Fe no3 2 уравнение электролиза

Видео:Электролиз. 10 класс.Скачать

Электролиз. 10 класс.

Составление схем электродных процессов на электродах при электролизе солей

Видео:Выделение металлов - электролиз растворов сульфата меди (II) CuSO4 и нитрата железа (III) Fe(NO3)3Скачать

Выделение металлов - электролиз растворов сульфата меди (II) CuSO4 и нитрата железа (III) Fe(NO3)3

Электролиз водного раствора соли хлорида железа (ⅠⅠ)

Задача 152.
Составьте схему электролиза водного раствора FeCl2. Вычислите время, в течение которого должен быть пропущен ток силой I A через раствор, чтобы на катоде выделилось m (г) металла.(восстановление воды не учитывать)
Раствор FeCl2 , катод-угольный, анод-угольный. I = 4 А , m = 2.9 г
Решение:
Е(Fe 2+ /Fe) = 0,44 В;
M(FeCl2) = 126,751 г/моль
Э(FeCl2) = 63,3755 г/?моль.
В водном растворе соль FeCl2 диссоциирует по схеме: FeCl2 = Fe 2+ + 2Cl – . Стандартный электродный потенциал системы
Fe 2+ + 2электрона = Fe 0 (-0,44 В) незначительно положительнее потенциала водородного электрода в нейтральной среде (-0,41В). Поэтому на катоде будет происходить электрохимическое восстановление ионов Fe 2+ и Н2О:

Fe 2+ + 2ē = Fe 0
2О + 2ē = Н2 + 2ОН –

На аноде будет происходить электролитическое окисление ионов хлора с образованием свободных атомов хлора, которые, соединяясь друг с другом, образуют молекулу хлора:

2Cl – — 2ē = 2Cl*
Cl* + Cl* = Cl2

Сложим уравнение катодного и анодного процессов, получим суммарное ионно-молекулярное уравнение:

Fe 2+ + 2Н2О + 2Cl – = 2Fe 0 + Н2↑ + 2ОН – + Cl2

На аноде ионы Fe 2+ соединяются с двумя ионами ОН – , образуя нерастворимый гидроксид железа (ⅠⅠ) Fe(OH)2:

Тогда молекулярная форма процесса будет иметь вид:

При гидролизе FeCl2 в водном растворе с инертными электродами образуются металлическое железо, и выделяются газообразный водород и хлор. На катоде будет выделяться металлическое железо и газообразный водород, а на аноде — хлор.
Рассчитаем время электролиза FeCl2, получим:

m = (Э . I . t)/F;
t = (m . F)/(Э . I) = (2,9 . 96500)/(63,3755 . 4) = 48250/324,96 = 1104 c.

Электролиз водного раствора нитрата кадмия

Задача 153.
Электролиз раствора нитрата кадмия с графитовыми электродами и кадмиевым анодом. Опишите электродные процессы на электродах.
Решение:
В водном растворе соль нитрата кадмия диссоциирует по схеме:

1. Электролиз раствор нитрата кадмия с графитовыми электродами

Стандартный электродный потенциал системы Cd 2+ + 2ē = Cd0 (-0,402 В) незначительно отличается от потенциала водородного электрода в нейтральной среде (-0,41 В). Поэтому на катоде будет происходить электрохимическое восстановление воды, сопровождающееся выделением водорода, поэтому на катоде протекают одновременно две реакции – образование водорода и выделение кадмия:

Уравнение электролиза будет иметь вид:

2Cd 2+ + 2Н2О = 2Cd 0 + H2↑ + O2↑ + 4Н +

Таким образом, в катодном пространстве будут разряжаться ионы кадмия и молекулы воды при этом на графитовом электроде откладываеся металлический кадмий и выделяется газообразный водород, а в анодном пространстве будет у графитового электрода будет выделяться газообразный водород и будут накапливаться ионы NO3 – и H + . Среда у анода в процессе электролиза Cd(NO3)2 становится кислой.

Суммарная реакция электролиза в молекулярной форме:

2. Электролиз раствора нитрата кадмия с кадмиевым анодом

Так как кадмиевый анод растворим в условиях электролиза соли Cd(NO3)2, то на аноде происходит окисление материала анода. Поэтому при электролизе Cd(NO3)2 с использованием кадмиевого анода на катоде будет выделяться чистый кадмий и водород, а на аноде ионы кадмия не будут разряжаться, и, следовательно, выделение кислорода не наблюдается. В данном случае происходит растворение самого кадмиевого анода, т.е. с анода кадмий в виде ионов Cd 2+ переходит в раствор.

Электродные процессы на электродах:

1|Катод(-): Cd 2+ + 2ē = Cd 0 ;
2H2O + 2ē = H2↑ + 2OH – ;
2|Анод(+): Сd 0 – 2ē = Cd 2+

Уравнение электролиза в ионно-молекулярном виде:

Сd 2+ + 2H2O + 2Cd 0 = Cd 0 + 2Cd 2+ + H2↑ + 2OH –

После приведения членов в обеих частях равенства получим:

Ионы кадмия Cd 2+ у анода будут соединяться с ионами ОН-, образуя малорастворимое основание Cd(OH)2:

Суммарная реакция электролиза в молекулярной форме:

Электролиз водного раствора соли хлорида меди (Ⅰ)

Задача 154.
Составить схему электролиза соли CuCl. Рассчитать массу меди, выделившейся при электролизе соли CuCl, если в течении 40 минут пропущен ток силой 3 А.
Решение:
Mэ(CuCl) = 98,999 г/моль;
I = 3 A;
t = 40 мин = 2400 с.

1. Электродные процессы

Медь находятся в ряду активности металлов «после водорода», значит на катоде будет протекать реакция восстановления только меди:

Стандартный электродный потенциал системы Cu + + 1ē = Cu 0 (+0,52 В) значительно положительнее потенциала водородного электрода в нейтральной среде (-0,41В). Поэтому на катоде будет происходить электрохимическое восстановление ионов меди:

Так как стандартный электродный потенциал системы 2H2O — 4ē = O2↑ + 4OH – и 2Cl – + 2ē = Cl2, соответственно, равны 1,23В и 1,36 B, то на
аноде будет: 2Cl – + 2ē = Cl2.

Схема электролиза соли CuCl с использованием графитовых электродов:

2|Катод: Cu + + 1ē = Cu 0
1|Анод: 2Cl – + 2ē = Cl2.

Суммарное уравнение катодного и анодного процессов будет иметь вид:

2Cu + + 2Cl – = 2Cu 0 + Cl2
катод анод

Таким образом, при электролизе водного раствора CuCl с использованием графитовых электродов на катоде выделяется металлическая медь, а на аноде — газзобразный хлор.

2. Вычисление количества полученной меди

Для вычисления массы меди используем выражение из первого закона электролиза Фарадея:

m(B) = [M(Э)•I•t]/F = M(Э)•q, где

m(B) — масса выделяемого веществав; M(Э) — электрохимический эквивалент (молярная масса эквивыалента вещества); I – сила тока; t – время; F — число Фарадея (96500 Кл/моль); q — количество электричества.
Тогда
m(CuCl) = [Mэ(CuCl)•I•t]/F = (98,999•3•2400)/96500 = 7,4 г.

Ответ: m(CuCl) = 7,4 г.

Видео:Электролиз раствора соли нитрата меди Cu(NO3)2 | Схема электролиза солиСкачать

Электролиз раствора соли нитрата меди Cu(NO3)2 | Схема электролиза соли

Электролиз

Видео:Все об электролизе и задании 20 за 20 минут | Химия ЕГЭ 2023 | УмскулСкачать

Все об электролизе и задании 20 за 20 минут | Химия ЕГЭ 2023 | Умскул

Электролиз

Химические реакции, сопровождающиеся переносом электронов (окислительно-восстановительные реакции) делятся на два типа: реакции, протекающие самопроизвольно и реакции, протекающие при прохождении тока через раствор или расплав электролита.

Раствор или расплав электролита помещают в специальную емкость — электролитическую ванну .

Электрический ток — это упорядоченное движение заряженных частиц — ионов, электронов и др. под действием внешнего электрического поля. Электрическое поле в растворе или расплаве электролита создают электроды .

Электроды — это, как правило, стержни из материала, проводящего электрический ток. Их помещают в раствор или расплав электролита, и подключают к электрической цепи с источником питания.

При этом отрицательно заряженный электрод катод — притягивает положительно заряженные ионы — катионы . Положительно заряженный электрод ( анод ) притягивает отрицательно заряженные частицы ( анионы ). Катод выступает в качестве восстановителя, а анод — в качестве окислителя.

Fe no3 2 уравнение электролиза

Различают электролиз с активными и инертными электродами. Активные (растворимые) электроды подвергаются химическим превращениям в процессе электролиза. Обычно их изготавливают из меди, никеля и других металлов. Инертные (нерастворимые) электроды химическим превращениям не подвергаются. Их изготавливают из неактивных металлов, например, платины , или графита .

Видео:Электролиз растворов. 1 часть. 10 класс.Скачать

Электролиз растворов. 1 часть. 10 класс.

Электролиз растворов

Различают электролиз раствора или расплава химического вещества. В растворе присутствует дополнительное химическое вещество — вода, которая может принимать участие в окислительно-восстановительных реакциях.

Катодные процессы

В растворе солей катод притягивает катионы металлов. Катионы металлов могут выступать в качестве окислителей. Окислительные способности ионов металлов различаются. Для оценки окислительно-восстановительных способностей металлов применяют электро-химический ряд напряжений :

Fe no3 2 уравнение электролиза

Каждый металл характеризуется значением электрохимического потен-циала. Чем меньше потенциал , тем больше восстановительные свойства металла и тем меньше окислительные свойства соответствующего иона этого металла. Разным ионам соответствуют разные значения этого потенциала. Электрохимический потенциал — относительная величина. Электрохимический потенциал водорода принят равным нулю.

Также около катода находятся молекулы воды Н2О. В составе воды есть окислитель — ион H + .

При электролизе растворов солей на катоде наблюдаются следующие закономерности:

1. Если металл в соли — активный ( до Al 3+ включительно в ряду напряжений ), то вместо металла на катоде восстанавливается (разряжается) водород , т.к. потенциал водорода намного больше. Протекает процесс восстановления молекулярного водорода из воды, при этом образуются ионы OH — , среда возле катода — щелочная:

2H2O +2ē → H2 + 2OH —

Например , при электролизе раствора хлорида натрия на катоде будет вос-станавливаться только водород из воды.

2. Если металл в соли – средней активности (между Al 3+ и Н + ) , то на катоде восстанавливается (разряжается) и металл , и водород , так как потенциал таких металлов сравним с потенциалом водорода:

Me n+ + nē → Me 0

2 H + 2O +2ē → H2 0 + 2OH —

Например , при электролизе раствора сульфата железа (II) на катоде будет восстанавливаться (разряжаться) и железо, и водород:

Fe 2+ + 2ē → Fe 0

2 H + 2O +2ē → H2 0 + 2OH —

3. Если металл в соли — неактивный (после водорода в ряду стандартных электрохимических металлов) , то ион такого металла является более сильным окислителем, чем ион водорода, и на катоде восстанавливается только металл:

Me n+ + nē → Me 0

Например, при электролизе раствора сульфата меди (II) на катоде будет восстанавливаться медь:

Cu 2+ + 2ē → Cu 0

4. Если на катод попадают катионы водорода H + , то они и восстанавливаются до молекулярного водорода:

2H + + 2ē → H2 0

Анодные процессы

Положительно заряженный анод притягивает анионы и молекулы воды. Анод – окислитель. В качестве восстановителей выступаю либо анионы кислотных остаток, либо молекулы воды (за счет кислорода в степени окисления -2: H 2 O -2 ).

При электролизе растворов солей на аноде наблюдаются следующие закономерности:

1. Если на анод попадает бескислородный кислотный остаток , то он окисляется до свободного состояния (до степени окисления 0):

неМе n- – nē = неМе 0

Например : при электролизе раствора хлорида натрия на аноде окисляют-ся хлорид-ионы:

2Cl — – 2ē = Cl2 0

Действительно, если вспомнить Периодический закон: при увеличении электроотрицательности неметалла его восстановительные свойства уменьшаются. А кислород – второй по величине электроотрицательности элемент. Таким образом, проще окислить практически любой неметалл, а не кислород. Правда, есть одно исключение . Наверное, вы уже догадались. Конечно же, это фтор. Ведь электроотрицательность фтора больше, чем у кислорода. Таким образом, при электролизе растворов фторидов окисляться будут именно молекулы воды, а не фторид-ионы :

2H2 O -2 – 4ē → O2 0 + 4H +

2. Если на анод попадает кислородсодержащий кислотный остаток, либо фторид-ион , то окислению подвергается вода с выделением молекулярно-го кислорода:

2H2 O -2 – 4ē → O2 0 + 4H +

3. Если на анод попадает гидроксид-ион, то он окисляется и происходит выделение молекулярного кислорода:

4 O -2 H – – 4ē → O2 0 + 2H2O

4. При электролизе растворов солей карбоновых кислот окислению под-вергается атом углерода карбоксильной группы, выделяется углекислый газ и соответствующий алкан.

Например , при электролизе растворов ацетатов выделяется углекислый газ и этан:

2 CH3 C +3 OO – –2ē → 2 C +4 O2+ CH3-CH3

Суммарные процессы электролиза

Рассмотрим электролиз растворов различных солей.

Например , электролиз раствора сульфата меди. На катоде восстанавливаются ионы меди:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются молекулы воды:

Анод (+): 2H2 O -2 – 4ē → O2 + 4H +

Сульфат-ионы в процессе не участвуют. Мы их запишем в итоговом уравнении с ионами водорода в виде серной кислоты:

2 Cu 2+ SO4 + 2H2 O -2 → 2 Cu 0 + 2H2SO4 + O2 0

Электролиз раствора хлорида натрия выглядит так:

На катоде восстанавливается водород:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются хлорид-ионы:

Анод (+): 2 Cl – – 2ē → Cl2 0

Ионы натрия в процессе электролиза не участвуют. Мы записываем их с гидроксид-анионами в суммарном уравнении электролиза раствора хлорида натрия :

2 H + 2O +2Na Cl – → H2 0 + 2NaOH + Cl2 0

Следующий пример : электролиз водного раствора карбоната калия.

На катоде восстанавливается водород из воды:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются молекулы воды до молекулярного кислорода:

Анод (+): 2H2 O -2 – 4ē → O2 0 + 4H +

Таким образом, при электролизе раствора карбоната калия ионы калия и карбонат-ионы в процессе не участвуют. Происходит электролиз воды:

2 H2 + O -2 → 2 H2 0 + O2 0

Еще один пример : электролиз водного раствора хлорида меди (II).

На катоде восстанавливается медь:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются хлорид-ионы до молекулярного хлора:

Анод (+): 2 Cl – – 2ē → Cl2 0

Таким образом, при электролизе раствора карбоната калия происходит электролиз воды:

Cu 2+ Cl2 – → Cu 0 + Cl2 0

Еще несколько примеров: электролиз раствора гидроксида натрия.

На катоде восстанавливается водород из воды:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются гидроксид-ионы до молекулярного кислорода:

Анод (+): 4 O -2 H – – 4ē → O2 0 + 2H2O

Таким образом, при электролизе раствора гидроксида натрия происходит разложение воды, катионы натрия в процессе не участвуют:

2 H2 + O -2 → 2 H2 0 + O2 0

Видео:уравнения электролизаСкачать

уравнения электролиза

Электролиз расплавов

При электролизе расплава на аноде окисляются анионы кислотных остатков, а на катоде восстанавливаются катионы металлов. Молекул воды в системе нет.

Например: электролиз расплава хлорида натрия. На катоде восстанавли-ваются катионы натрия:

Катод (–): Na + + ē → Na 0

На аноде окисляются анионы хлора:

Анод (+): 2 Cl – – 2ē → Cl2 0

Суммарное уравнение электролиза расплава хлорида натрия:

2 Na + Cl → 2 Na 0 + Cl2 0

Fe no3 2 уравнение электролиза

Еще один пример: электролиз расплава гидроксида натрия. На катоде восстанавливаются катионы натрия:

Катод (–): Na + + ē → Na 0

На аноде окисляются гидроксид-ионы:

Анод (+): 4 OH – – 4ē → O2 0 + 2H2O

Суммарное уравнение электролиза расплава гидроксида натрия:

4 Na + OH → 4 Na 0 + O2 0 + 2H2O

Многие металлы получают в промышленности электролизом расплавов.

Например , алюминий получают электролизом раствора оксида алюминия в расплаве криолита. Криолит – Na3[AlF6] плавится при более низкой температуре (1100 о С), чем оксид алюминия (2050 о С). А оксид алюминия отлично растворяется в расплавленном криолите.

В растворе криолите оксид алюминия диссоциирует на ионы:

На катоде восстанавливаются катионы алюминия:

Катод (–): Al 3+ + 3ē → Al 0

На аноде окисляются алюминат-ионы:

Анод (+): 4Al O 3 3 – – 12ē → 2Al2O3 + 3 O2 0

Общее уравнение электролиза раствора оксида алюминия в расплаве криолита:

2 Al 2 О 3 = 4 Al 0 + 3 О 2 0

Fe no3 2 уравнение электролиза

В промышленности при электролизе оксида алюминия в качестве электродов используют графитовые стержни. При этом электроды частично окисляются (сгорают) в выделяющемся кислороде:

C 0 + О2 0 = C +4 O2 -2

Видео:Электролиз. Часть 2. Уравнения электролиза расплавов и растворов.Скачать

Электролиз. Часть 2. Уравнения электролиза расплавов и растворов.

Электролиз с растворимыми электродами

Если материал электродов выполнен из того же металла, который присут-ствует в растворе в виде соли, или из более активного металла, то на аноде разряжаются не молекулы воды или анионы, а окисляются частицы самого металла в составе электрода.

Например , рассмотрим электролиз раствора сульфата меди (II) с медными электродами.

На катоде разряжаются ионы меди из раствора:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются частицы меди из электрода :

Анод (+): Cu 0 – 2ē → Cu 2+

Видео:Электролиз. Как составлять уравнения электролиза водных растворов солей.Скачать

Электролиз. Как составлять уравнения электролиза водных растворов солей.

Напишите процессы, проходящие при электролизе растворов и расплавов соединений ZnCl2, Fe(NO3)2 с инертными электродами.

Fe no3 2 уравнение электролиза Готовое решение: Заказ №8415

Fe no3 2 уравнение электролиза Тип работы: Задача

Fe no3 2 уравнение электролиза Статус: Выполнен (Зачтена преподавателем ВУЗа)

Fe no3 2 уравнение электролиза Предмет: Химия

Fe no3 2 уравнение электролиза Дата выполнения: 02.09.2020

Fe no3 2 уравнение электролиза Цена: 209 руб.

Чтобы получить решение , напишите мне в WhatsApp , оплатите, и я Вам вышлю файлы.

Кстати, если эта работа не по вашей теме или не по вашим данным , не расстраивайтесь, напишите мне в WhatsApp и закажите у меня новую работу , я смогу выполнить её в срок 1-3 дня!

Описание и исходные данные задания, 50% решения + фотография:

Напишите процессы, проходящие при электролизе растворов и расплавов соединений ZnCl2, Fe(NO3)2 с инертными электродами.

Решение:

Так как цинк в ряду напряжения находится между водородом и алюминием, значит на катоде происходит совместное восстановление цинка и воды (побочная реакция). На аноде происходит окисление хлорид ионов:

На аноде: 2Cl — -2e = Cl2

На катоде: Zn 2+ + 2e = Zn

Fe no3 2 уравнение электролиза

Если вам нужно решить химию, тогда нажмите ➔ заказать химию.
Похожие готовые решения:
  • При электролизе раствора хлорида бария получили 20 %-ный раствор Ba(OH)2. Рассчитайте массу полученного раствора при времени электролиза 1 час, силе тока 10А, если выход по току составил 90%.
  • Если пластинку из чистого цинка опустить в разбавленную кислоту, то начавшееся выделение водорода вскоре почти прекращается.
  • Опишите устройство и принцип действия свинцового аккумулятора (процессы разрядки, зарядки, концентрацию кислоты). Каковы преимущества и недостатки свинцового аккумулятора?
  • Металлы Аg, Cd, Zn попарно помещены в разбавленный раствор серной кислоты и соединены проводником. В паре с каким металлом кадмий является катодом. Запишите схему гальванического элемента

Присылайте задания в любое время дня и ночи в ➔ Fe no3 2 уравнение электролизаFe no3 2 уравнение электролиза

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

🔥 Видео

Электролиз. Часть 1. Процесс электролиза, основные закономерности.Скачать

Электролиз. Часть 1. Процесс электролиза, основные закономерности.

How to Balance AgNO3 + FeCl2 = AgCl + Fe(NO3)2Скачать

How to Balance AgNO3 + FeCl2 = AgCl + Fe(NO3)2

Как писать уравнения электролиза? | Химия ЕГЭ 2022 | УмскулСкачать

Как писать уравнения электролиза? | Химия ЕГЭ 2022 | Умскул

Электролиз растворов. 2 часть. 10 класс.Скачать

Электролиз растворов. 2 часть. 10 класс.

Часть 3-2. Электролиз водных растворов. Примеры решений уравнений (подробно).Скачать

Часть 3-2. Электролиз водных растворов. Примеры решений уравнений (подробно).

Задачи по химии. Электролиз 2Скачать

Задачи по химии. Электролиз 2

Гидролиз солей. 9 класс.Скачать

Гидролиз солей. 9 класс.

How to Write the Net Ionic Equation for FeCl2 + AgNO3 = Fe(NO3)2 + AgClСкачать

How to Write the Net Ionic Equation for FeCl2 + AgNO3 = Fe(NO3)2 + AgCl

ЭлектролизСкачать

Электролиз

ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по ХимииСкачать

ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по Химии

91. Электролиз. Задачи (часть 2)Скачать

91. Электролиз. Задачи (часть 2)
Поделиться или сохранить к себе: