Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Видео:ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

Метод Крамера решения систем линейных уравнений

Видео:6 способов в одном видеоСкачать

6 способов в одном видео

Формулы Крамера

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение. Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то(дельта).

Определители Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то;

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то.

Формулы Крамера для нахождения неизвестных:

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то.

Найти значения Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные тои Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные товозможно только при условии, если

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то.

Этот вывод следует из следующей теоремы.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

Пример 1. Решить систему линейных уравнений:

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то. (2)

Согласно теореме Крамера имеем:

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Итак, решение системы (2):
Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Видео:Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

Три случая при решении систем линейных уравнений

Как явствует из теоремы Крамера, при решении системы линейных уравнений могут встретиться три случая:

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

* Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

* Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то,

** Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Третий случай: система линейных уравнений решений не имеет

* Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

** Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то.

Итак, система m линейных уравнений с n переменными называется несовместной, если у неё нет ни одного решения, и совместной, если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой, а более одного – неопределённой.

Видео:Решение системы уравнений методом Крамера 2x2Скачать

Решение системы уравнений методом Крамера 2x2

Примеры решения систем линейных уравнений методом Крамера

Пусть дана система

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то.

На основании теоремы Крамера
Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то
………….
Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то,

где
Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Пример 2. Решить систему линейных уравнений методом Крамера:

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то.

Решение. Находим определитель системы:

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

По формулам Крамера находим:
Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3. Решить систему линейных уравнений методом Крамера:

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то.

Решение. Находим определитель системы:

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

По формулам Крамера находим:

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Итак, решение системы — (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Видео:Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Применить метод Крамера самостоятельно, а затем посмотреть решения

Пример 4. Решить систему линейных уравнений:

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то.

Пример 5. Решить систему линейных уравнений методом Крамера:

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то.

Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

К началу страницы

Видео:СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать

СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэ

Пройти тест по теме Системы линейных уравнений

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Продолжаем решать системы методом Крамера вместе

Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

Пример 6. Решить систему линейных уравнений методом Крамера:

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Решение. Находим определитель системы:

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных — буквы. За примерами далеко ходить не надо.

Пример 7. Решить систему линейных уравнений методом Крамера:

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Здесь a — некоторое вещественное число. Решение. Находим определитель системы:

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Находим определители при неизвестных

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

По формулам Крамера находим:

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то,

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то.

Следующий пример — на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

Пример 8. Решить систему линейных уравнений методом Крамера:

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Решение. Находим определитель системы:

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Находим определители при неизвестных

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

По формулам Крамера находим:

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то,

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то,

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то.

И, наконец, система четырёх уравнений с четырьмя неизвестными.

Пример 9. Решить систему линейных уравнений методом Крамера:

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то.

Внимание! Методы вычисления определителей четвёртого порядка здесь объясняться не будут. За этим — на соответствующий раздел сайта. Но небольшие комментарии будут. Решение. Находим определитель системы:

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Небольшой комментарий. В первоначальном определителе из элементов второй строки были вычтены элементы четвёртой строки, из элементов третьей строки — элементы четвёртой строки, умноженной на 2, из элементов четвёртой строки — элементы первой строки, умноженной на 2. Преобразования первоначальных определителей при трёх первых неизвестных произведены по такой же схеме. Находим определители при неизвестных

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Для преобразований определителя при четвёртом неизвестном из элементов первой строки были вычтены элементы четвёртой строки.

По формулам Крамера находим:

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то,

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то,

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то,

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то.

Итак, решение системы — (1; 1; -1; -1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Самые внимательные, наверное, заметили, что в статье не было примеров решения неопределённых систем линейных уравнений. А всё потому, что методом Крамера решить такие системы невозможно, можно лишь констатировать, что система неопределённа. Решения таких систем даёт метод Гаусса.

Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Дадим ряд необходимых определений.

Система линейных уравнений называется неоднородной, если хотя бы один ее свободный член отличен от нуля, и однородной, если все ее свободные члены равны нулю.

Решением системы уравнений называется упорядоченный набор чисел, который, будучи подставленным вместо переменных в систему, обращает каждое ее уравнение в тождество.

Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она решений не имеет.

Совместная система уравнений называется определенной, если она имеет единственное решение, и неопределенной, если она имеет более одного решения.

Рассмотрим неоднородную систему линейных алгебраических уравнений, имеющую при n = m следующий общий вид:

Главной матрицей A системы линейных алгебраических уравнений называется матрица, составленная из коэффициентов, стоящих при неизвестных:

Определитель главной матрицы системы называется главным определителем и обозначается ∆.

Вспомогательный определитель ∆ i получается из главного определителя путем замены i -го столбца на столбец свободных членов Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то .

Теорема 1.1 (теорема Крамера). Если главный определитель системы линейных алгебраических уравнений отличен от нуля, то система имеет единственное решение, вычисляемое по формулам:

Если главный определитель ∆=0, то система либо имеет бесконечное множество решений (при всех нулевых вспомогательных определителях), либо вообще решения не имеет (при отличии от нуля хотя бы одного из вспомогательных определителей). Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

В свете приведенных выше определений , теорема Крамера может быть сформулирована иначе: если главный определитель системы линейных алгебраических уравнений отличен от нуля, то система является совместной определенной и при этом Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то ; если главный определитель нулевой, то система является либо совместной неопределенной (при всех ∆ i = 0), либо несовместной (при отличии хотя бы одного из ∆ i от нуля).

После этого следует провести проверку полученного решения.

Пример 1.4. Решить систему методом Крамера

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Решение. Так как главный определитель системы

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

отличен от нуля, то система имеет единственное решение. Вычислим вспомогательные определители

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Воспользуемся формулами Крамера (1.6): Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Пример 1.5. Данные дневной выручки молочного цеха от реализации молока, сливочного масла и творога за три дня продаж (на 2017 год) занесены в таблицу 1.4.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Определить стоимость 1 единицы продукции молокоцеха каждого вида.

Решение. Обозначим через x – стоимость 1 литра молока, y – 1 кг сливочного масла, z – 1 кг творога. Тогда, учитывая данные таблицы 1.4, выручку молочного цеха каждого из трех дней реализации можно отобразить следующей системой:

Решим систему методом Крамера. Найдем главный определитель системы по формуле (1.2):

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Так как он отличен от нуля, то система имеет единственное решение. Вычислим вспомогательные определители с помощью формулы (1.2):

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

По формулам Крамера (1.6) имеем:

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Вернувшись к обозначениям, видим, что стоимость 1 литра молока равна 44 рубля, 1 кг масла – 540 рублей, 1 кг творога – 176 рублей Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Примечание. Как видно, процесс вычисления определителей вручную с помощью калькулятора трудоемок, поэтому на практике используют персональный компьютер. Так, для решения систем линейных алгебраических уравнений методом Крамера в MS Excel высчитывают ее главный и вспомогательные определители с использованием функции МОПРЕД( ), где аргументом является диапазон ячеек и элементы матрицы, определитель которой находится.

В MathCAD для нахождения определителя пользуются палитрой оператора Matrix Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют переменные то

Видео:Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

Метод Крамера для решения СЛАУ

В данной статье мы разберем, как найти неизвестные переменные по методу Крамера и опишем решение систем линейных уравнений.

Метод Крамера предназначен для того, чтобы решать системы линейных алгебраических уравнений (СЛАУ), в которых число неизвестных переменных равняется числу уравнений, а определитель основной матрицы не равен нулю.

Видео:Решение систем линейных алгебраических уравнений методом Крамера.Скачать

Решение систем линейных алгебраических уравнений  методом Крамера.

Метод Крамера — вывод формул

Найти решение системы линейных уравнений вида:

a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 ⋮ a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n

В этой системе x 1 , x 2 , . . . , x n — неизвестные переменные,

a i j , i = 1 , 2 , . . . , n ; j = 1 , 2 , . . . , n — числовые коэффициенты,

b 1 , b 2 , . . . , b n — свободные члены.

Решение такой системы линейных алгебраических уравнений — набор значений x 1 , x 2 , . . . , x n , при которых все уравнения системы становятся тождественными.

Матричный вид записи такой системы линейных уравнений:

A X = B , где A = a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n — основная матрица системы, в которой ее элементы — это коэффициенты при неизвестных переменных;

B = b 1 b 2 ⋮ b n — матрица-столбец свободных членов;

X = x 1 x 2 ⋮ x n — матрица-столбец неизвестных переменных.

После того как мы найдем неизвестные переменные x 1 , x 2 , . . . , x n , матрица X = x 1 x 2 ⋮ x n становится решением системы уравнений, а равенство A X = B обращается в тождество.

Метод Крамера основан на 2-х свойствах определителя матрицы:

  • Определитель квадратной матрицы A = a i j , i = 1 , 2 , . . . , n ; j = 1 , 2 , . . . , n равняется сумме произведений элементов какой-либо строки (столбца) на их алгебраические дополнения:

a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n = a p 1 × A p 1 + a p 2 × A p 2 + . . . + a p n × A p n = a 1 q × A 1 q + a 2 q × A 2 q + . . . + a n q × A n q

  • Сумма произведений какой-либо строки (столбца) квадратной матрицы на алгебраические дополнения соответствующие элементы другой матрицы равняется нулю:

a p 1 × A p 1 + a p 2 × A p 2 + . . . + a p n × A p n = 0 a 1 q × A 1 q + a 2 q × A 2 q + . . . + a n q × A n q = 0

p = 1 , 2 , . . . , n , q = 1 , 2 , . . . , n p не равно q

Приступаем к нахождению неизвестной переменной x 1 :

  • Умножаем обе части первого уравнения системы на А 11 , обе части второго уравнения на А 21 и т.д. Таким образом, мы умножаем уравнения системы на соответствующие алгебраические дополнения 1-го столбца матрицы А :

A 11 a 11 x 1 + A 11 a 12 x 2 + . . . + A 11 a 1 n x n = A 11 b 1 A 21 a 21 x 1 + A 21 a 22 x 2 + . . . + A 21 x 2 n x n = A 21 b 2 ⋯ A n 1 a n 1 x 1 + A n 1 a n 2 x 2 + . . . + A n 1 a n n x n = A n 1 b n

  • Складываем все левые части уравнения системы, сгруппировав слагаемые при неизвестных переменных , и приравниваем получившуюся сумму к сумме всех правых частей уравнения:

x 1 ( A 11 a 11 + A 21 a 21 + . . . + A n 1 a n 1 ) + + x 2 ( A 11 a 12 + A 21 a 22 + . . . + A n 1 a n 2 ) + + . . . + + x n ( A 11 a 1 n + A 21 a 2 n + . . . + A n 1 a n n ) = = A 11 b 1 + A 21 b 2 + . . . + A n 1 b n

Если воспользоваться свойствами определителя, то получится:

А 11 а 11 + А 21 а 21 + . . . + А n 1 a n 1 = А А 11 а 12 + А 21 а 22 + . . . + А n 1 а n 2 = 0 ⋮ A 11 a 1 n + A 21 a 2 n + . . . + A n 1 a n n = 0

A 11 b 1 + A 21 b 2 + . . . + A n 1 b n = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n

Предыдущее равенство будет иметь следующий вид:

x 1 A = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n .

x 1 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n A

Таким же образом находим все оставшиеся неизвестные переменные.

∆ = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n , ∆ x 1 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n ,

∆ x 2 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n , . ∆ x n = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n .

то получаются формулы для нахождения неизвестных переменных по методу Крамера:

x 1 = ∆ x 1 ∆ , x 2 = ∆ x 2 ∆ , . . . , x n = ∆ x n ∆ .

Видео:Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Алгоритм решения СЛАУ методом Крамера

  • Необходимо вычислить определитель матрицы системы и убедиться, что он не равен нулю.
  • Найти определители

∆ x 1 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n

∆ x 2 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n

∆ x n = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n

Эти определители являются определителями матриц, которые получены из матрицы А путем замены k -столбца на столбец свободных членов.

  • Вычислить неизвестные переменные при помощи формул:

x 1 = ∆ x 1 ∆ , x 2 = ∆ x 2 ∆ , . . . , x n = ∆ x n ∆ .

  • Выполнить проверку результатов: если все определители являются тождествами, то решение найдено верно.

Видео:Как решить уравнение #россия #сша #америка #уравненияСкачать

Как решить уравнение #россия #сша #америка #уравнения

Примеры решения СЛАУ методом Крамера

Найти решение неоднородной системы линейных уравнений методом Крамера:

3 x 1 — 2 x 2 = 5 6 2 x 1 + 3 x 2 = 2

Основная матрица представлена в виде 3 — 2 2 3 .

Мы можем вычислить ее определитель по формуле:

a 11 a 12 a 21 a 22 = a 11 × a 22 — a 12 × a 21 : ∆ = 3 — 2 2 3 = 3 × 3 — ( — 2 ) × 2 = 9 + 4 = 13

Записываем определители ∆ x 1 и ∆ x 2 . Заменяем 1-ый столбец основной матрицы на столбец свободных членов и получаем определитель ∆ x 1 = 5 6 — 2 2 3

По аналогии заменяем второй столбец основной матрицы на столбец свободных членов и получаем определитель:

Находим эти определители:

∆ x 1 = 5 6 — 2 2 3 = 5 6 × 3 — 2 ( — 2 ) = 5 2 + 4 = 13 2

∆ x 2 = 3 5 6 2 2 = 3 × 2 — 5 6 × 2 = 6 — 5 3 = 13 3

Находим неизвестные переменные по следующим формулам

x 1 = ∆ x 1 ∆ , x 2 = ∆ x 2 ∆

x 1 = ∆ x 1 ∆ = 13 2 13 = 1 2

x 2 = ∆ x 2 ∆ = 3 13 = 1 3

Выполняем проверку — подставляем полученные значения переменных в в исходную систему уравнений:

3 1 2 — 2 1 3 = 5 6 2 1 2 + 3 1 3 = 2 ⇔ 5 6 = 5 6 2 = 2

Оба уравнения превращаются в тождества, поэтому решение верное.

Ответ: x 1 = 1 2 , x 2 = 1 3

Поскольку некоторые элементы системы линейных уравнений могут равняться нулю, то в системе не будет соответствующих неизвестных переменных.

Найти решение 3-х нелинейных уравнений методом Крамера с 3-мя неизвестными:

2 y + x + z = — 1 — z — y + 3 x = — 1 — 2 x + 3 z + 2 y = 5

За основную матрицу нельзя брать 2 1 1 — 1 — 1 — 3 — 2 3 2 .

Необходимо привести к общему порядку все неизвестные переменные во всех уравнениях системы:

x + 2 y + z = — 1 3 x — y — z = — 1 — 2 x + 2 y + 3 z = 5

С этого момента основную матрицу хорошо видно:

1 2 1 3 — 1 — 1 — 2 2 3

Вычисляем ее определитель:

∆ = 1 2 1 3 — 1 — 1 — 2 2 3 = 1 × ( — 1 ) × 3 + 2 × ( — 1 ) ( — 2 ) + 1 × 2 × 3 — 1 ( — 1 ) ( — 2 ) — 2 × 3 × 3 — — 1 ( — 1 ) × 2 = — 11

Записываем определители и вычисляем их:

∆ x = — 1 2 1 — 1 — 1 — 1 5 2 3 = ( — 1 ) ( — 1 ) × 3 + 2 ( — 1 ) × 5 + 1 ( — 1 ) × 2 — 1 ( — 1 ) × 5 — 2 ( — 1 ) × 3 — — 1 ( — 1 ) × 2 = 0

∆ y = 1 — 1 1 3 — 1 — 1 — 2 5 3 = 1 ( — 1 ) × 3 + ( — 1 ) ( — 1 ) ( — 2 ) + 1 × 3 × 5 — 1 ( — 1 ) ( — 2 ) — ( — 1 ) — — 1 ( — 1 ) × 2 = 22

∆ z = 1 2 — 1 3 — 1 — 1 — 2 2 5 = 1 ( — 1 ) × 5 + 2 ( — 1 ) ( — 2 ) + ( — 1 ) × 3 × 2 — ( — 1 ) ( — 1 ) ( — 2 ) — 2 × 3 × 5 — — 1 ( — 1 ) × 2 = — 33

Находим неизвестные переменные по формулам:

x = ∆ x ∆ , y = ∆ y ∆ , z = ∆ z ∆ .

x = ∆ x ∆ = 0 — 11 = 0

y = ∆ y ∆ = 22 — 11 = — 2

z = ∆ z ∆ = — 33 — 11 = 3

Выполняем проверку — умножаем основную матрицу на полученное решение 0 — 2 3 :

1 2 1 3 — 1 — 1 — 2 2 3 × 0 — 2 3 = 1 × 0 + 2 ( — 2 ) + 1 × 3 3 × 0 + ( — 1 ) ( — 2 ) + ( — 1 ) × 3 ( — 2 ) × 0 + 2 ( — 2 ) + 3 × 3 = — 1 — 1 5

Результатом являются столбцы свободных членов исходной системы уравнений, следовательно, решение верное.

Ответ: x = 0 , y = — 2 , z = 3

📸 Видео

Способы решения систем нелинейных уравнений. 9 класс.Скачать

Способы решения систем нелинейных уравнений. 9 класс.

Урок по теме СПОСОБ ПОДСТАНОВКИ 7 классСкачать

Урок по теме СПОСОБ ПОДСТАНОВКИ 7 класс

Решение системы трех уравнений по формулам КрамераСкачать

Решение системы трех уравнений по формулам Крамера

МЕТОД АЛГЕБРАИЧЕСКОГО СЛОЖЕНИЯ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ II #математика #егэ #shorts #профильныйегэСкачать

МЕТОД АЛГЕБРАИЧЕСКОГО СЛОЖЕНИЯ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ II #математика #егэ  #shorts #профильныйегэ

Решение систем уравнений второго порядка. 8 класс.Скачать

Решение систем уравнений второго порядка. 8 класс.

2 минуты на формулы Крамера ➜ Решение систем уравнений методом КрамераСкачать

2 минуты на формулы Крамера ➜ Решение систем уравнений методом Крамера

Система линейных уравнений. Общее решение. Метод ГауссаСкачать

Система линейных уравнений.  Общее решение. Метод Гаусса
Поделиться или сохранить к себе: