Фазовый портрет нелинейной системы дифференциальных уравнений

Видео:ТАУ. Matlab/SIMULINK Фазовые портреты систем нелинейных диф. уравненийСкачать

ТАУ. Matlab/SIMULINK Фазовые портреты систем нелинейных диф. уравнений

Фазовые портреты «на пальцах» или что можно узнать о решениях диффура, не решая его

Очень часто в ряде наук встречается ситуация, когда модель рассматриваемого процесса сводится к дифференциальному уравнению. Причём, в большинстве реальных задач это уравнение довольно сложно решить, или совсем невозможно. И вот тут в полный голос звучит извечный вопрос: как быть?

Встречайте: фазовые портреты (они же фазовые диаграммы). Простым языком, фазовый портрет — это то, как величины, описывающие состояние системы (a.k.a. динамические переменные), зависят друг от друга. В случае механического движения это координата и скорость, в электричестве это заряд и ток, в известной популяционной задаче это количество хищников и жертв и т.д.

Чем хороши фазовые портреты? А тем, что их можно построить не решая динамические уравнения системы. В некоторых случаях построение фазового портрета становится совсем простой задачей. Однако, одновременно с этим, фазовые портреты дают вдумчивому наблюдателю очень много информации о поведении системы.

Начнём с простого примера — малых колебаний (так же называемых гармоническими). Малые колебания встречаются почти в каждой сфере естественных наук. Для определённости, будем рассматривать колебания металлического стержня, подвешенного за один из концов (частный случай так называемого физического маятника). Можно показать, что его колебания описываются следующим дифференциальным уравнением:

Фазовый портрет нелинейной системы дифференциальных уравнений

Где x — угол отклонения стержня от вертикали, точка над x означает производную по времени, а коэффициент перед синусом зависит от размера и массы стержня.

Если амплитуда (размах) колебаний достаточно мала, синус можно приближенно заменить его аргументом (вы ведь помните первый замечательный предел, нет?). В таком случае, уравнение принимает следующий вид:

Фазовый портрет нелинейной системы дифференциальных уравнений

Это уравнение легко решается регулярными методами, но, давайте, попробуем применить к нему метод фазовых портретов. Для этого, домножим уравнение на производную и проинтегрируем его один раз по времени:

Фазовый портрет нелинейной системы дифференциальных уравнений

Получилось выражение, первый член которого выглядит как кинетическая энергия. Это не случайно — на самом деле мы получили именно закон сохранения энергии. Постоянная Е в правой части (полная энергия системы на единицу массы) может принимать различные значения, которые соответствуют разным начальным состояниям системы.

Фазовый портрет нелинейной системы дифференциальных уравнений

Полученный нами закон сохранения превратился в уравнение кривой на плоскости (x,u):

Фазовый портрет нелинейной системы дифференциальных уравнений

Для разных значений Е мы получим разные кривые. Нарисуем несколько таких линий для разных значений энергии:

Фазовый портрет нелинейной системы дифференциальных уравнений
По горизонтальной оси отложена величина x, по вертикальной — u

Каждая из полученных линий называется фазовой траекторией. Когда меняется состояние системы, изображающая её точка движется по одной из этих траекторий, стрелки указывают направление движения изображающей точки.

По графику видно, что значения скорости и координаты меняются циклическим образом, то есть периодически повторяются. Отсюда можно сделать вывод, что описываемая рассмотренным уравнением система будет совершать колебания. Бинго! Именно так ведёт себя маятник, и если решить уравнение, решение будет иметь вид периодических функций (а именно — комбинации синуса и косинуса).

Следует однако помнить, что замена синуса его аргументом оправдана лишь для малых углов отклонения (от 10 градусов и меньше), поэтому мы не можем доверять тем траекториям, которые выходят за границы области, ограниченной жирными пунктирными линиями, то есть из четырех приведенных траекторий лишь оранжевая достоверно отображает реальность. Кроме того, поскольку x это угол, то его значения, соответствующие 180 и -180 градусам описывают одно и то же положение стержня, то есть правая и левая пунктирные линии (тонкие) на графике это на самом деле одна и та же линия.

Теперь, поскольку нам понятна суть, можно перейти к чему-то посложнее. Выше мы очень сильно упростили уравнение и при этом ограничили себя только малыми колебаниями. Математик бы сказал, что мы линеаризовали уравнение и пренебрегли нелинейными эффектами. Так давайте включим в рассмотрение нелинейность. Вернёмся к самому первому уравнению — с синусом. Если мы повторим с ним то, что проделали с линейным уравнением, мы получим следующий закон сохранения:

Фазовый портрет нелинейной системы дифференциальных уравнений

В зависимости от значения энергии, мы опять получаем разные кривые, которые приведены на следующем рисунке, причем выбраны те же значения энергии, что и на первой диаграмме, и те же цвета для линий.

Фазовый портрет нелинейной системы дифференциальных уравнений
По горизонтальной оси отложена величина x, по вертикальной — u

Как видите, процессы происходящее в системе стали более разнообразными:

При малых энергиях (оранжевая и синяя траектории) существует колебательный режим, но колебания уже не являются гармоническими — фазовые траектории уже не имеют форму эллипсов.

При больших энергиях (зеленая траектория) колебаний уже нет, вместо этого мы получаем вращательное движение с переменной скоростью. И действительно, если достаточно сильно «толкнуть» стержень, он будет вращаться, замедляясь при подъёме и ускоряясь при спуске.

При определенном промежуточном значении энергии получается особый набор траекторий, которые отделяют друг от друга области соответствующие разным типам движения и поэтому называются сепаратрисами. И да, значение энергии для красной кривой было выбрано мной именно так, чтобы в нелинейном случае получилась сепаратриса. Каждая ветвь сепаратрисы это траектория, соответствующая особому типу движения. Посмотрим на диаграмму: движение начинается с очень маленькой скоростью от одного крайнего положения стержня, при приближении к положению равновесия скорость растёт, а после изображающая точка все более замедляясь уходит к крайнему положению, где и останавливается. Это соответствует тому, что мы поднимаем стержень вертикально вверх и отпускаем его, проносясь через положение равновесия он поднимается к верхней точке с другой стороны и останавливается.

А теперь давайте посмотрим насколько близки к истине наши выводы, сделанные на основе фазовых портретов. Перед вами график решения линейного уравнения:

Фазовый портрет нелинейной системы дифференциальных уравнений
По горизонтальной оси отложено время, по вертикальной — x

Фазовый портрет нелинейной системы дифференциальных уравнений
По горизонтальной оси отложено время, по вертикальной — x

Цветовая маркировка на этих графиках такая же, как и на фазовых портретах. Судить о том, насколько верные выводы были сделаны на основе фазовых портретов я предоставлю вам, дорогие читатели. Обращу ваше внимание только на один момент — колебания в линейном случае происходят синхронно — с одной и той же частотой. В нелинейном же случае, частота колебания с большей амплитудой (синяя линия) оказывается меньше, чем у колебания с малой амплитудой (оранжевая линия). Это служит еще одним подтверждением того, что нелинейные колебания не являются гармоническими.

Ну и напоследок: это всего лишь поверхностный экскурс в метод фазовых портретов, и словосочетание «на пальцах» попало в заголовок неспроста. Те же, кто решит углубиться в перипетии данного предмета, увидят, что за фазовыми портретами скрывается намного большее.

Видео:Асташова И. В. - Дифференциальные уравнения. Часть 2 - Фазовый портретСкачать

Асташова И. В. - Дифференциальные уравнения. Часть 2 - Фазовый портрет

Реферат: Методы исследования нелинейных систем

«Теория автоматического управления»

«Методы исследования нелинейных систем»

1. Метод дифференциальных уравнений

Дифференциальное уравнение замкнутой нелинейной системы n-го порядка (рис. 1) можно преобразовать к системе n-дифференциальных уравнений первого порядка в виде:

Фазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравнений

где: Фазовый портрет нелинейной системы дифференциальных уравнений – переменные, характеризующие поведение системы (одна из них может быть регулируемая величина); Фазовый портрет нелинейной системы дифференциальных уравнений – нелинейные функции; u – задающее воздействие.

Обычно, эти уравнения записываются в конечных разностях:

Фазовый портрет нелинейной системы дифференциальных уравнений,

где Фазовый портрет нелинейной системы дифференциальных уравнений – начальные условия.

Если отклонения Фазовый портрет нелинейной системы дифференциальных уравненийне большие, то эту систему можно решать, как систему алгебраических уравнений. Решение можно представить графически.

2. Метод фазового пространства

Рассмотрим случай, когда внешнее воздействие равно нулю (U = 0).

Движение системы определяется изменением ее координат — Фазовый портрет нелинейной системы дифференциальных уравненийв функции времени. Значения Фазовый портрет нелинейной системы дифференциальных уравненийв любой момент времени характеризует состояние (фазу) системы и определяет координаты системы имеющей n – осей и могут быть представлены как координаты некоторой (изображающей) точки М (рис. 2).

Фазовым пространством называется пространство координат системы.

С изменением времени t точка М движется по траектории, называемой фазовой траекторией . Если менять начальные условия получим семейство фазовых траекторий, называемых фазовым портретом . Фазовый портрет определяет характер переходного процесса в нелинейной системе. Фазовый портрет имеет особые точки, к которым стремятся или от которых уходят фазовые траектории системы (их может быть несколько).

Фазовый портрет нелинейной системы дифференциальных уравнений

Фазовый портрет может содержать замкнутые фазовые траектории, которые называются предельными циклами. Предельные циклы характеризуют автоколебания в системе. Фазовые траектории нигде не пересекаются, кроме особых точек, характеризующих равновесные состояния системы. Предельные циклы и состояния равновесия могут быть устойчивыми или не устойчивыми.

Фазовый портрет полностью характеризует нелинейную систему. Характерной особенностью нелинейных систем является наличие различных типов движений, нескольких состояний равновесия, наличие предельных циклов.

Метод фазового пространства является фундаментальным методом исследования нелинейных систем. Исследовать нелинейных систем на фазовой плоскости гораздо проще и удобнее, чем с помощью построения графиков переходных процессов во временной области.

Геометрические построения в пространстве менее наглядны, чем построения на плоскости, когда система имеет второй порядок, при этом применяется метод фазовой плоскости.

Применение метода фазовой плоскости для линейных систем

Проанализируем связь между характером переходного процесса и кривыми фазовых траекторий. Фазовые траектории могут быть получены либо путем интегрирования уравнения фазовой траектории, либо путем решения исходного дифференциального уравнения 2-го порядка.

Пусть задана система (рис. 3).

Название: Методы исследования нелинейных систем
Раздел: Рефераты по коммуникации и связи
Тип: реферат Добавлен 12:55:57 30 августа 2009 Похожие работы
Просмотров: 1435 Комментариев: 23 Оценило: 3 человек Средний балл: 5 Оценка: неизвестно Скачать
Фазовый портрет нелинейной системы дифференциальных уравнений

Рассмотрим свободное движение системы. Приэтом: U(t)=0, e(t)=– x(t)

Фазовый портрет нелинейной системы дифференциальных уравнений

В общем виде дифференциальное уравнение имеет вид

Фазовый портрет нелинейной системы дифференциальных уравненийгде Фазовый портрет нелинейной системы дифференциальных уравнений(1)

Это однородное дифференциальное уравнение 2-го порядка его характеристическое уравнение равно

Фазовый портрет нелинейной системы дифференциальных уравнений. (2)

Корни характеристического уравнения определяются из соотношений

Фазовый портрет нелинейной системы дифференциальных уравнений(3)

Представим дифференциальное уравнение 2-го порядка в виде системы

уравнений 1-го порядка:

Фазовый портрет нелинейной системы дифференциальных уравнений(4)

где Фазовый портрет нелинейной системы дифференциальных уравненийскорость изменения регулируемой величины.

В рассматриваемой линейной системе переменные x и y представляют собой фазовые координаты. Фазовый портрет строим в пространстве координат x и y, т.е. на фазовой плоскости.

Если исключим время из уравнения (1), то получим уравнение интегральных кривых или фазовых траекторий.

Фазовый портрет нелинейной системы дифференциальных уравнений. (5)

Это уравнение с разделяющимися переменными

Фазовый портрет нелинейной системы дифференциальных уравнений. (6)

Видео:ТАУ. Matlab/SIMULINK Фазовые портреты нелинейных и линейных диф. уравненийСкачать

ТАУ. Matlab/SIMULINK Фазовые портреты нелинейных и линейных диф. уравнений

Рассмотрим несколько случаев

1. Пусть корни характеристического уравнения (3) имеют вид

Фазовый портрет нелинейной системы дифференциальных уравнений(т.е. Фазовый портрет нелинейной системы дифференциальных уравнений). (7)

При этом переходной процесс описывается уравнениями

т.е. представляет собой незатухающие колебания с постоянной амплитудой А и начальной фазой – j.

На фазовой плоскости (рис. 4) эти уравнения представляют собой параметрические уравнения эллипса с полуосями А и wA (где A – постоянная интегрирования).

Фазовый портрет нелинейной системы дифференциальных уравнений

Уравнение эллипса можно получить решением уравнения фазовых траекторий

Фазовый портрет нелинейной системы дифференциальных уравнений(9)

Состояние равновесия определяется из условия

Фазовый портрет нелинейной системы дифференциальных уравнений,

Особая точка называется «центр» и соответствует устойчивому равновесию, так как фазовые траектории от нее не удаляются.

2. Пусть корни характеристического уравнения (3) имеют вид

Фазовый портрет нелинейной системы дифференциальных уравнений(10)

При этом переходной процесс описывается уравнениями:

Фазовый портрет нелинейной системы дифференциальных уравнений

Из уравнения фазовых траекторий Фазовый портрет нелинейной системы дифференциальных уравненийполучим уравнение

Фазовый портрет нелинейной системы дифференциальных уравнений

Это уравнение семейства гипербол при изменении A (рис 5).

Фазовый портрет нелинейной системы дифференциальных уравнений
Фазовый портрет нелинейной системы дифференциальных уравнений

Особая точка называется «седло». Уравнения асимптот (сепаратрис) при А = 0 имеют вид: Фазовый портрет нелинейной системы дифференциальных уравнений

3. Пусть корни характеристического уравнения (3) имеют вид

Фазовый портрет нелинейной системы дифференциальных уравнений(11)

Фазовая траектория имеет вид сворачивающейся спирали (рис. 6), а точка равновесия называется «устойчивый фокус».

Фазовый портрет нелинейной системы дифференциальных уравнений

4. Пусть корни характеристического уравнения (3) имеют вид

Фазовый портрет нелинейной системы дифференциальных уравнений(12)

Переходный процесс представляет собой расходящиеся колебания, фазовая траектория – разворачивающаяся спираль. Особая точка называется «неустойчивый фокус» (рис. 7).

Фазовый портрет нелинейной системы дифференциальных уравнений

5. Пусть корни характеристического уравнения (3) имеют вид

Фазовый портрет нелинейной системы дифференциальных уравнений(13)

Переходный процесс имеет апериодический характер. Особая точка называется «устойчивый узел» (рис. 8).

Фазовый портрет нелинейной системы дифференциальных уравнений

6. Пусть корни характеристического уравнения (3) имеют вид

Фазовый портрет нелинейной системы дифференциальных уравнений(14)

Особая точка называется «неустойчивый узел» (рис. 9).

Фазовый портрет нелинейной системы дифференциальных уравнений

4. Методы построения фазовых портретов

Для построения фазовых портретов можно использовать различные методы: метод дифференциальных уравнений, метод изоклин, и др.

Метод дифференциальных уравнений . Сущность метода заключается в том, что по дифференциальным уравнениям отдельных участков нелинейного элемента строят соответствующие фазовые портреты на плоскости.

Метод изоклин – это метод линий постоянного наклона.

Пусть даны уравнения нелинейной системы:

Фазовый портрет нелинейной системы дифференциальных уравнений(15)

где: Фазовый портрет нелинейной системы дифференциальных уравнений– произвольные функции.

Чтобы получить фазовый портрет исключим время:

Фазовый портрет нелинейной системы дифференциальных уравнений. (16)

Пусть Фазовый портрет нелинейной системы дифференциальных уравнений, при этом Фазовый портрет нелинейной системы дифференциальных уравнений– это уравнение линии в плоскости (x 0 y). Каждому значению константы с соответствует некоторая линия, обладающая следующим свойством: в каждой точке линии Фазовый портрет нелинейной системы дифференциальных уравнений, т.е. если фазовая траектория пересекает изоклину, то она имеет постоянный наклон рис. 10.

Фазовый портрет нелинейной системы дифференциальных уравнений

Если провести достаточное число таких линий с соответствующими наклонами, то можно построить фазовый портрет системы. При этом точность зависит от числа изоклин. Направление движения определяется по правилу: если производная Фазовый портрет нелинейной системы дифференциальных уравнений, x >0, то движение такое, что x возрастает.

5. Построение фазового портрета нелинейной системы

Рассмотрим релейную следящую систему, схема которой приведена на рис. 11.

Фазовый портрет нелинейной системы дифференциальных уравнений
Фазовый портрет нелинейной системы дифференциальных уравнений
Фазовый портрет нелинейной системы дифференциальных уравнений
Фазовый портрет нелинейной системы дифференциальных уравнений

Фазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравнений+

Фазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийx1 НЭ У Uпит Д ТГ P U0

Фазовый портрет нелинейной системы дифференциальных уравнений
Фазовый портрет нелинейной системы дифференциальных уравнений
Фазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравнений
Фазовый портрет нелинейной системы дифференциальных уравнений
Фазовый портрет нелинейной системы дифференциальных уравнений
Фазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравнений

Фазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравнений

Фазовый портрет нелинейной системы дифференциальных уравнений

Фазовый портрет нелинейной системы дифференциальных уравненийФазовый портрет нелинейной системы дифференциальных уравненийx

Фазовый портрет нелинейной системы дифференциальных уравнений

Если a¹b на вход НЭ с релейной характеристикой (рис. 12) подается сигнал Фазовый портрет нелинейной системы дифференциальных уравненийПри этом: b – угол поворота задающей оси; a – угол поворота отрабатывающего потенциометра.

Фазовый портрет нелинейной системы дифференциальных уравненийz

Вследствие этого на двигатель подается напряжение ±Фазовый портрет нелинейной системы дифференциальных уравнений, двигатель вращается в определенном направлении в соответствии с полярностью подаваемого напряжения до тех пор, пока оно не станет равным нулю.

Для улучшения качества переходного процесса в систему может быть включена отрицательная обратная связь по скорости двигателя с помощью тахогенератора (ТГ).

Запишем уравнения элементов системы. Для двигателя постоянного тока с независимым возбуждением

Фазовый портрет нелинейной системы дифференциальных уравнений(17)

Так как поток возбуждения Фазовый портрет нелинейной системы дифференциальных уравнений= const, то Фазовый портрет нелинейной системы дифференциальных уравнений. Допустим, момент нагрузки мал, при этом Фазовый портрет нелинейной системы дифференциальных уравнений=0.

Передаточную функцию для якорной цепи K1 (p) можно получить из ее дифференциального уравнения

Фазовый портрет нелинейной системы дифференциальных уравнений(18)

Пусть Фазовый портрет нелинейной системы дифференциальных уравнений

Для редуктора и угла поворота вала двигателя

Фазовый портрет нелинейной системы дифференциальных уравнений(19)

Фазовый портрет нелинейной системы дифференциальных уравнений. (20)

На основании функциональной схемы и полученных передаточных функций элементов системы составляем структурную схему рис. 13

Фазовый портрет нелинейной системы дифференциальных уравнений

Для построения фазового портрета необходимо записать систему дифференциальных уравнений.

Рассмотрим свободное движение системы (b=0) при этом x = a.

Дифференциальное уравнение нелинейной системы имеет вид

Фазовый портрет нелинейной системы дифференциальных уравнений(21)

Представим уравнение в виде системы уравнений:

Фазовый портрет нелинейной системы дифференциальных уравнений(22)

Построим фазовый портрет. Для простоты построения фазового портрета делаем некоторые упрощения:

1) Пусть обратная связь по скорости – Фазовый портрет нелинейной системы дифференциальных уравненийотсутствует (К = 0).

2) Характеристика нелинейного элемента однозначна (рис. 14).

Фазовый портрет нелинейной системы дифференциальных уравнений(23)

С учетом принятых допущений система уравнений упрощается.

Фазовый портрет нелинейной системы дифференциальных уравнений(24)

Построим характеристику для каждой зоны.

Пусть – a £ x £ a, ¦(x) = 0.

При этом исходная система имеет вид:

Фазовый портрет нелинейной системы дифференциальных уравнений(25)

Решение этого уравнения имеет вид Фазовый портрет нелинейной системы дифференциальных уравнений, т.е. наклон фазовых траекторий всюду постоянный (отрицательный).

Определим равновесное состояние системы из условия:

Фазовый портрет нелинейной системы дифференциальных уравнений(26)

Это условие выполняется при y = 0, т.е. точка вырождается в прямую линию y = 0 на интервале [– а, а]. Фазовые траектории на участке – а a, Фазовый портрет нелинейной системы дифференциальных уравнений. При этом исходная система нелинейных уравнений имеет вид

Фазовый портрет нелинейной системы дифференциальных уравнений(27)

где ci — семейство изоклин, которое представляет собой прямые параллельные оси х, т.е. Фазовый портрет нелинейной системы дифференциальных уравнений, где Фазовый портрет нелинейной системы дифференциальных уравненийопределяется из выражения для Фазовый портрет нелинейной системы дифференциальных уравнений

Фазовый портрет нелинейной системы дифференциальных уравнений. (28)

Фазовый портрет нелинейной системы дифференциальных уравнений. (29)

Задаваясь значениями Фазовый портрет нелинейной системы дифференциальных уравнений, строим семейство изоклин. Определяем углы пересечения изоклин фазовыми траекториями.

Так как Фазовый портрет нелинейной системы дифференциальных уравнений. Например, если Фазовый портрет нелинейной системы дифференциальных уравнений, то a = 90°.

Пусть х 2 не применяется.

Рассмотрим несколько примеров построения фазовых портретов нелинейных систем управления

Пример 1. Пусть задана система, состоящая из линейной части и нелинейного элемента (усилитель с ограничением по модулю) (рис. 19). Это кусочно-линейная система, так как на отдельных участках она ведет себя как линейная (в области) – а, +а[). Допустим в области (] – а, +а[) коэффициент усиления большой и система неустойчива а фазовый портрет характеризуется особой точкой «неустойчивый фокус». За пределами области коэффициент усиления мал, допустим, что при этом система устойчива и характеризуется особой точкой – «устойчивый фокус».

При больших отклонениях x > |a| общий коэффициент усиления системы мал, система устойчива, процесс затухает.

При малых отклонениях общий коэффициент усиления системы большой – процесс расходится к замкнутой траектории, которая характеризует наличие устойчивых автоколебаний (рис. 20).

В этой системе три типа движений: автоколебания; сходящиеся колебания; расходящиеся колебания

Фазовый портрет нелинейной системы дифференциальных уравнений

Пример 2. Пусть задана система с характеристикой нелинейного звена типа «зона нечувствительности» (рис. 21). Необходимо построить фазовый

портрет данной системы, определить наличие предельных циклов и проанализировать их устойчивость.

Фазовый портрет нелинейной системы дифференциальных уравнений

Пусть в области [-b, +b] система устойчива, при этом коэффициент усиления – К мал, переходный процесс затухает, особая точка «устойчивый фокус» вне области К – большой, переходный процесс расходится (рис. 22). Эта система имеет неустойчивый предельный цикл, т.е. автоколебания неустойчивы.

Для более сложных нелинейных элементов может быть несколько предельных циклов.

Видео:Решение дифференциальных уравнений. Построение фазового портрета систему ДУ. Урок 47Скачать

Решение дифференциальных уравнений. Построение фазового портрета систему ДУ. Урок 47

Пример Для заданной системы (рис. 23) построить примерный фазовый портрет.

Фазовый портрет нелинейной системы дифференциальных уравнений

Решение: Исходную схему можно представить в виде (рис. 24).

Фазовый портрет нелинейной системы дифференциальных уравнений

Видео:Дополнительные главы ИДУ: Построение фазовых портретов | Занятие 3Скачать

Дополнительные главы ИДУ: Построение фазовых портретов | Занятие 3

Построим фазовый портрет

1) При – a +a f(x) = x – a, а система уравнений имеет вид

Фазовый портрет нелинейной системы дифференциальных уравнений

Для каждого сi определимугловой коэффициент наклона изоклины – к по формуле Фазовый портрет нелинейной системы дифференциальных уравненийи угол пересечения фазовой траекторией изоклины по формуле a = arctg c, результаты приведены в таблицах 1 и 2.

Таблица 1

Сi0123-1/2-2-3¥
k-1-1/2-1/3-1/4-211/20

Таблица 2

Ci0±1±1±1±1±¥
a0±45 0±63 0±71 0±80 0±90 0

3) При x +1 f(x) = 1, а система уравнений имеет вид

Фазовый портрет нелинейной системы дифференциальных уравнений

Для каждого сi определимугловой коэффициент наклона изоклины – к по формуле Фазовый портрет нелинейной системы дифференциальных уравненийи угол пересечения фазовой траекторией изоклины по формуле a = arctg c.

Видео:Лекция №5 Фазовые траектории автономных систем (разбор примеров)Скачать

Лекция №5 Фазовые траектории автономных систем (разбор примеров)

ЛЕКЦИЯ 4

Модели, описываемые системами двух автономных дифференциальных уравнений.

Фазовая плоскость. Фазовый портрет. Метод изоклин. Главные изоклины. Устойчивость стационарного состояния. Линейные системы. Типы особых точек: узел, седло, фокус, центр. Пример: химические реакции первого порядка.

Наиболее интересные результаты по качественному моделированию свойств биологических систем получены на моделях из двух дифференциальных уравнений, которые допускают качественное исследование с помощью метода фазовой плоскости. Рассмотрим систему двух автономных обыкновенных дифференциальных уравнений общего вида

Фазовый портрет нелинейной системы дифференциальных уравнений (4.1)

P(x,y), Q(x,y) — непрерывные функции, определенные в некоторой области G евклидовой плоскости ( x,y ‑ декартовы координаты) и имеющие в этой области непрерывные производные порядка не ниже первого.

Область G может быть как неограниченной, так и ограниченной. Если переменные x, y имеют конкретный биологический смысл (концентрации веществ, численности видов) чаще всего область G представляет собой положительный квадрант правой полуплоскости:

Концентрации веществ или численности видов также могут быть ограничены сверху объемом сосуда или площадью ареала обитания. Тогда область значений переменных имеет вид:

Переменные x, y во времени изменяются в соответствии с системой уравнений (4.1), так что каждому состоянию системы соответствует пара значений переменных ( x, y) .

Фазовый портрет нелинейной системы дифференциальных уравнений

Изображающая точка на фазовой плоскости

Фазовый портрет нелинейной системы дифференциальных уравнений

Обратно, каждой паре переменных ( x, y) соответствует определенное состояние системы.

Рассмотрим плоскость с осями координат, на которых отложены значения переменных x,y. Каждая точка М этой плоскости соответствует определенному состоянию системы. Такая плоскость носит название фазовой плоскости и изображает совокупность всех состояний системы. Точка М(x,y) называется изображающей или представляющей точкой.

Пусть в начальный момент времени t=t0 координаты изображающей точки М0( x( t0) , y( t0)) . В каждый следующий момент времени t изображающая точка будет смещаться в соответствии с изменениями значений переменных x( t) , y( t) . Совокупность точек М( x( t) , y(t)) на фазовой плоскости, положение которых соответствует состояниям системы в процессе изменения во времени переменных x(t), y(t) согласно уравнениям (4.1), называется фазовой траекторией.

Совокупность фазовых траекторий при различных начальных значениях переменных дает легко обозримый «портрет» системы. Построение фазового портрета позволяет сделать выводы о характере изменений переменных x, y без знания аналитических решений исходной системы уравнений (4.1).

Для изображения фазового портрета необходимо построить векторное поле направлений траекторий системы в каждой точке фазовой плоскости. Задавая приращение D t>0, получим соответствующие приращения D x и D y из выражений:

Направление вектора dy/dx в точке ( x, y) зависит от знака функций P(x, y), Q(x, y) и может быть задано таблицей:

Фазовый портрет нелинейной системы дифференциальных уравнений

Фазовый портрет нелинейной системы дифференциальных уравнений

Фазовый портрет нелинейной системы дифференциальных уравнений

Фазовый портрет нелинейной системы дифференциальных уравнений

Задача построения векторного поля упрощается, если получить выражение для фазовых траекторий в аналитическом виде. Для этого разделим второе из уравнений системы (4.1) на первое:

Фазовый портрет нелинейной системы дифференциальных уравнений . (4.2)

Решение этого уравнения y = y( x, c) , или в неявном виде F( x,y) =c, где с – постоянная интегрирования, дает семейство интегральных кривых уравнения (4.2) ‑ фазовых траекторий системы (4.1) на плоскости x, y.

Для построения фазового портрета пользуются методом изоклин – на фазовой плоскости наносят линии, которые пересекают интегральные кривые под одним определенным углом. Уравнение изоклин легко получить из (4.2). Положим

Фазовый портрет нелинейной системы дифференциальных уравнений

где А – определенная постоянная величина. Значение А представляет собой тангенс угла наклона касательной к фазовой траектории и может принимать значения от – ¥ до + ¥ . Подставляя вместо dy/dx в (4.2) величину А получим уравнение изоклин:

Фазовый портрет нелинейной системы дифференциальных уравнений . (4.3)

Уравнение (4.3) определяет в каждой точке плоскости единственную касательную к соответствующей интегральной кривой за исключением точки, где P (x,y) = 0, Q ( x,y) = 0, в которой направление касательной становится неопределенным, так как при этом становится неопределенным значение производной:

Фазовый портрет нелинейной системы дифференциальных уравнений .

Эта точка является точкой пересечения всех изоклин – особой точкой. В ней одновременно обращаются в нуль производные по времени переменных x и y.

Фазовый портрет нелинейной системы дифференциальных уравнений

Таким образом, в особой точке скорости изменения переменных равны нулю. Следовательно, особая точка дифференциальных уравнений фазовых траекторий (4.2) соответствует стационарному состоянию системы (4.1), а ее координаты – суть стационарные значения переменных x, y.

Особый интерес представляют главные изоклины:

dy/dx=0, P ( x,y) =0 – изоклина горизонтальных касательных и

dy/dx= ¥ , Q ( x,y) =0 – изоклина вертикальных касательных.

Построив главные изоклины и найдя точку их пересечения (x,y), координаты которой удовлетворяют условиям:

Фазовый портрет нелинейной системы дифференциальных уравнений

мы найдем тем самым точку пересечения всех изоклин фазовой плоскости, в которой направление касательных к фазовым траекториям неопределенно. Это – особая точка, которая соответствует стационарному состоянию системы (рис. 4.2).

Система (4.1) обладает столькими стационарными состояниями, сколько точек пересечения главных изоклин имеется на фазовой плоскости.

Каждая фазовая траектория соответствует совокупности движений динамической системы, проходящих через одни и те же состояния и отличающихся друг от друга только началом отсчета времени.

Рис. 4.2. Пересечение главных изоклин на фазовой плоскости.

Фазовый портрет нелинейной системы дифференциальных уравнений

Фазовый портрет нелинейной системы дифференциальных уравнений

Таким образом, фазовые траектории системы – это проекции интегральных кривых в пространстве всех трех измерений x, y, t на плоскость x, y (рис.4.3).

Рис. 4.3. Траектории системы в пространстве ( x, y, t).

Фазовый портрет нелинейной системы дифференциальных уравнений

Фазовый портрет нелинейной системы дифференциальных уравнений

Если условия теоремы Коши выполнены, то через каждую точку пространства x, y, t проходит единственная интегральная кривая. То же справедливо, благодаря автономности, для фазовых траекторий: через каждую точку фазовой плоскости проходит единственная фазовая траектория.

Устойчивость стационарного состояния

Пусть система находится в состоянии равновесия.

Тогда изображающая точка находится в одной из особых точек системы, в которых по определению:

Фазовый портрет нелинейной системы дифференциальных уравнений .

Устойчива или нет особая точка, определяется тем, уйдет или нет изображающая точка при малом отклонении от стационарного состояния. Применительно к системе из двух уравнений определение устойчивости на языке e , d выглядит следующим образом.

Состояние равновесия устойчиво, если для любой заданной области отклонений от состояния равновесия ( e ) можно указать область d ( e ) , окружающую состояние равновесия и обладающую тем свойством, что ни одна траектория, которая начинается внутри области d , никогда не достигнет границы e . (рис. 4.4)

Иллюстрация к определению устойчивости области e и d на плоскости ( x,y)

Фазовый портрет нелинейной системы дифференциальных уравнений

Фазовый портрет нелинейной системы дифференциальных уравнений

Для большого класса систем – грубых систем – характер поведения которых не меняется при малом изменении вида уравнений, информацию о типе поведения в окрестности стационарного состояния можно получить, исследуя не исходную, а упрощенную линеаризованную систему.

Рассмотрим систему двух линейных уравнений:

Фазовый портрет нелинейной системы дифференциальных уравнений . (4.4)

Здесь a, b, c, d — константы, x, y ‑ декартовы координаты на фазовой плоскости.

Общее решение будем искать в виде:

Фазовый портрет нелинейной системы дифференциальных уравнений . (4.5)

Подставим эти выражения в (4.4) и сократим на e l t :

Фазовый портрет нелинейной системы дифференциальных уравнений Фазовый портрет нелинейной системы дифференциальных уравнений (4.6)

Алгебраическая система уравнений (4.6) с неизвестными A, B имеет ненулевое решение лишь в том случае, если ее определитель, составленный из коэффициентов при неизвестных, равен нулю:

Фазовый портрет нелинейной системы дифференциальных уравнений .

Раскрывая этот определитель, получим характеристическое уравнение системы:

Фазовый портрет нелинейной системы дифференциальных уравнений . (4.7)

Решение этого уравнения дает значения показателя l 1,2 , при которых возможны ненулевые для A и B решения уравнения (4.6). Эти значения суть

Фазовый портрет нелинейной системы дифференциальных уравнений . (4.8)

Если подкоренное выражение отрицательно, то l 1,2 комплексно сопряженные числа. Предположим, что оба корня уравнения (4.7) имеют отличные от нуля действительные части и что нет кратных корней. Тогда общее решение системы (4.4) можно представить в виде линейной комбинации экспонент с показателями l 1 , l 2 :

Фазовый портрет нелинейной системы дифференциальных уравнений (4.9)

Для анализа характера возможных траекторий системы на фазовой плоскости используем линейное однородное преобразование координат, которое позволит привести систему к каноническому виду:

Фазовый портрет нелинейной системы дифференциальных уравнений , (4.10)

допускающее более удобное представление на фазовой плоскости по сравнению с исходной системой (4.4). Введем новые координаты ξ , η по формулам:

Фазовый портрет нелинейной системы дифференциальных уравнений (4.1)

Из курса линейной алгебры известно, что в случае неравенства нулю действительных частей l 1 , l 2 исходную систему (4.4) при помощи преобразований (4.11) всегда можно преобразовать к каноническому виду (4.10) и изучать ее поведение на фазовой плоскости ξ , η . Рассмотрим различные случаи, которые могут здесь представиться.

Корни λ 1 , λ 2 – действительны и одного знака

В этом случае коэффициенты преобразования действительны, мы переходим от действительной плоскости x,y к действительной плоскости ξ, η. Разделив второе из уравнений (4.10) на первое, получим :

Фазовый портрет нелинейной системы дифференциальных уравнений . (4.12)

Интегрируя это уравнение, находим :

Фазовый портрет нелинейной системы дифференциальных уравнений , где Фазовый портрет нелинейной системы дифференциальных уравнений . (4.13)

Условимся понимать под λ 2 корень характеристического уравнения с большим модулем, что не нарушает общности нашего рассуждения. Тогда, поскольку в рассматриваемом случае корни λ 1 , λ 2 – действительны и одного знака, a >1 , и мы имеем дело с интегральными кривыми параболического типа.

Все интегральные кривые (кроме оси η, которой соответствует Фазовый портрет нелинейной системы дифференциальных уравнений ) касаются в начале координат оси ξ, которая также является интегральной кривой уравнения (4.11). Начало координат является особой точкой.

Выясним теперь направление движений изображающей точки вдоль фазовых траекторий. Если λ 1 , λ 2 – отрицательны, то, как видно из уравнений (4.10), |ξ|, |η| убывают с течением времени. Изображающая точка приближается к началу координат, никогда, однако, не достигая его. В противном случае это противоречило бы теореме Коши, которая утверждает, что через каждую точку фазовой плоскости проходит лишь одна фазовая траектория.

Такая особая точка, через которую проходят интегральные кривые, подобно тому, как семейство парабол Фазовый портрет нелинейной системы дифференциальных уравнений проходит через начало координат, носит название узла (рис. 4.5)

Рис. 4.5. Особая точка типа узел на плоскости канонических координат ξ, η

Фазовый портрет нелинейной системы дифференциальных уравнений

Состояние равновесия типа узел при λ 1 , λ 2 0 устойчиво по Ляпунову, так как изображающая точка по всем интегральным кривым движется по направлению к началу координат. Это устойчивый узел. Если же λ 1 , λ 2 > 0, то |ξ|, |η| возрастают с течением времени и изображающая точка удаляется от начала координат. В этом случае особая точка – неустойчивый узел .

На фазовой плоскости x, y общий качественный характер поведения интегральных кривых сохранится, но касательные к интегральным кривым не будут совпадать с осями координат. Угол наклона этих касательных будет определяться соотношением коэффициентов α , β , γ , δ в уравнениях (4.11).

Корни λ 1 , λ 2 – действительны и разных знаков.

Преобразование от координат x,y к координатам ξ, η опять действительное. Уравнения для канонических переменных снова имеют вид (4.10), но теперь знаки λ 1 , λ 2 различны. Уравнение фазовых траекторий имеет вид :

Фазовый портрет нелинейной системы дифференциальных уравнений где Фазовый портрет нелинейной системы дифференциальных уравнений , (4.14)

Интегрируя (4.14), находим

Фазовый портрет нелинейной системы дифференциальных уравнений (4.15)

Это уравнение определяет семейство кривых гиперболического типа, где обе оси координат – асимптоты (при a=1 мы имели бы семейство равнобочных гипербол) . Оси координат и в этом случае являются интегральными кривыми – это будут единственные интегральные кривые, проходящие через начало координат. Каждая из них состоит из трех фазовых траекторий : из двух движений к состоянию равновесия (или от состояния равновесия) и из состояния равновесия. Все остальные интегральные кривые – суть гиперболы, не проходящие через начало координат (рис. 4.6) Такая особая точка носит название «седло ». Линии уровня вблизи горной седловины ведут себя подобно фазовым траекториям в окрестности седла.

Рис. 4.6. Особая точка типа седло на плоскости канонических координат ξ , η

Фазовый портрет нелинейной системы дифференциальных уравнений

Рассмотрим характер движения изображающей точки по фазовым траекториям вблизи состояния равновесия. Пусть, например, λ 1 >0 , λ 2 . Тогда изображающая точка, помещенная на оси ξ, будет удаляться от начала координат, а помещенная на оси η – будет неограниченно приближаться к началу координат , не достигая его за конечное время . Где бы ни находилась изображающая точка в начальный момент (за исключением особой точки и точек на асимптоте η =0), она в конечном счете будет удаляться от состояния равновесия, даже если в начале она движется по одной из интегральных кривых по направлению к особой точке .

Очевидно, что особая точка типа седла всегда неустойчива . Только при специально выбранных начальных условиях на асимптоте η =0 система будет приближаться к состоянию равновесия. Однако это не противоречит утверждению о неустойчивости системы. Если считать , что все начальные состояния системы на фазовой плоскости равновероятны, то вероятность такого начального состояния, которое соответствует движению по направлению к особой точке, равна нулю. Поэтому всякое реальное движение будет удалять систему от состояния равновесия. Переходя обратно к координатам x,y, мы получим ту же качественную картину характера движения траекторий вокруг начала координат.

Пограничным между рассмотренными случаями узла и седла является случай, когда один из характеристических показателей, например λ 1 , обращается в нуль, что имеет место, когда определитель системы – выражение ad-bc=0 (см. формулу 4.8 ). В этом случае коэффициенты правых частей уравнений (4.4) пропорциональны друг другу :

Фазовый портрет нелинейной системы дифференциальных уравнений

и система имеет своими состояниями равновесия все точки прямой :

Фазовый портрет нелинейной системы дифференциальных уравнений

Остальные интегральные кривые представляют собой семейство параллельных прямых с угловым коэффициентом Фазовый портрет нелинейной системы дифференциальных уравнений , по которым изображающие точки либо приближаются к состоянию равновесия, либо удаляются от него в зависимости от знака второго корня характеристического уравнения λ 2 = a+d. (Рис.4. 7 ) В этом случае координаты состояния равновесия зависят от начального значения переменных.

Рис. 4.7. Фазовый портрет системы, один из характеристических корней которой равен нулю, а второй отрицателен.

Фазовый портрет нелинейной системы дифференциальных уравнений

В этом случае при действительных x и y мы будем иметь комплексные сопряженные ξ , η ( 4.10) . Однако , вводя еще одно промежуточное преобразование, можно и в этом случае свести рассмотрение к действительному линейному однородному преобразованию. Положим :

Фазовый портрет нелинейной системы дифференциальных уравнений (4.16)

где a,b, и u,v – действительные величины. Можно показать, что преобразование от x,y к u,v является при наших предположениях действительным, линейным, однородным с детерминантом, отличным от нуля. В силу уравнений (4.10, 4.16) имеем :

Фазовый портрет нелинейной системы дифференциальных уравнений

Фазовый портрет нелинейной системы дифференциальных уравнений (4.17)

Разделив второе из уравнений на первое , получим :

Фазовый портрет нелинейной системы дифференциальных уравнений

которое легче интегрируется , если перейти к полярной системе координат ( r, φ ) . После подстановки Фазовый портрет нелинейной системы дифференциальных уравнений получим Фазовый портрет нелинейной системы дифференциальных уравнений , откуда :

Фазовый портрет нелинейной системы дифференциальных уравнений . (4.18)

Таким образом, на фазовой плоскости u, v мы имеем дело с семейством логарифмических спиралей, каждая из которых имеет асимптотическую точку в начале координат. Особая точка, которая является асимптотической точкой всех интегральных кривых, имеющих вид спиралей , вложенных друг в друга, называется фокусом ( рис.4.8 ) .

Рис. 4.8. Фазовый портрет системы в окрестности особой точки типа фокус на плоскости координат u, v .

Фазовый портрет нелинейной системы дифференциальных уравнений

Рассмотрим характер движения изображающей точки по фазовым траекториям. Умножая первое из уравнений (4.17) на u , а второе на v и складывая , получаем :

Фазовый портрет нелинейной системы дифференциальных уравнений где Фазовый портрет нелинейной системы дифференциальных уравнений

Пусть a 1 0 ( a 1 = Re λ ) . Изображающая точка тогда непрерывно приближается к началу координат, не достигая его в конечное время. Это означает, что фазовые траектории представляют собой скручивающиеся спирали и соответствуют затухающим колебаниям переменных. Это – устойчивый фокус .

В случае устойчивого фокуса, как и в случае устойчивого узла, выполнено не только условие Ляпунова, но и более жесткое требование. Именно, при любых начальных отклонениях система по прошествии времени вернется как угодно близко к положению равновесия. Такая устойчивость, при которой начальные отклонения не только не нарастают, но затухают, стремясь к нулю, называют абсолютной устойчивостью .

Если в формуле (4.18) a1 >0 , то изображающая точка удаляется от начала координат, и мы имеем дело с неустойчивым фокусом . При переходе от плоскости u,v к фазовой плоскости x , y спирали также останутся спиралями, однако будут деформированы.

Рассмотрим теперь случай, когда a 1 =0 . Фазовыми траекториями на плоскости u, v будут окружности Фазовый портрет нелинейной системы дифференциальных уравнений которым на плоскости x,y соответствуют эллипсы :

Фазовый портрет нелинейной системы дифференциальных уравнений

Таким образом, при a1 =0 через особую точку x= 0 , y=0 не проходит ни одна интегральная кривая. Такая изолированная особая точка, вблизи которой интегральные кривые представляют собой замкнутые кривые, в частности, эллипсы, вложенные друг в друга и охватывающие особую точку, называется центром.

Таким образом, возможны шесть типов состояния равновесия в зависимости от характера корней характеристического уравнения (4.7). Вид фазовых траекторий на плоскости x, y для этих шести случаев изображен на рис. 4.9.

Фазовый портрет нелинейной системы дифференциальных уравнений

Рис. 4.9. Типы фазовых портретов в окрестности стационарного состояния для системы линейных уравнений (4.4).

Пять типов состояния равновесия грубые, их характер не изменяется при достаточно малых изменениях правых частей уравнений (4.4). При этом малыми должны быть изменения не только правых частей, но и их производных первого порядка. Шестое состояние равновесия – центр – негрубое. При малых изменениях параметров правой части уравнений он переходит в устойчивый или неустойчивый фокус.

Видео:Теория автоматического управления. Лекция 1. Метод фазовой плоскостиСкачать

Теория автоматического управления. Лекция 1.  Метод фазовой плоскости

Бифуркационная диаграмма

Фазовый портрет нелинейной системы дифференциальных уравнений . (4.11)

Тогда характеристическое уравнение запишется в виде:

Фазовый портрет нелинейной системы дифференциальных уравнений . (4.12)

Рассмотрим плоскость с прямоугольными декартовыми координатами s , D и отметим на ней области, соответствующие тому или иному типу состояния равновесия, который определяется характером корней характеристического уравнения

Фазовый портрет нелинейной системы дифференциальных уравнений . (4.13)

Условием устойчивости состояния равновесия будет наличие отрицательной действительной части у l 1 и l 2 . Необходимое и достаточное условие этого – выполнение неравенств s > 0, D > 0 . На диаграмме (4.15) этому условию соответствуют точки, расположенные в первой четверти плоскости параметров. Особая точка будет фокусом, если l 1 и l 2 комплексны. Этому условию соответствуют те точки плоскости, для которых Фазовый портрет нелинейной системы дифференциальных уравнений , т.е. точки между двумя ветвями параболы s 2 = 4 D . Точки полуоси s = 0, D >0, соответствуют состояниям равновесия типа центр. Аналогично, l 1 и l 2 — действительны, но разных знаков, т.е. особая точка будет седлом, если D , и т.д. В итоге мы получим диаграмму разбиения плоскости параметров s , D , на области, соответствующие различным типам состояния равновесия.

Фазовый портрет нелинейной системы дифференциальных уравнений

Рис. 4.10. Бифуркационная диаграмма

для системы линейных уравнений 4.4

Если коэффициенты линейной системы a, b, c, d зависят от некоторого параметра, то при изменении этого параметра будут меняться и величины s , D . При переходе через границы характер фазового портрета качественно меняется. Поэтому такие границы называются бифуркационными – по разные стороны от границы система имеет два топологически различных фазовых портрета и, соответственно два разных типа поведения.

На диаграмме видно, как могут проходить такие изменения. Если исключить особые случаи – начало координат, – то легко видеть, что седло может переходить в узел, устойчивый или неустойчивый при пересечении оси ординат. Устойчивый узел может перейти либо в седло, либо в устойчивый фокус, и т.д. Отметим, что переходы устойчивый узел – устойчивый фокус и неустойчивый узел – неустойчивый фокус не являются бифуркационными, так как топология фазового пространства при этом не меняется. Более подробно мы поговорим о топологии фазового пространства и бифуркационных переходах в лекции 6.

При бифуркационных переходах меняется характер устойчивости особой точки. Например, устойчивый фокус через центр может переходить в неустойчивый фокус. Эта бифуркация называется бифуркацией Андронова-Хопфа по именам исследовавших ее ученых. При этой бифуркации в нелинейных системах происходит рождение предельного цикла, и система становится автоколебательной (см. лекцию 8).

Пример. Система линейных химических реакций

Вещество Х притекает извне с постоянной скоростью, превращается в вещество Y и со скоростью, пропорциональной концентрации вещества Y, выводится из сферы реакции. Все реакции имеют первый порядок, за исключением притока вещества извне, имеющего нулевой порядок. Схема реакций имеет вид:

Фазовый портрет нелинейной системы дифференциальных уравнений (4.14)

и описывается системой уравнений:

Фазовый портрет нелинейной системы дифференциальных уравнений (4.15)

Стационарные концентрации получим, приравняв правые части нулю:

Фазовый портрет нелинейной системы дифференциальных уравнений . (4.16)

Рассмотрим фазовый портрет системы. Разделим второе уравнение системы (4.16) на первое. Получим:

Фазовый портрет нелинейной системы дифференциальных уравнений . (4.17)

Уравнение (4.17) определяет поведение переменных на фазовой плоскости. Построим фазовый портрет этой системы. Сначала нарисуем главные изоклины на фазовой плоскости. Уравнение изоклины вертикальных касательных:

Фазовый портрет нелинейной системы дифференциальных уравнений

Уравнение изоклины горизонтальных касательных:

Фазовый портрет нелинейной системы дифференциальных уравнений

Особая точка (стационарное состояние) лежит на пересечении главных изоклин.

Теперь определим, под каким углом пересекаются координатные оси интегральными кривыми.

Если x=0, то Фазовый портрет нелинейной системы дифференциальных уравнений .

Таким образом, тангенс угла наклона касательной к интегральным кривым y=y(x), пересекающим ось ординат x=0, отрицателен в верхней полуплоскости (вспомним, что переменные x, y имеют значения концентраций, и поэтому нас интересует только правый верхний квадрант фазовой плоскости). При этом величина тангенса угла наклона касательной увеличивается с удалением от начала координат.

Рассмотрим ось y=0 . В месте пересечения этой оси интегральными кривыми они описываются уравнением

Фазовый портрет нелинейной системы дифференциальных уравнений .

При Фазовый портрет нелинейной системы дифференциальных уравнений тангенс угла наклона интегральных кривых, пересекающих ось абсцисс, положителен и увеличивается от нуля до бесконечности с увеличением x.

Фазовый портрет нелинейной системы дифференциальных уравнений при Фазовый портрет нелинейной системы дифференциальных уравнений .

Затем при дальнейшем увеличении тангенс угла наклона уменьшается по абсолютной величине, оставаясь отрицательным и стремится к -1 при x ® ¥ . Зная направление касательных к интегральным кривым на главных изоклинах и на осях координат, легко построить всю картину фазовых траекторий.

Рис. 4.12. Фазовый портрет системы линейных химических реакций (4.15)

💥 Видео

4. Исследование фазовых траекторий.Скачать

4. Исследование фазовых траекторий.

Консультация по дифференциальным уравнениям №2, часть 3Скачать

Консультация по дифференциальным уравнениям №2,  часть 3

Нелинейная динамика. Практика 1 - Исследование нелинейной системыСкачать

Нелинейная динамика. Практика 1 - Исследование нелинейной системы

Решение нелинейных системСкачать

Решение нелинейных систем

Асташова И. В. - Дифференциальные уравнения. Часть 2 - Лекция 11Скачать

Асташова И. В. - Дифференциальные уравнения. Часть 2 - Лекция 11

Фазовый портрет в simulinkСкачать

Фазовый портрет в simulink

Дифференциальные уравнения 6. Фазовые траектории. Особые точки автономных системСкачать

Дифференциальные уравнения 6. Фазовые траектории. Особые точки автономных систем

Теория автоматического управления. Лекция 17. Задачи метода фазовой плоскостиСкачать

Теория автоматического управления. Лекция 17.  Задачи метода фазовой плоскости

Лекция №5 Глобальный фазовый портрет (разбор примеров)Скачать

Лекция №5 Глобальный фазовый портрет (разбор примеров)

Волков В. Т. - Дифференциальные уравнения - Фазовая плоскость. Фазовые траектории и их видыСкачать

Волков В. Т. - Дифференциальные уравнения - Фазовая плоскость. Фазовые траектории и их виды

Дифференциальные уравнения 20. Исследование поведения фазовых траекторийСкачать

Дифференциальные уравнения 20. Исследование поведения фазовых траекторий

Кулешов А. С. - Теоретическая механика. Семинары - Фазовые портретыСкачать

Кулешов А. С. - Теоретическая механика. Семинары - Фазовые портреты
Поделиться или сохранить к себе: