Не будет там никакой реакции.
К важнейшим свойствам жиров относятся следующие:
— жиры легче воды, их плотность колеблется от 0,9 г/см3 до 0,98 г/см3 при 15 0С
— в воде не растворяются
— в присутствии щёлочи или белка образуются достаточно прочные эмульсии. Примером жировой эмульсии может служить всем известное молоко!
— хорошо растворяются в бензине, сероуглероде, хлороформе, четырёххлористом углероде, но в спирте для некоторых жиров растворимость значительно меньше.
— имеют различную температуру плавления.
эмульсия получится масло-в-спирте, на каждые 50 мл масла 150..200 мл эмульсии.
- Этанол: химические свойства и получение
- Строение этанола
- Водородные связи и физические свойства спиртов
- Изомерия спиртов
- Структурная изомерия
- Химические свойства этанола
- 1.1. Взаимодействие с раствором щелочей
- 1.2. Взаимодействие с металлами (щелочными и щелочноземельными)
- 2. Реакции замещения группы ОН
- 2.1. Взаимодействие с галогеноводородами
- 2.2. Взаимодействие с аммиаком
- 2.3. Этерификация (образование сложных эфиров)
- 2.4. Взаимодействие с кислотами-гидроксидами
- 3. Реакции замещения группы ОН
- 3.1. Внутримолекулярная дегидратация
- 3.2. Межмолекулярная дегидратация
- 4. Окисление этанола
- 4.1. Окисление оксидом меди (II)
- 4.2. Окисление кислородом в присутствии катализатора
- 4.3. Жесткое окисление
- 4.4. Горение спиртов
- 5. Дегидрирование этанола
- Получение этанола
- 1. Щелочной гидролиз галогеналканов
- 2. Гидратация алкенов
- 3. Гидрирование карбонильных соединений
- 4. Получение этанола спиртовым брожением глюкозы
- Этиловый спирт и растительное масло уравнение реакции
- 🎦 Видео
Видео:Получение этилена из этилового спиртаСкачать
Этанол: химические свойства и получение
Этанол C2H5OH или CH3CH2OH, этиловый спирт – это органическое вещество, предельный одноатомный спирт .
Общая формула предельных нециклических одноатомных спиртов: CnH2n+2O.
Видео:Несколько лайфхаков со спиртом. Химия – просто.Скачать
Строение этанола
В молекулах спиртов, помимо связей С–С и С–Н, присутствуют ковалентные полярные химические связи О–Н и С–О.
Электроотрицательность кислорода (ЭО = 3,5) больше электроотрицательности водорода (ЭО = 2,1) и углерода (ЭО = 2,4). |
Электронная плотность обеих связей смещена к более электроотрицательному атому кислорода:
Атом кислорода в спиртах находится в состоянии sp 3 -гибридизации. |
В образовании химических связей с атомами C и H участвуют две 2sp 3 -гибридные орбитали, а еще две 2sp 3 -гибридные орбитали заняты неподеленными электронными парами атома кислорода.
Поэтому валентный угол C–О–H близок к тетраэдрическому и составляет почти 108 о .
Водородные связи и физические свойства спиртов
Спирты образуют межмолекулярные водородные связи. Водородные связи вызывают притяжение и ассоциацию молекул спиртов:
Поэтому этанол – жидкость с относительно высокой температурой кипения (температура кипения этанола +78 о С).
Водородные связи образуются не только между молекулами спиртов, но и между молекулами спиртов и воды. Поэтому спирты очень хорошо растворимы в воде. Молекулы спиртов в воде гидратируются:
Чем больше углеводородный радикал, тем меньше растворимость спирта в воде. Чем больше ОН-групп в спирте, тем больше растворимость в воде. |
Этанол смешивается с водой в любых соотношениях.
Видео:РЕАКЦИЯ ЭТЕРИФИКАЦИИСкачать
Изомерия спиртов
Видео:Можно ли отличить опасный для здоровья метанол от этилового спиртаСкачать
Структурная изомерия
Для этанола характерна структурная изомерия – межклассовая изомерия.
Межклассовые изомеры — это вещества разных классов с различным строением, но одинаковым составом. Спирты являются межклассовыми изомерами с простыми эфирами. Общая формула и спиртов, и простых эфиров — CnH2n+2О.
Например. Межклассовые изомеры с общей формулой С2Н6О этиловый спирт СН3–CH2–OH и диметиловый эфир CH3–O–CH3 |
Этиловый спирт | Диметиловый эфир |
СН3–CH2–OH | CH3–O–CH3 |
Видео:Процесс проведения исследований жирно-кислотного состава смеси растительных маселСкачать
Химические свойства этанола
Спирты – органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.
1. Кислотные свойства
Спирты – неэлектролиты, в водном растворе не диссоциируют на ионы; кислотные свойства у них выражены слабее, чем у воды. |
1.1. Взаимодействие с раствором щелочей
При взаимодействии этанола с растворами щелочей реакция практически не идет, т. к. образующийся алкоголят почти полностью гидролизуется водой.
Равновесие в этой реакции так сильно сдвинуто влево, что прямая реакция не идет. Поэтому этанол не взаимодействуют с растворами щелочей.
1.2. Взаимодействие с металлами (щелочными и щелочноземельными)
Этанол взаимодействует с активными металлами (щелочными и щелочноземельными).
Например, этанол взаимодействует с калием с образованием этилата калия и водорода . |
Алкоголяты под действием воды полностью гидролизуются с выделением спирта и гидроксида металла.
Например, этилат калия разлагается водой: |
Видео:65. Что такое реакция гидратации и реакция дегидратацииСкачать
2. Реакции замещения группы ОН
2.1. Взаимодействие с галогеноводородами
При взаимодействии спиртов с галогеноводородами группа ОН замещается на галоген и образуется галогеналкан.
Например, этанол реагирует с бромоводородом. |
2.2. Взаимодействие с аммиаком
Гидроксогруппу спиртов можно заместить на аминогруппу при нагревании спирта с аммиаком на катализаторе.
Например, при взаимодействии этанола с аммиаком образуется этиламин. |
2.3. Этерификация (образование сложных эфиров)
Одноатомные и многоатомные спирты вступают в реакции с карбоновыми кислотами, образуя сложные эфиры.
Например, этанол реагирует с уксусной кислотой с образованием этилацетата (этилового эфира уксусной кислоты): |
2.4. Взаимодействие с кислотами-гидроксидами
Спирты взаимодействуют и с неорганическими кислотами, например, азотной или серной.
Например, при взаимодействии этанола с азотной кислотой образуется сложный эфир этилнитрат : |
Видео:7.3. Спирты: Способы получения. ЕГЭ по химииСкачать
Видео:7.1. Спирты: Номенклатура, классификация, изомерия. ЕГЭ по химииСкачать
3. Реакции замещения группы ОН
В присутствии концентрированной серной кислоты от спиртов отщепляется вода. Процесс дегидратации протекает по двум возможным направлениям: внутримолекулярная дегидратация и межмолекулярная дегидратация.
3.1. Внутримолекулярная дегидратация
При высокой температуре (больше 140 о С) происходит внутримолекулярная дегидратация и образуется соответствующий алкен.
Например, из этанола под действием концентрированной серной кислоты при температуре выше 140 градусов образуется этилен: |
Видео:Определение перекисного числа в растительном масле, этап добавления крахмалаСкачать
В качестве катализатора этой реакции также используют оксид алюминия.
3.2. Межмолекулярная дегидратация
При низкой температуре (меньше 140 о С) происходит межмолекулярная дегидратация по механизму нуклеофильного замещения: ОН-группа в одной молекуле спирта замещается на группу OR другой молекулы. Продуктом реакции является простой эфир.
Например, при дегидратации этанола при температуре до 140 о С образуется диэтиловый эфир: |
Видео:Как получить этиловый спирт?Скачать
4. Окисление этанола
Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).
В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.
При окислении первичных спиртов они последовательно превращаются сначала в альдегиды, а потом в карбоновые кислоты. Глубина окисления зависит от окислителя. Первичный спирт → альдегид → карбоновая кислота |
Типичные окислители — оксид меди (II), перманганат калия KMnO4, K2Cr2O7, кислород в присутствии катализатора.
4.1. Окисление оксидом меди (II)
Cпирты можно окислить оксидом меди (II) при нагревании. При этом медь восстанавливается до простого вещества.
Например, этанол окисляется оксидом меди до уксусного альдегида |
4.2. Окисление кислородом в присутствии катализатора
Cпирты можно окислить кислородом в присутствии катализатора (медь, оксид хрома (III) и др.).
4.3. Жесткое окисление
При жестком окислении под действием перманганатов или соединений хрома (VI) первичные спирты окисляются до карбоновых кислот.
Например, при взаимодействии этанола с перманганатом калия в серной кислоте образуется уксусная кислота |
4.4. Горение спиртов
Образуются углекислый газ и вода и выделяется большое количество теплоты.
Например, уравнение сгорания этанола: |
Видео:Реакция НИТРАТА РТУТИ и ЭТИЛОВОГО СПИРТА. ФУЛЬМИНАТ РТУТИ. Опыты по химии. Домашние экспериментыСкачать
5. Дегидрирование этанола
При нагревании спиртов в присутствии медного катализатора протекает реакция дегидрирования.
Например, при дегидрировании этанола образуется этаналь |
Видео:Органика. Механизм реакции этерификации (карбоновая кислота + спирт)Скачать
Получение этанола
Видео:25. Схема реакции и химическое уравнениеСкачать
1. Щелочной гидролиз галогеналканов
При взаимодействии галогеналканов с водным раствором щелочей образуются спирты. Атом галогена в галогеналкане замещается на гидроксогруппу.
Например, при нагревании хлорэтана с водным раствором гидроксида натрия образуется этанол |
Видео:Абсолютный спирт. Химия – ПростоСкачать
2. Гидратация алкенов
Гидратация (присоединение воды) алкенов протекает в присутствии минеральных кислот. При присоединении воды к алкенам образуются спирты.
Например, при взаимодействии этилена с водой образуется этиловый спирт. |
Видео:Как отличить этиловый спирт от метиловогоСкачать
3. Гидрирование карбонильных соединений
Присоединение водорода к альдегидам и кетонам протекает при нагревании в присутствии катализатора. При гидрировании альдегидов образуются первичные спирты, при гидрировании кетонов — вторичные спирты, а из формальдегида образуется метанол.
Например, при гидрировании этаналя образуется этанол |
Видео:Растворение веществ в разных растворителях. Химический опытСкачать
Видео:В чём различие этилового и метилового спирта?Скачать
4. Получение этанола спиртовым брожением глюкозы
Для глюкозы характерно ферментативное брожение, то есть распад молекул на части под действием ферментов. Один из вариантов — спиртовое брожение.
Видео:Испытания соуса на основе растительного масла Определение перекисного числа.Скачать
Этиловый спирт и растительное масло уравнение реакции
При растворимости жидкостей в жидкостях они тем легче смешиваются друг с другом, чем ближе по величине силы взаимодействия молекул в жидкостях. Силу молекулярного взаимодействия приближенно можно охарактеризовать диэлектрической проницаемостью (ε), которая определяет полярность молекул.
Растительные масла – вещества с небольшой полярностью. Для большинства масел диэлектрическая проницаемость при комнатной температуре равна 3,0. 3,2, кроме касторового масла, для которого ε=4,6. 4,7. Этот факт объясняется присутствием большого количества в его триглицеридах остатков рицинолевой кислоты, содержащей полярную гидроксильную группу.
Все растительные масла хорошо растворяются в неполярных гидрофобных растворителях с близкой диэлектрической проницаемостью. К таким растворителям относятся гексан, бензин, бензол, дихлорэтан и некоторые другие.
С ростом разницы значений диэлектрических проницаемостей растворителя и масла их взаимная растворимость ухудшается. Ацетон в этом ряду занимает крайнее положение, его ε = 21,5 (20 о С). Он растворяет масло в любых пропорциях и в то же время смешивается с водой.
Спирты: этиловый, метиловый и изопропиловый ограниченно смешиваются с маслом при комнатной температуре, при нагревании его растворимость повышается. Растворимость масла в спиртах повышается также при увеличении молекулярной массы последних. Это связано с тем, что растворимость жиров в спиртах обусловлена образованием водородных связей гидроксила спиртов с карбоксилом кислот и силами межмолекулярного притяжения между углеводородными радикалами кислот и спиртов.
Растворимость масел в воде ничтожно мала, так как вода является полярной жидкостью (для воды ε = 81).
Обращает на себя внимание растворимость воды в растворителях, так как этот факт имеет практическое значение:
- есть определенная опасность нарушения процесса экстракции из-за того, что растворитель мокрый;
- в ходе вспомогательных операций растворитель часто соприкасается с водой, что также может вызвать его потери.
Зависимость между полярностью растворителей и растворимостью в них масла (кроме касторового) и воды представлена в виде схемы (рис.28).
Касторовое масло при комнатной температуре плохо растворяется в бензине, гексане, при нагревании растворимость повышается и может достигнуть полного смешения в любых соотношениях. При комнатной температуре касторовое масло хорошо растворяется в абсолютном этаноле и метаноле.
Рис. 28. Растворимость растительных масел и воды в растворителях разной полярности
В целом, можно отметить следующие группы растворителей:
- неполярные непротонные растворители, которые характеризуются низкими значениями диэлектрической постоянной ε 15 и большим дипольным моментом μ > 2,5 дебай. Это соединения серы и кислорода, нитраты, кетоны, нитроуглероды;
- протонные растворители, которые имеют группы атомов, заряженных отрицательно, и связаны с водородным атомом: вода, алкоголи, карбоновые кислоты, кислотные амиды.
Природу растворов масел в органических растворителях можно рассматривать как близкую к молекулярной, т.к. абсолютное большинство свойств, которые проявляют мисцеллы, присуще растворам:
- размеры частиц: несмотря на то, что молекулы триглицеридов имеют большие размеры, они меньше размеров, характерных для коллоидных частиц; — агрегативная устойчивость: растворы масел в органических растворителях не способны легко изменять агрегативную устойчивость (коагулировать, например, как коллоиды);
- величина коэффициента диффузии: коэффициент молекулярной диффузии важнейших растительных масел в бензине значительно выше, чем коэффициент диффузии для коллоидных растворов.
Единственным свойством, которое можно отнести к показателям коллоидного состояния, является структурная вязкость. Она обнаружена при вискозиметрических исследованиях растворов некоторых масел в бензоле и ацетоне. Эта структура подвижная, легко разрушается, но отражается на физических свойствах растворов, вызывает отклонение от закона Гагена-Пуазейля о прямолинейной зависимости между давлением и скоростью истечения. Причиной структурной вязкости могут быть вещества, перешедшие при экстракции в раствор вместе с жирами, например, фосфатиды. В этом случае раствор становится дисперсионной средой для коллоидных частиц сопутствующих веществ.
Таким образом, растворы масла в органических растворителях по своим свойствам несколько отличаются от идеальных растворов и не могут в точности подчиняться закону Рауля. Отклонения от данного закона зависят от вида растворителя, температуры, от концентрации мисцеллы и других факторов.
🎦 Видео
МИФ: Омегу можно добирать из РАСТИТЕЛЬНОГО МАСЛА #shortsСкачать
Проведение Испытания | Определение Перекисного Числа | Растительное маслоСкачать