, который далее подвергается разложению при 1900—2000 °С с образованием металлического алюминия. Этот способ производства алюминия изучается, предполагается, что он более выгоден, чем классический электролитический способ производства алюминия процесс Холла — Эру , так как требует меньших энергозатрат и приводит к образованию меньшего количества CO2.

Современный метод получения, процесс Холла — Эру , был разработан независимо американцем Чарльзом Холлом и французом Полем Эру в 1886 году. Он заключается в растворении оксида алюминия Al2O3 в расплаве криолита Na3AlF6 с последующим электролизом с использованием расходуемых коксовых или графитовых анодных электродов. Такой метод получения требует очень больших затрат электроэнергии и поэтому получил промышленное применение только в XX веке.

Электролиз в расплаве криолита:

Для производства 1000 кг чернового алюминия требуется 1920 кг глинозёма, 65 кг криолита, 35 кг фторида алюминия, 600 кг анодных графитовых электродов и около 17 МВт·ч электроэнергии (

Лабораторный способ получения алюминия предложил Фридрих Вёлер в 1827 году восстановлением металлическим калием безводного хлорида алюминия (реакция протекает при нагревании без доступа воздуха):

Видео:Химия 9 класс: АлюминийСкачать

Химия 9 класс: Алюминий

Физические свойства

Физические свойства алюминия уравнения реакций

  • Металл серебристо-белого цвета, лёгкий
  • плотность — 2712 кг/м³
  • температура плавления у технического алюминия — 658 °C, у алюминия высокой чистоты — 660 °C
  • удельная теплота плавления — 390 кДж/кг
  • температура кипения — 2518,8 °C
  • удельная теплота испарения — 10,53 МДж/кг
  • удельная теплоёмкость — 897 Дж/кг·K
  • временное сопротивление литого алюминия — 10—12 кг/мм², деформируемого — 18—25 кг/мм², сплавов — 38—42 кг/мм²
  • Твёрдость по Бринеллю — 24—32 кгс/мм²
  • высокая пластичность: у технического — 35 %, у чистого — 50 %, прокатывается в тонкий лист и даже фольгу
  • Модуль Юнга — 70 ГПа
  • Коэффициент Пуассона — 0,34
  • Алюминий обладает высокой электропроводностью (37·10 6 См/м — 65 % от электропроводности меди) и теплопроводностью (203,5 Вт/(м·К)), обладает высокой светоотражательной способностью.
  • Слабый парамагнетик.
  • Температурный коэффициент линейного расширения 24,58⋅10 −6 К −1 (20—200 °C).
  • Удельное сопротивление 0,0262—0,0295 Ом·мм²/м
  • Температурный коэффициент электрического сопротивления 4,3⋅10 −3 K −1 . Алюминий переходит в сверхпроводящее состояние при температуре 1,2 кельвина.

Алюминий образует сплавы почти со всеми металлами. Наиболее известны сплавы с медью и магнием (дюралюминий) и кремнием (силумин).

Видео:Про алюминий интересноСкачать

Про алюминий интересно

Химические свойства

Физические свойства алюминия уравнения реакций

При нормальных условиях алюминий покрыт тонкой и прочной оксидной плёнкой и потому не реагирует с классическими окислителями: с O2, HNO3 (без нагревания), H2SO4(конц), но легко реагирует с HCl и H2SO4(разб). Благодаря этому алюминий практически не подвержен коррозии и потому широко востребован современной промышленностью. Однако при разрушении оксидной плёнки (например, при контакте с растворами солей аммония NH4 + , горячими щелочами или в результате амальгамирования), алюминий выступает как активный металл-восстановитель. Не допустить образования оксидной плёнки можно, добавляя к алюминию такие металлы, как галлий, индий или олово. При этом поверхность алюминия смачивают легкоплавкие эвтектики на основе этих металлов.

Легко реагирует с простыми веществами:

  • с кислородом, образуя оксид алюминия:

4Al + 3O2 → 2Al2O3

  • с галогенами при комнатной температуре (кроме фтора), образуя хлорид, бромид или иодид алюминия:

2Al + 3Hal2 → 2AlHal3(Hal = Cl , Br , I )

  • с другими неметаллами реагирует при нагревании:
  • со фтором, образуя фторид алюминия:

2Al + 3F2 → 2AlF3

  • с серой, образуя сульфид алюминия:

2Al + 3S → Al2S3

  • с азотом, образуя нитрид алюминия:

2Al + N2 → 2AlN

  • с углеродом, образуя карбид алюминия:

4Al + 3C → Al4C3

Сульфид и карбид алюминия полностью гидролизуются:

Со сложными веществами:

  • с водой (после удаления защитной оксидной плёнки, например, амальгамированием или растворами горячей щёлочи):

2Al + 6H2O → 2Al(OH)3 + 3H2

  • со щелочами (с образованием тетрагидроксоалюминатов и других алюминатов):

2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2 2Al + 6NaOH → 2Na3AlO3 + 3H2

  • Легко растворяется в соляной и разбавленной серной кислотах:

2Al + 6HCl → 2AlCl3 + 3H2 2Al + 3H2SO4 → Al2(SO4)3 + 3H2

  • При нагревании растворяется в кислотах — окислителях, образующих растворимые соли алюминия:

2Al + 6H2SO4 → Al2(SO4)3 + 3SO2 + 6H2O Al + 6HNO3 → Al(NO3)3 + 3NO2 + 3H2O

  • восстанавливает металлы из их оксидов (алюминотермия):

8Al + 3Fe3O4 → 4Al2O3 + 9Fe 2Al + Cr2O3 → Al2O3 + 2Cr

Видео:Элементы 13 (IIIA) группы и их соединения. Алюминий. 1 часть. 9 класс.Скачать

Элементы 13 (IIIA) группы и их соединения. Алюминий. 1 часть. 9 класс.

Производство и рынок

Физические свойства алюминия уравнения реакций

Физические свойства алюминия уравнения реакций

Достоверных сведений о получении алюминия до XIX века нет. Встречающееся иногда со ссылкой на «Естественную историю» Плиния утверждение, что алюминий был известен при императоре Тиберии, основано на неверном толковании источника.

В 1825 году датский физик Ганс Христиан Эрстед получил несколько миллиграммов металлического алюминия, а в 1827 году Фридрих Вёлер смог выделить крупинки алюминия, которые, однако, на воздухе немедленно покрывались тончайшей плёнкой оксида алюминия.

До конца XIX века алюминий в промышленных масштабах не производился.

Только в 1854 году Анри Сент-Клер Девиль (его исследования финансировал Наполеон III, рассчитывая, что алюминий пригодится его армии) изобрёл первый способ промышленного производства алюминия, основанный на вытеснении алюминия металлическим натрием из двойного хлорида натрия и алюминия NaCl·AlCl3. В 1855 году был получен первый слиток металла массой 6—8 кг. За 36 лет применения, с 1855 по 1890 год, способом Сент-Клер Девиля было получено 200 тонн металлического алюминия. В 1856 году он же получил алюминий электролизом расплава хлорида натрия-алюминия.

В 1885 году был построен завод по производству алюминия в немецком городе Гмелингеме, работающий по технологии, предложенной Николаем Бекетовым. Технология Бекетова мало чем отличалась от способа Девиля, но была проще и заключалась во взаимодействии между криолитом (Na3AlF6) и магнием. За пять лет на этом заводе было получено около 58 т алюминия — более четверти всего мирового производства металла химическим путём в период с 1854 по 1890 год.

Метод, изобретённый почти одновременно Чарльзом Холлом в США и Полем Эру во Франции (1886 год) и основанный на получении алюминия электролизом глинозёма, растворённого в расплавленном криолите, положил начало современному способу производства алюминия. С тех пор, в связи с улучшением электротехники, производство алюминия совершенствовалось. Заметный вклад в развитие производства глинозёма внесли русские учёные К. И. Байер, Д. А. Пеняков, А. Н. Кузнецов, Е. И. Жуковский, А. А. Яковкин и др.

Первый алюминиевый завод в России был построен в 1932 году в городе Волхов. Металлургическая промышленность СССР в 1939 году производила 47,7 тыс. тонн алюминия, ещё 2,2 тыс. тонн импортировалось.

Вторая мировая война значительно стимулировала производство алюминия. Так, в 1939 году общемировое его производство, без учёта СССР, составляло 620 тыс. т, но уже к 1943 году выросло до 1,9 млн т.

К 1956 году в мире производилось 3,4 млн т первичного алюминия, в 1965 году — 5,4 млн т, в 1980 году — 16,1 млн т, в 1990 году — 18 млн т.

В 2007 году в мире было произведено 38 млн т первичного алюминия, а в 2008 — 39,7 млн т. Лидерами производства являлись:

  1. КНР (в 2007 году произвёл 12,60 млн т, а в 2008 — 13,50 млн т)
  2. Россия (3,96/4,20)
  3. Канада (3,09/3,10)
  4. США (2,55/2,64)
  5. Австралия (1,96/1,96)
  6. Бразилия (1,66/1,66)
  7. Индия (1,22/1,30)
  8. Норвегия (1,30/1,10)
  9. ОАЭ (0,89/0,92)
  10. Бахрейн (0,87/0,87)
  11. ЮАР (0,90/0,85)
  12. Исландия (0,40/0,79)
  13. Германия (0,55/0,59)
  14. Венесуэла (0,61/0,55)
  15. Мозамбик (0,56/0,55)
  16. Таджикистан (0,42/0,42)

В 2016 году было произведено 59 млн тонн алюминия

На мировом рынке запас составляет 2,224 млн т., а среднесуточное производство — 128,6 тыс. т. (2013.7).

В России монополистом по производству алюминия является компания «Российский алюминий», на которую приходится около 13 % мирового рынка алюминия и 16 % глинозёма.

Мировые запасы бокситов практически безграничны, то есть несоизмеримы с динамикой спроса. Существующие мощности могут производить до 44,3 млн т первичного алюминия в год. Следует также учитывать, что в будущем некоторые из применений алюминия могут быть переориентированы на использование, например, композитных материалов.

Цены на алюминий (на торгах международных сырьевых бирж) с 2007 по 2015 годы составляли в среднем 1253—3291 долларов США за тонну.

Видео:химические свойства алюминияСкачать

химические свойства алюминия

Применение

Физические свойства алюминия уравнения реакций

Широко применяется как конструкционный материал. Основные достоинства алюминия в этом качестве — лёгкость, податливость штамповке, коррозионная стойкость (на воздухе алюминий мгновенно покрывается прочной плёнкой Al2O3, которая препятствует его дальнейшему окислению), высокая теплопроводность, неядовитость его соединений. В частности, эти свойства сделали алюминий чрезвычайно популярным при производстве кухонной посуды, алюминиевой фольги в пищевой промышленности и для упаковки. Первые же три свойства сделали алюминий основным сырьём в авиационной и авиакосмической промышленности (в последнее время медленно вытесняется композитными материалами, в первую очередь, углеволокном).

Основной недостаток алюминия как конструкционного материала — малая прочность, поэтому для упрочнения его обычно сплавляют с небольшим количеством меди и магния (сплав называется дюралюминий).

Электропроводность алюминия всего в 1,7 раза меньше, чем у меди, при этом алюминий приблизительно в 4 раза дешевле за килограмм, но, за счёт в 3,3 раза меньшей плотности, для получения равного сопротивления его нужно приблизительно в 2 раза меньше по весу. Поэтому он широко применяется в электротехнике для изготовления проводов, их экранирования и даже в микроэлектронике при напылении проводников на поверхности кристаллов микросхем. Меньшую электропроводность алюминия (3,7·10 7 См/м) по сравнению с медью (5,84·10 7 См/м), для сохранения одинакового электрического сопротивления, компенсируют увеличением площади сечения алюминиевых проводников. Недостатком алюминия как электротехнического материала является образование на его поверхности прочной диэлектрической оксидной плёнки, затрудняющей пайку и за счёт ухудшения контактного сопротивления вызывающей повышенное нагревание в местах электрических соединений, что, в свою очередь, отрицательно сказывается на надёжности электрического контакта и состоянии изоляции. Поэтому, в частности, 7-я редакция Правил устройства электроустановок, принятая в 2002 году, запрещает использовать алюминиевые проводники сечением менее 16 мм².

  • Благодаря комплексу свойств широко распространён в тепловом оборудовании.
  • Алюминий и его сплавы не приобретают хрупкость при сверхнизких температурах. Благодаря этому он широко используется в криогенной технике. Однако известен случай приобретения хрупкости криогенными трубами из алюминиевого сплава из-за их гибки на медных кернах при разработке РН Энергия.
  • Высокий коэффициент отражения в сочетании с дешевизной и лёгкостью вакуумного напыления делает алюминий оптимальным материалом для изготовления зеркал.
  • В производстве строительных материалов как газообразующий агент.
  • Алитированием придают коррозионную и окалиностойкость стальным и другим сплавам, например, клапанам поршневых ДВС, лопаткам турбин, нефтяным платформам, теплообменной аппаратуре, а также заменяют цинкование.
  • Сульфид алюминия используется для производства сероводорода.
  • Идут исследования по разработке пенистого алюминия как особо прочного и лёгкого материала.

В качестве восстановителя

  • Как компонент термита, смесей для алюмотермии.
  • В пиротехнике.
  • Алюминий применяют для восстановления редких металлов из их оксидов или галогенидов.
  • Ограничено применяется как протектор при анодной защите.

Сплавы на основе алюминия

В качестве конструкционного материала обычно используют не чистый алюминий, а разные сплавы на его основе. Обозначение серий сплавов в данной статье приведена для США (стандарт H35.1 ANSI) и согласно ГОСТ России. В России основные стандарты — это ГОСТ 1583 «Сплавы алюминиевые литейные. Технические условия» и ГОСТ 4784 «Алюминий и сплавы алюминиевые деформируемые. Марки». Существует также UNS маркировка и международный стандарт алюминиевых сплавов и их маркировки ISO R209 b.

Физические свойства алюминия уравнения реакций

  • Алюминиево-магниевые Al-Mg (ANSI: серия 5ххх у деформируемых сплавов и 5xx.x у сплавов для изделий фасонного литья; ГОСТ: АМг). Сплавы системы Al-Mg характеризуются сочетанием удовлетворительной прочности, хорошей пластичности, очень хорошей свариваемости и коррозионной стойкости. Кроме того, эти сплавы отличаются высокой вибростойкостью.

В сплавах этой системы, содержащих до 6 % Mg, образуется эвтектическая система соединения Al3Mg2 c твёрдым раствором на основе алюминия. Наиболее широкое распространение в промышленности получили сплавы с содержанием магния от 1 до 5 %.

Рост содержания Mg в сплаве существенно увеличивает его прочность. Каждый процент магния повышает предел прочности сплава на 30 МПа, а предел текучести — на 20 МПа. При этом относительное удлинение уменьшается незначительно и находится в пределах 30—35 %.

Сплавы с содержанием магния до 3 % (по массе) структурно стабильны при комнатной и повышенной температуре даже в значительно нагартованном состоянии. С ростом концентрации магния в нагартованном состоянии структура сплава становится нестабильной. Кроме того, увеличение содержания магния свыше 6 % приводит к ухудшению коррозионной стойкости сплава.

Для улучшения прочностных характеристик сплавы системы Al-Mg легируют хромом, марганцем, титаном, кремнием или ванадием. Попадания в сплавы этой системы меди и железа стараются избегать, поскольку они снижают их коррозионную стойкость и свариваемость.

  • Алюминиево-марганцевые Al-Mn (ANSI: серия 3ххх; ГОСТ: АМц). Сплавы этой системы обладают хорошей прочностью, пластичностью и технологичностью, высокой коррозионной стойкостью и хорошей свариваемостью.

Основными примесями в сплавах системы Al-Mn являются железо и кремний. Оба этих элемента уменьшают растворимость марганца в алюминии. Для получения мелкозернистой структуры сплавы этой системы легируют титаном.

Присутствие достаточного количества марганца обеспечивает стабильность структуры нагартованного металла при комнатной и повышенной температурах.

  • Алюминиево-медные Al-Cu (Al-Cu-Mg) (ANSI: серия 2ххх, 2xx.x; ГОСТ: АМ). Механические свойства сплавов этой системы в термоупрочненном состоянии достигают, а иногда и превышают, механические свойства низкоуглеродистых сталей. Эти сплавы высокотехнологичны. Однако у них есть и существенный недостаток — низкое сопротивление коррозии, что приводит к необходимости использовать защитные покрытия.

В качестве легирующих добавок могут применяться марганец, кремний, железо и магний. Причем наиболее сильное влияние на свойства сплава оказывает последний: легирование магнием заметно повышает пределы прочности и текучести. Добавка кремния в сплав повышает его способность к искусственному старению. Легирование железом и никелем повышает жаропрочность сплавов второй серии.

Нагартовка этих сплавов после закалки ускоряет искусственное старение, а также повышает прочность и сопротивление коррозии под напряжением.

  • Сплавы системы Al-Zn-Mg (Al-Zn-Mg-Cu) (ANSI: серия 7ххх, 7xx.x). Сплавы этой системы ценятся за очень высокую прочность и хорошую технологичность. Представитель системы — сплав 7075 является самым прочным из всех алюминиевых сплавов. Эффект столь высокого упрочнения достигается благодаря высокой растворимости цинка (70 %) и магния (17,4 %) при повышенных температурах, резко уменьшающейся при охлаждении.

Однако существенным недостатком этих сплавов является крайне низкая коррозионная стойкость под напряжением. Повысить сопротивление коррозии сплавов под напряжением можно легированием медью.

Нельзя не отметить открытой в 1960-е годы закономерности: присутствие лития в сплавах замедляет естественное и ускоряет искусственное старение. Помимо этого, присутствие лития уменьшает удельный вес сплава и существенно повышает его модуль упругости. В результате этого открытия были разработаны новые системы сплавов Al-Mg-Li, Al-Cu-Li и Al-Mg-Cu-Li.

  • Алюминиево-кремниевые сплавы (силумины) лучше всего подходят для литья. Из них часто отливают корпуса разных механизмов.
  • Комплексные сплавы на основе алюминия: авиаль.

Алюминий как добавка в другие сплавы

Алюминий является важным компонентом многих сплавов. Например, в алюминиевых бронзах основные компоненты — медь и алюминий. В магниевых сплавах в качестве добавки чаще всего используется алюминий. Для изготовления спиралей в электронагревательных приборах используют (наряду с другими сплавами) фехраль (Fe, Cr, Al). Добавка алюминия в так называемые «автоматные стали» облегчает их обработку, давая чёткое обламывание готовой детали с прутка в конце процесса.

Ювелирные изделия

Когда алюминий был очень дорог, из него делали разнообразные ювелирные изделия. Так, Наполеон III заказал алюминиевые пуговицы, а Менделееву в 1889 году были подарены весы с чашами из золота и алюминия. Мода на ювелирные изделия из алюминия сразу прошла, когда появились новые технологии его получения, во много раз снизившие себестоимость. Сейчас алюминий иногда используют в производстве бижутерии.

В Японии алюминий используется в производстве традиционных украшений, заменяя серебро.

Столовые приборы

Физические свойства алюминия уравнения реакций

По приказу Наполеона III были изготовлены алюминиевые столовые приборы, которые подавались на торжественных обедах ему и самым почётным гостям. Другие гости при этом пользовались приборами из золота и серебра.

Затем столовые приборы из алюминия получили широкое распространение, со временем использование алюминиевой кухонной утвари существенно снизилось, но и в настоящее время их всё ещё можно увидеть лишь в некоторых заведениях общественного питания — несмотря на заявления некоторых специалистов о вредности алюминия для здоровья человека. Кроме того, такие приборы со временем теряют привлекательный вид из-за царапин и форму из-за мягкости алюминия.

Из алюминия делают посуду для армии: ложки, котелки, фляжки.

Стекловарение

В стекловарении используются фторид, фосфат и оксид алюминия.

Пищевая промышленность

Алюминий зарегистрирован в качестве пищевой добавки Е173.

Алюмогель — студенистый осадок, образующийся при быстром осаждении гидроксида алюминия из солевых растворов, не имеющий кристаллического строения и содержащий большое количество воды используется в качестве основы для антацидных, обезболивающих и обволакивающих средств (алгелдрат; в смеси с гидроксидом магния — альмагель, маалокс, гастрацид и др.) при заболеваниях желудочно-кишечного тракта.

Военная промышленность

Дешевизна и вес металла обусловили широкое применение в производстве ручного стрелкового оружия, в частности автоматов и пистолетов.

Алюминий и его соединения в ракетной технике

Алюминий и его соединения используются в качестве высокоэффективного ракетного горючего в двухкомпонентных ракетных топливах и в качестве горючего компонента в твёрдых ракетных топливах. Следующие соединения алюминия представляют наибольший практический интерес как ракетное горючее:

  • Порошковый алюминий как горючее в твёрдых ракетных топливах. Применяется также в виде порошка и суспензий в углеводородах.
  • Гидрид алюминия.
  • Боранат алюминия.
  • Триметилалюминий.
  • Триэтилалюминий.
  • Трипропилалюминий.

Триэтилалюминий (обычно в смеси с триэтилбором) используется также для химического зажигания (как пусковое горючее) в ракетных двигателях, так как он самовоспламеняется в газообразном кислороде. Ракетные топлива на основе гидрида алюминия, в зависимости от окислителя, имеют следующие характеристики:

ОкислительУдельная тяга
(Р1, с)
Температура
сгорания, °С
Плотность
топлива, г/см³
Прирост скорости,
ΔV ид, 25, м/с
Весовое
содержание
горючего, %
Фтор348,450091,504532825
Тетрафторгидразин327,447581,193443419
ClF3287,744021,764476220
ClF5303,746041,691492220
Перхлорилфторид293,737881,589461747
Фторид кислорода326,540671,511500438,5
Кислород310,840281,312442856
Пероксид водорода318,435611,466480652
N2O4300,539061,467453747
Азотная кислота301,337201,496459549

Алюмоэнергетика

Алюмоэнергетика использует алюминий как универсальный вторичный энергоноситель. Его применения в этом качестве:

  • Окисление алюминия в воде для производства водорода и тепловой энергии.
  • Окисление алюминия кислородом воздуха для производства электроэнергии в воздушно-алюминиевых электрохимических генераторах.

Видео:Химия 9 класс (Урок№23 - Щелочные металлы. Физические и химические свойства. Оксиды и гидроксиды.)Скачать

Химия 9 класс (Урок№23 - Щелочные металлы. Физические и химические свойства. Оксиды и гидроксиды.)

Алюминий в мировой культуре

  • В романе Н. Г. Чернышевского «Что делать?» (1862—1863) один из главных героев описывает в письме свой сон — видение будущего, в котором люди живут, отдыхают и работают в многоэтажных зданиях из стекла и алюминия; из алюминия выполнены полы, потолки и мебель (во времена Н. Г. Чернышевского алюминий ещё только начинали открывать).
  • Алюминиевые огурцы — это образ и название песни Виктора Цоя 1987 года.

Физические свойства алюминия уравнения реакций

Видео:Уравнивание реакций горения углеводородовСкачать

Уравнивание реакций горения углеводородов

Токсичность

Несмотря на широкую распространённость в природе, ни одно живое существо не использует алюминий в метаболизме — это «мёртвый» металл. Отличается незначительным токсическим действием, но многие растворимые в воде неорганические соединения алюминия сохраняются в растворённом состоянии длительное время и могут оказывать вредное воздействие на человека и теплокровных животных через питьевую воду. Наиболее ядовиты хлориды, нитраты, ацетаты, сульфаты и др. Для человека токсическое действие при попадании внутрь оказывают следующие дозы соединений алюминия (мг/кг массы тела):

  • ацетат алюминия — 0,2—0,4;
  • гидроксид алюминия — 3,7—7,3;
  • алюминиевые квасцы — 2,9.

В первую очередь действует на нервную систему (накапливается в нервной ткани, приводя к тяжёлым расстройствам функции ЦНС). Однако свойство нейротоксичности алюминия стали изучать с середины 1960-х годов, так как накоплению металла в организме человека препятствует механизм его выведения. В обычных условиях с мочой может выделяться до 15 мг элемента в сутки. Соответственно, наибольший негативный эффект наблюдается у людей с нарушенной выделительной функцией почек.

Норматив содержания алюминия в воде хозяйственно-питьевого использования в России составляет 0,2 мг/л. При этом данная ПДК может быть увеличена до 0,5 мг/л главным государственным санитарным врачом по соответствующей территории для конкретной системы водоснабжения.

По некоторым биологическим исследованиям, поступление алюминия в организм человека было сочтено фактором в развитии болезни Альцгеймера, но эти исследования были позже раскритикованы, и вывод о связи одного с другим опровергался.

Соединения алюминия также, возможно, стимулируют рак молочной железы при применении антиперспирантов на основе хлорида алюминия. Но научных данных, подтверждающих это меньше, чем противоположных.

В ряде источников, авторство которых не указывается, содержатся утверждения о том, что алюминий якобы способен замещать кальций в костной ткани. Это противоречит научным данным, поскольку в электрохимическом ряду активности металлов алюминий стоит правее кальция — то есть, является менее химически активным металлом.

🎥 Видео

ВСЕ ПРО АЛКАНЫ за 8 минут: Химические Свойства и ПолучениеСкачать

ВСЕ ПРО АЛКАНЫ за 8 минут: Химические Свойства и Получение

Алюминий - Самый РАСПРОСТРАНЕННЫЙ Металл на ЗЕМЛЕ!Скачать

Алюминий - Самый РАСПРОСТРАНЕННЫЙ Металл на ЗЕМЛЕ!

АлюминийСкачать

Алюминий

9 класс § 18 "Алюминий и его соединения"Скачать

9 класс § 18 "Алюминий и его соединения"

Реакции металлов с кислородом и водой. 8 класс.Скачать

Реакции металлов с кислородом и водой. 8 класс.

СОЛИ ХИМИЯ 8 КЛАСС: Химические Свойства Солей и Получение // Реакция Солей с Кислотами и МеталламиСкачать

СОЛИ ХИМИЯ 8 КЛАСС: Химические Свойства Солей и Получение // Реакция Солей с Кислотами и Металлами

Химия 9 класс : Соединения алюминияСкачать

Химия 9 класс : Соединения алюминия
Поделиться или сохранить к себе: