Если в уравнение любое из слагаемых перенести из одной части другую при этом

Как репетитор по математике борется с ошибками переноса слагаемых

М не очень часто доводилось исправлять ученические ошибки, казалось бы не поддающихся какому-либо разумному объяснению и анализу. Опытному репетитору по математике хорошо знакомы ситуации, когда дети совершают промахи в казалось бы, в совершенно простых ситуациях. «Как тут можно ошибиться», — спросит начинающий репетитор? Кажется, что выполнить задание правильно куда проще, чем вносить какие-то необъяснимые и нелогичные изменения в записанное.

Профессия «репетитор по математике» — очень сложное ремесло, однако это не должно пугать или оправдывать неудачи. Хороший репетитор находиться в постоянном поиске причин появления ошибок, пробует новые и совершенствует испытанные подходы к их устранению. Как минимизировать частоту появления ошибок?

Рассмотрим типичную проблему при работе репетитора по математике в 6 классе с очень слабым учеником: при решении линейного уравнения школьник хронически ошибается в переносах слагаемых из одной части равенства в другую. Причем страдают не только плюсы с минусами. Пропадают числа, буквы и даже знаки «равно». Ох, чего только я не насмотрелся в ученических тетрадях.

Сами же школьники сетуют на невнимательность, что конечно имеет место быть, но невнимательность часто является следствием появления каких-либо визуальных, звуковых, логических или физических помех при работе.

Как репетитору по математике в 6 классе бороться с ними внутри данной темы? И откуда приходят помехи? Как правило слабый ученик имеет довольно низкие физиологические показатели фиксации внимания на сложном для 6 класса графическом объекте, коим, как это ни странно звучит, является уравнение. В сочетании с параллельно производимой операцией вынужденного переписывания равенства с одновременной его трансформацией, ребенку просто не хватает ресурса контроля за производимыми действиями. Как поступить репетитору по математике в подобной ситуации? Отказаться в 6 классе от переписывания? Я решаю проблему так:

Репетитор по математике на карточках

На какой-то период задания должны быть свободны от письма. К нескольким уравнениям, включенным в планы урока, репетитором составляются специальные карточки с изображенными на них слагаемыми. Из них складывается левая и правая часть уравнения и выкладывается перед учеником на стол. На обороте каждой карточки репетитора по математике Если в уравнение любое из слагаемых перенести из одной части другую при этомдублируются эти же слагаемые, но с другими знаками. К примеру, если ребенку нужно перенести 5х из правой части в левую он переносит 5х через знак «=» и переворачивает ее обратной стороной вверх. Получается «- 5х» Такой ход выполнения задания освобождает ребенка от переписывания объекта (уравнения) и позволяет собрать внимание на одной единственной операции, то есть на самом переносе.

Безусловно, репетитору по математике не следует увлекаться карточными играми, ибо все равно нужно вырабатывать умение выполнять действия в процессе письма. Однако на первых порах методика «конструктора ЛЕГО» проявляет большую эффективность, ибо позволяет собрать внимание ученика на главном содержании изучаемой темы. От этого перенос быстрее и лучше запоминается. После того, как ученик проявит уверенность в ответах, репетитор по математике сможет приступить к отработке оформления.

А.Н. Колпаков. Автор подхода — репетитор по математике в Строгино. Москва

Видео:Вся суть уравнений за 1 секунду. Хватит путать знаки в уравнениях!Скачать

Вся суть уравнений за 1 секунду. Хватит путать знаки в уравнениях!

Линейные уравнения. Решение линейных уравнений. Правило переноса слагаемого.

Правило переноса слагаемого.

При решении и преобразовании уравнений зачастую возникает необходимость переноса слагаемого на другую сторону уравнения. Заметим, что слагаемое может иметь как знак «плюс», так и знак «минус». Согласно правилу, перенося слагаемое в другую часть уравнения, нужно изменить знак на противоположный. Кроме того, правило работает и для неравенств.

Примеры переноса слагаемого:

Сначала переносим 5x из левой части уравнения в правую:

Далее переносим (−6) из правой части в левую:

Обратите внимание, что знак «+» изменился на «-», а знак «-» на «+». При этом не имеет значения, переносимое слагаемое число или переменная, либо выражение.

Переносим 1-е слагаемое в правую сторону уравнения. Получаем:

Обратите внимание, что в нашем примере слагаемое — это выражение (−3x 2 (2+7x)). Поэтому нельзя отдельно переносить (−3x 2 ) и (2+7x), так как это составляющие слагаемого. Именно поэтому не переносят (−3x 2 2) и (7x). Однако мы модем раскрыть скобки и получить 2 слагаемых: (−3x‑2) и (−3×27x). Эти 2 слагаемых можно переносить отдельно друг от друга.

Таким же образом преобразовывают неравенства:

Собираем каждое число с одной стороны. Получаем:

2-е части уравнения по определению одинаковы, поэтому можем вычитать из обеих частей уравнения одинаковые выражения, и равенство будет оставаться верным. Вычитать нужно выражение, которое в итоге нужно перенести в другую сторону. Тогда по одну сторону знака «=» оно сократится с тем, что было. А по другую сторону равенства выражение, которое мы вычли, появится со знаком «-».

Это правило зачастую используется для решения линейных уравнений. Для решения систем линейных уравнений используются другие методы.

Видео:Решение уравнений. Как переносить слагаемые из одной части уравнения в другую. Математика 6 классСкачать

Решение уравнений. Как переносить слагаемые из одной части уравнения в другую. Математика 6 класс

Перенос одной части уравнения в другую правила

Видео:Виды уравнений. Свойства уравнений. Перенос слагаемых из одной части уравнения в другую. Алгебра 7.Скачать

Виды уравнений. Свойства уравнений. Перенос слагаемых из одной части уравнения в другую. Алгебра 7.

Основные приемы решения уравнений.

1. Перенос слагаемых из одной части уравнения в другую.

Переход от уравнения

f(x) = g(x) + m(x) (1)
к уравнению

f(x) — m(x) = g(x) (2)
называют переносом слагаемых из одной части уравнения в другую.

Перенос слагаемых из одной части уравнения в другую — это преобразование уравнения всегда приводит к равносильному уравнению, т. е., каковы бы ни были функции f(х), m(х), g(x), мы имеем (1)Если в уравнение любое из слагаемых перенести из одной части другую при этом(2).

В самом деле, пусть a — корень уравнения (1), т. е. соотношение

f(a) + m(a) = g(a) = g(a) + m(a) (3)
представляет собой верное числовое равенство. Это означает, что ринадлежит области определения каждой из функций f Если в уравнение любое из слагаемых перенести из одной части другую при этом. слагаемого — х и — 2 получается равносильное уравнение х 4 = х 2 .

Пример 2.
x 2 + lgx = x + lgx Если в уравнение любое из слагаемых перенести из одной части другую при этомх 2 = х. Уравнение x 2 = х имеет корня х1 = 1, х2 = 0, тогда как уравнение x 2 + lgx = x + lgx имеет единственный корень х = 1 (число х = 0 не является корнем уравнения x 2 + lgx = x + lgx, так при х = 0 левая и правая части этого уравнения не определены). Таким образом, уравнение х 2 = х не равносильно уравнению х 2 + lgx = x + lgx, а лишь является следствием этого уравнения. Появление постороннего корня х = 0 при переходе от уравнения x 2 + lgx = x + lgx к уравнению х 2 = х связано с тем, что при этом переходе расширяются множества на которых были определены функции, стоящие в левой и правой частях первого уравнения: в уравнении x 2 + lgx = x + lgx левая и правая части определены при х > 0, а в уравнении х 2 = х,при всех х. Очевидно, обратный переход, т. е. переход от уравнения х 2 = х к уравнению х 2 + lg х = х + lgx вообще недопустим, так как этот переход ведет к потере корня х = 0.

Обозначим через М множество, на котором определены функции f(х) и g(x), стоящие в левой и правой частях уравнения f(x) = g(x) (т.е. пересечение областей определения функций f (х) и g(x). Тогда, если множество М содержится в области определения функции m(х), то уравнение f(x) + m(x) — m(x) = g(x) равносильно уравнению f(x) =g(x). При этих условиях f(x) + m(x) = g(x) + m(x)Если в уравнение любое из слагаемых перенести из одной части другую при этомf(x) = g(x).

3. Умножение обеих частей уравнения на одно и то же выражение.

Переход от уравнения

f(x) = g(x) (8)
к уравнению

f(x)Если в уравнение любое из слагаемых перенести из одной части другую при этомp(x) = g(x)Если в уравнение любое из слагаемых перенести из одной части другую при этомp(x). (9)
называют умножением обеих частей уравнения на одно и тоже выражение.

По поводу этого перехода можно высказать следующие утверждения:

1) Если в каждой точке, где определены обе функции f(x), g(x) определена также и функция p(x) (иначе говоря, Если в каждой точке, где определены обе функции f(x), g(x) определена также и функция p(x)), то уравнение (9) является следствием уравнения (8) или (8)Если в уравнение любое из слагаемых перенести из одной части другую при этом(9)

2) Если в каждой точке, где определены обе функции f(x), g(x) определена также и функция p(x) и в каждой точке указанного множества функция p(x) отлична от нуля, то уравнения (8) и (9) равносильны, т. е. (8)Если в уравнение любое из слагаемых перенести из одной части другую при этом(9).

Заметим, что в общем случае переход от уравнения (9) к уравнению (8) может привести как к появлению посторонних корней, так и к потере корней.

Рассмотрим уравнение x 2 — x = 0. Умножив обе части этого уравнения наЕсли в уравнение любое из слагаемых перенести из одной части другую при этом, мы получим уравнениеЕсли в уравнение любое из слагаемых перенести из одной части другую при этом= 0, которое не является следствием исходного. В самом деле, исходное уравнение имеет корни х1 = 0, х2 = 1, а уравнениеЕсли в уравнение любое из слагаемых перенести из одной части другую при этом= 0 — лишь корень х = 1. Потеря корня связана с тем, что функция — не определена при. х = 0, а как раз это значение х является корнем заданного уравнения.

Такой переход применяется довольно часто при решении уравнений. Естественно, возникает вопрос: можно ли утверждать, что уравнение (*) равносильно дизъюнкции уравнений (**)

Иными словами, можно ли получить «множество всех корней уравнения (*), решив все уравнения (**) и объединив их корни? Ответ на этот вопрос дает следующая теорема.

Эта теорема лежит в основе часто применяемого метода разложения уравнения на множители.

Пример 4. x 6 + 3x 5 — x 4 — 3x 3 = 0,

x 3 (x 3 + 3x 2 — x — 3) =0,

x 3 ((x 3 + 3x 2 ) — (x + 3)) =0,

x 3 (x 2 (x + 3) — (x + 3)) =0,

x 3 (x + 3)(x 2 — 1) =0,

x 3 (x + 3)(x — 1)(x + 1) =0.

Уравнение x 6 +3x 5 — x 4 — 3x 3 = 0 равносильно дизъюнкции уравнений x 3 = 0, x + 3 =0, x + 1 = 0, x — 1 = 0 и имеет следующие корни:

Следующий пример показывает, что в общем случае уравнение (*) не равносильно дизъюнкции уравнений (**).

Пример 5. Пусть f1(х) = х 2 — 1, f2(х) =Если в уравнение любое из слагаемых перенести из одной части другую при этом. Тогда уравнение f2(х) = 0 не имеет корней, уравнение f1(х) = 0 имеет два корня х1 = 1, х2 = — 1, а уравнение f1(х) f2(х) = 0 имеет только один корень х1 = -1, так как при х = 1 левая часть этого уравнения не определена.

Теорема 2. Каждый корень уравнения f1(x)·f2(x)·. ·fn(x) = 0 является корнем одного из уравнений f1(x) = 0, f2(x) = 0. fn(x) = 0.

Иначе говоря, дизъюнкция уравнений (**) есть следствие уравнения (*). Из этой теоремы вытекает, что если мы найдем все корни уравнений (**), то среди этих корней будут содержаться все корни уравнения (*) и, быть может, некоторые числа, не являющиеся корнями уравнения (*). Посторонними для уравнения (*) будут те значения х, полученные при решении уравнений (**), для которых хотя бы одна из функций f1(х), f2(x), . fn(x) не определена.

3 а м е ч а н и е. Выше было отмечено, что переход от уравнения
f(x)p(x) = g(x)p(x) к уравнению f(x) = g(x) в общем случае недопустим.

При решении уравнения обычно поступают так. Вместо уравнения
f(x)p(x) = g(x)p(x) рассматривают уравнение (f(x)-g(x))p(x)=0, которое эквивалентно исходному уравнению, т. е. уравнению f(x)p(x) = g(x)p(x).

В свою очередь дизъюнкция уравнений f(x) — g(x) = 0, p(x) = 0 является следствием уравнения (f(x) — g(x))p(x) = 0. Таким образом, если мы решим уравнения f(x) — g(x) = 0, p(x) = 0, а звтем объединим их корни, и проверкой (подстановкой в уравнение (f(x)p(x) = g(x)p(x) отсеем лишние корни, то тем самым мы найдем все корни искомого уравнения.

Пример 6. sinx·ctg2x·arcsin(x — 1)·lg(x — 1) = 0.

Решая каждое уравнение в отдельности, имеем следующее:

sinx = 0, корни этого уравнения x =Если в уравнение любое из слагаемых перенести из одной части другую при этомk, где kЕсли в уравнение любое из слагаемых перенести из одной части другую при этомZ;

ctg2x = 0, корни этого уравнения: x =Если в уравнение любое из слагаемых перенести из одной части другую при этом+Если в уравнение любое из слагаемых перенести из одной части другую при этомpn, где nЕсли в уравнение любое из слагаемых перенести из одной части другую при этомZ;

arcsin(x — 1) = 0, корни этого уравнения: x = 1;

lg(x — 1) = 0, корни этого уравнения: x = 2

Те из этих корней, которые принадлежат области определения левой части исходного уравнения, являются корнями исходного урапвнения.

Запишем области определения функций:

M1 = D(sinx) = (-Если в уравнение любое из слагаемых перенести из одной части другую при этом; +Если в уравнение любое из слагаемых перенести из одной части другую при этом),

M2 = D(ctg2x) = (-Если в уравнение любое из слагаемых перенести из одной части другую при этом; +Если в уравнение любое из слагаемых перенести из одной части другую при этом), xЕсли в уравнение любое из слагаемых перенести из одной части другую при этомЕсли в уравнение любое из слагаемых перенести из одной части другую при этом+Если в уравнение любое из слагаемых перенести из одной части другую при этомm, mЕсли в уравнение любое из слагаемых перенести из одной части другую при этомZ,

M4 = D(lg(x — 1)) = (1; +Если в уравнение любое из слагаемых перенести из одной части другую при этом).

Область определения M левой части исходного уравнения является пересечение множеств M1, M2, M3, M4.
M = (1; Если в уравнение любое из слагаемых перенести из одной части другую при этом)Если в уравнение любое из слагаемых перенести из одной части другую при этом(Если в уравнение любое из слагаемых перенести из одной части другую при этом; 2]. Из всех найденных корней множеству М, т. е. области определения левой части исходного уравнения, принадлежит корень 2. Корнем исходного уравнения является число 2.

5. Переход от уравнения f(x)= g(x) к уравнению [f(х)] n = [g(х)] n . Такой переход нередко используется при решении уравнений, особенно при решении иррациональных уравнений.

Пусть функции f(х) и g(x) определены на множестве М (т. е. множество М содержится в области определения каждой из функций f(x), g(x)) и n — произвольное натуральное число. Будем предполагать, что М — некоторое множество действительных чисел и что на этом множестве функции f (х) и g(x) принимают действительные значения. Мы можем утверждать следующее:

В общем случае переход от уравнения [f(x>] n = [g(x)] n к уравнению f(x) = g(x) не допустим, так как такой переход может привести к потере корней.

Пример 7. Решите уравнениеЕсли в уравнение любое из слагаемых перенести из одной части другую при этом= x + 1.

Решение. Возводя обе части уравнения в квадрат, получим уравнение

2x 2 + 5x — 3 = x 2 + 2x + 1, являющееся следствием уравнения. Полученное уравнение равносильно уравнению х 2 + 3х — 4 = 0, корнями которого являются числа х1 = -4, х2 = 1. Проверка показывает, что корень x1 = — 4 является посторонним для уравнения исходного иррационального уравнения, а корень х2= 1 удовлетворяет уравнению обоим уравнениям. Таким образом, уравнение исходное заданное уравнение имеет единственный корень х = 1.

Более общим, чем рассмотренный в пятом примере, является переход от уравнения f(x) = g(x) к уравнению m(f(x)) = m(g(x)), где m(t) — некоторая заданная функция. Заметим сразу, что в общем случае такой переход недопустим. В самом деле, пусть Е1 и Е2,—множества значений соответственно функций f(x) и g(x) и Е — общая часть (т. е. пересечение) множеств E1 и Е2. Если функция m(t) не определена на множестве Е, то уравнение m(f(x)) = m(g(x))не имеет решений, в то время как исходное уравнение могло иметь решения. Если же множество Е содержится в области определения функции m(t), то, как легко доказать, f(x) = g(x)Если в уравнение любое из слагаемых перенести из одной части другую при этомm(f(x)) = m(g(x)). Если же, кроме того, функция m(t) монотонна, то f(x) = g(x) Если в уравнение любое из слагаемых перенести из одной части другую при этомm(f(x) = m(g(x)).

Видео:Решение уравнений. Перенос слагаемых. Часть 2. Математика 6 классСкачать

Решение уравнений. Перенос слагаемых. Часть 2. Математика 6 класс

Уравнения с двумя переменными

Равенства, содержащие две переменные, называют уравнениями с двумя переменными. Если при изучении уравнений с одной переменной говорят о их корнях, то, имея уравнение с двумя переменными, говорят о парах чисел — его решениях.

Пару значений переменных, обращающую уравнение в верное равенство, называют решением уравнения с двумя переменными.

Факт того, что пара чисел Если в уравнение любое из слагаемых перенести из одной части другую при этом, Если в уравнение любое из слагаемых перенести из одной части другую при этомявляется решением уравнения, условились записывать так: Если в уравнение любое из слагаемых перенести из одной части другую при этомявляется решением уравнения. При такой записи на первом месте обязательно ставят значение той переменной, которая по алфавиту идет первой, в нашем случае это значение переменной Если в уравнение любое из слагаемых перенести из одной части другую при этом. При этом уравнение с двумя переменными может иметь как бесконечно много решений, так и не иметь не одного.

Решить уравнение с двумя переменными — это значит найти все его решения или показать, что оно не имеет решений.

Свойства уравнений с двумя переменными:

  • Если к обеим частям данного уравнения прибавить (или из обеих их частей вычесть) одно и то же число, то получим уравнение, имеющее те же решения, что и данное.
  • Если какое-либо слагаемое перенести из одной части уравнения в другую, изменив при этом его знак на противоположный, то получим уравнение, имеющее те же решения, что и данное.
  • Если обе части уравнения умножить (разделить) на одно и то же отличное от нуля число, то получим уравнение, имеющее те же решения, что и данное.

Как говорилось выше решением уравнения с двумя переменными является пара чисел, например Если в уравнение любое из слагаемых перенести из одной части другую при этом, то мы можем изобразить это решение в виде точки М Если в уравнение любое из слагаемых перенести из одной части другую при этомна координатной плоскости. Если мы изобразим все решения уравнения, то получим график уравнения.

Графиком уравнения с двумя переменными называют геометрическую фигуру, состоящую из всех тех, и только тех точек координатной плоскости, координаты которых (пары чисел) являются решениями данного уравнения.

Если какая-то фигура является графиком уравнения, то выполняются два условия:

  1. все решения уравнения являются координатами точек, принадлежащих графику;
  2. координаты любой точки, принадлежащей графику, — это пара чисел, которая является решением данного уравнения.

Поделись с друзьями в социальных сетях:

🎥 Видео

Решение уравнений. Часть 2. 6 класс.Скачать

Решение уравнений. Часть 2. 6 класс.

Решение уравнений, 6 классСкачать

Решение уравнений, 6 класс

Решение уравнений ( подобные слагаемые ) . 6 класс .Скачать

Решение уравнений ( подобные слагаемые ) . 6 класс .

Решение уравнений. Перенос слагаемых. Часть 1. Математика 6 классСкачать

Решение уравнений. Перенос слагаемых. Часть 1. Математика 6 класс

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэ

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

Линейное уравнение и его разновидности. Алгебра 7 класс.Скачать

Линейное уравнение и его разновидности. Алгебра 7 класс.

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Решение уравненийСкачать

Решение уравнений

Решение линейного уравненияСкачать

Решение линейного уравнения

Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

Как решать уравнения? уравнение 7 класс. Линейное уравнение

Как решают уравнения в России и СШАСкачать

Как решают уравнения в России и США

Равносильные уравненияСкачать

Равносильные уравнения

Линейное уравнение с одним неизвестным.Скачать

Линейное уравнение с одним неизвестным.

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСС
Поделиться или сохранить к себе: