Если уравнение регрессии является существенным то фактическое значение критерия

Если уравнение регрессии является существенным, то фактическое значение F-критерия … больше критического меньше критического

Видео:Простые показатели качества модели регрессии (R2, критерии Акаике и Шварца)Скачать

Простые показатели качества модели регрессии (R2, критерии Акаике и Шварца)

Ваш ответ

Видео:Эконометрика. Оценка значимости уравнения регрессии. Критерий ФишераСкачать

Эконометрика. Оценка значимости уравнения регрессии. Критерий Фишера

решение вопроса

Видео:Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.Скачать

Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.

Похожие вопросы

  • Все категории
  • экономические 43,421
  • гуманитарные 33,634
  • юридические 17,906
  • школьный раздел 608,184
  • разное 16,858

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:Эконометрика. Нелинейная регрессия. Степенная функция.Скачать

Эконометрика. Нелинейная регрессия. Степенная функция.

Тесты по эконометрике (стр. 2 )

Если уравнение регрессии является существенным то фактическое значение критерияИз за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6

Если уравнение регрессии является существенным то фактическое значение критерия

К свойствам уравнения регрессии в стандартизированном виде относятся … Коэффициенты регрессии при объясняющих переменных равны между собой Постоянный параметр (свободный член уравнения) регрессии отсутствует Стандартизированные коэффициенты регрессии несравнимы между собой Входящие в состав уравнения переменные являются безразмерными

Тесноту совместного влияния факторов на результат в уравнении линейной множественной регрессии оценивает Коэффициент парной корреляции Коэффициент частной корреляции Коэффициент множественной корреляции Коэффициент множественной детерминации

Установите соответствие

а) общая сумма квадратов отклонений TSS

1) Если уравнение регрессии является существенным то фактическое значение критерияЕсли уравнение регрессии является существенным то фактическое значение критерия

b) регрессионная сумма квадратов отклонений RSS

2) Если уравнение регрессии является существенным то фактическое значение критерияЕсли уравнение регрессии является существенным то фактическое значение критерия

c) остаточная сумма квадратов отклонений ЕSS

3) Если уравнение регрессии является существенным то фактическое значение критерияЕсли уравнение регрессии является существенным то фактическое значение критерия

4) Если уравнение регрессии является существенным то фактическое значение критерияЕсли уравнение регрессии является существенным то фактическое значение критерия

Коэффициент множественной корреляции для линейной зависимости можно рассчитать по формуле Если уравнение регрессии является существенным то фактическое значение критерия Если уравнение регрессии является существенным то фактическое значение критерияЕсли уравнение регрессии является существенным то фактическое значение критерия Если уравнение регрессии является существенным то фактическое значение критерия Если уравнение регрессии является существенным то фактическое значение критерияЕсли уравнение регрессии является существенным то фактическое значение критерия Если уравнение регрессии является существенным то фактическое значение критерия

Верные утверждения относительно коэффициента множественной корреляции Чем ближе значение к единице Если уравнение регрессии является существенным то фактическое значение критерияЕсли уравнение регрессии является существенным то фактическое значение критерия, тем теснее связь результативного признака со всеми факторами Чем ближе значение к нулю Если уравнение регрессии является существенным то фактическое значение критерияЕсли уравнение регрессии является существенным то фактическое значение критерия, тем теснее связь результативного признака со всеми факторами Если уравнение регрессии является существенным то фактическое значение критерия Если уравнение регрессии является существенным то фактическое значение критерияпринимает значения из промежутка [0, 1] Если уравнение регрессии является существенным то фактическое значение критерия Если уравнение регрессии является существенным то фактическое значение критерияпринимает значения из промежутка [– 1, 1]

Коэффициент множественной детерминации характеризует Тесноту совместного влияния факторов на результат в уравнении линейной множественной регрессии Тесноту связи между результатом и соответствующим фактором, при устранении влияния других факторов, включенных в модель Долю дисперсии результативного признака, объясненную регрессией в его общей дисперсии Среднее изменение результативной переменной с изменением соответствующего фактора на единицу, при неизменном значении других факторов, закрепленных на среднем уровне

Для общей (TSS), регрессионной (RSS) и остаточной (ESS) суммы квадратов отклонений и коэффициента детерминации Если уравнение регрессии является существенным то фактическое значение критерия Если уравнение регрессии является существенным то фактическое значение критериявыполняется равенство … Если уравнение регрессии является существенным то фактическое значение критерия Если уравнение регрессии является существенным то фактическое значение критерияЕсли уравнение регрессии является существенным то фактическое значение критерия Если уравнение регрессии является существенным то фактическое значение критерияЕсли уравнение регрессии является существенным то фактическое значение критерия Если уравнение регрессии является существенным то фактическое значение критерияЕсли уравнение регрессии является существенным то фактическое значение критерия Если уравнение регрессии является существенным то фактическое значение критерияЕсли уравнение регрессии является существенным то фактическое значение критерия Если уравнение регрессии является существенным то фактическое значение критерия

Отношение остаточной дисперсии к общей дисперсии равно 0,05. Это означает … Коэффициент детерминации Если уравнение регрессии является существенным то фактическое значение критерия Если уравнение регрессии является существенным то фактическое значение критерияКоэффициент детерминации Если уравнение регрессии является существенным то фактическое значение критерия Если уравнение регрессии является существенным то фактическое значение критерияРазность Если уравнение регрессии является существенным то фактическое значение критерияЕсли уравнение регрессии является существенным то фактическое значение критерия, где Если уравнение регрессии является существенным то фактическое значение критерия Если уравнение регрессии является существенным то фактическое значение критерия– коэффициент детерминации Разность Если уравнение регрессии является существенным то фактическое значение критерияЕсли уравнение регрессии является существенным то фактическое значение критерия, где Если уравнение регрессии является существенным то фактическое значение критерия Если уравнение регрессии является существенным то фактическое значение критерия– коэффициент детерминации

Для устранения систематической ошибки остаточной дисперсии для оценки качества модели линейной множественной регрессии используется Коэффициент множественной детерминации Коэффициент множественной корреляции Скорректированный коэффициент множественной детерминации Скорректированный коэффициент частной корреляции

Оценка статистической значимости уравнения линейной множественной регрессии в целом осуществляется с помощью Критерия Стьюдента Критерия Фишера Критерия Дарбина-Уотсона Критерия Фостера-Стюарта

Оценка статистической значимости коэффициентов линейной множественной регрессии осуществляется с помощью Критерия Стьюдента Критерия Фишера Критерия Дарбина-Уотсона Критерия Фостера-Стюарта

Если коэффициент регрессии является существенным, то для него выполняются условия Фактическое значение t-критерия Стьюдента меньше критического Фактическое значение t-критерия Стьюдента больше критического Доверительный интервал проходит через ноль Стандартная ошибка не превышает половины значения параметра

Если уравнение регрессии является существенным, то фактическое значение F-критерия … больше критического меньше критического близко к единице близко к нулю

Предпосылками МНК являются… Дисперсия случайных отклонений постоянна для всех наблюдений Дисперсия случайных отклонений не постоянна для всех наблюдений Случайные отклонения коррелируют друг с другом Случайные отклонения являются независимыми друг от друга

Укажите выводы, которые соответствуют графику зависимости остатков

Если уравнение регрессии является существенным то фактическое значение критерия

Нарушена предпосылка МНК о независимости остатков друг от друга Имеет место автокорреляция остатков Отсутствует закономерность в поведении остатков Отсутствует автокорреляция остатков

При выполнении предпосылок метода наименьших квадратов (МНК) остатки уравнения регрессии, как правило, характеризуются… Нулевой средней величиной Гетероскедстичностью Случайным характером Высокой степенью автокорреляции

К методам обнаружения гетероскедастичности остатков относятся Критерий Дарбина-Уотсона Тест Голдфелда-Квандта Графический анализ остатков Метод наименьших квадратов

Фиктивными переменными в уравнении множественной регрессии являются … Качественные переменные, преобразованные в количественные Переменные, представляющие простейшие функции от уже включенных в модель переменных Дополнительные количественные переменные, улучшающие решение Комбинации из включенных в уравнение регрессии факторов, повышающие адекватность модели

Видео:Уравнение линейной регрессии. Интерпретация стандартной табличкиСкачать

Уравнение линейной регрессии. Интерпретация стандартной таблички

Линейная множественная регрессия

Тесты по эконометрике

Введение

1. Эконометрическая модель имеет вид

a. Если уравнение регрессии является существенным то фактическое значение критерия

b. Если уравнение регрессии является существенным то фактическое значение критерия

c. Если уравнение регрессии является существенным то фактическое значение критерия

d. Если уравнение регрессии является существенным то фактическое значение критерия

2. Установите соответствие

а) регрессионная модель1) Если уравнение регрессии является существенным то фактическое значение критерия
b) система одновременных уравнений2) Если уравнение регрессии является существенным то фактическое значение критерия
c) модель временного ряда3) Если уравнение регрессии является существенным то фактическое значение критерия
4) Если уравнение регрессии является существенным то фактическое значение критерия

3. Регрессия – это

a. зависимость значений результативной переменной от значений объясняющих переменных (факторов)

b. правило, согласно которому каждому значению одной переменной ставится в соответствие единственное значение другой переменной

c. правило, согласно которому каждому значению независимой переменной ставится в соответствие значение зависимой переменной

d. зависимость среднего значения результативной переменной от значений объясняющих переменных (факторов)

4. Метод наименьших квадратов …

a. Позволяет получить оценки параметров линейной регрессии, исходя из условия Если уравнение регрессии является существенным то фактическое значение критерия

b. Позволяет получить оценки параметров регрессии, исходя из условия Если уравнение регрессии является существенным то фактическое значение критерия

c. Позволяет проверить статистическую значимость параметров регрессии

d. Позволяет получить оценки параметров нелинейной регрессии, исходя из условия Если уравнение регрессии является существенным то фактическое значение критерия

Линейная множественная регрессия

5. Уравнение линейной множественной регрессии

a. Если уравнение регрессии является существенным то фактическое значение критерия

b. Если уравнение регрессии является существенным то фактическое значение критерия

c. Если уравнение регрессии является существенным то фактическое значение критерия

d. Если уравнение регрессии является существенным то фактическое значение критерия

6. Для линейного уравнения множественной регрессии установите соответствие

Если уравнение регрессии является существенным то фактическое значение критерия

а) Факторные переменные1) Если уравнение регрессии является существенным то фактическое значение критерия
b) Результативная переменная2) Если уравнение регрессии является существенным то фактическое значение критерия
c) Параметры3) Если уравнение регрессии является существенным то фактическое значение критерия
d) Случайная компонента4) Если уравнение регрессии является существенным то фактическое значение критерия
5) Если уравнение регрессии является существенным то фактическое значение критерия
6) Если уравнение регрессии является существенным то фактическое значение критерия

Ответ: a-4, b-1, c-6, d-5

7. Проблема спецификации регрессионной модели включает в себя

a. Отбор факторов, включаемых в уравнение регрессии

b. Оценка параметров уравнения регрессии

c. Оценка надежности результатов регрессионного анализа

d. Выбор вида уравнения регрессии

8. Требования к факторам, включаемым в модель линейной множественной регрессии…

a. Число факторов должно быть в 6 раз меньше объема совокупности

b. Факторы должны представлять временные ряды

c. Факторы должны иметь одинаковую размерность

d. Между факторами не должно быть высокой корреляции

9. Верные утверждения относительно мультиколлинеарности факторов

a. В модель линейной множественной регрессии рекомендуется включать мультиколлинеарные факторы

b. Мультиколлинеарность факторов приводит к снижению надежности оценок параметров уравнения регрессии

c. Мультиколинеарность факторов проявляется в наличии парных коэффициентов межфакторной корреляции со значениями, большими 0,7

d. Мультиколинеарность факторов проявляется в наличии парных коэффициентов межфакторной корреляции со значениями, меньшими 0,3

10. Верные утверждения о включении в уравнение линейной множественной регрессии факторов

a. Включение фактора в модель приводит к заметному возрастанию коэффициента множественной детерминации

b. Коэффициент парной корреляции для фактора и результативной переменной меньше 0,3

c. Значение t-критерия Стьюдента для коэффициента регрессии при факторе меньше табличного значения

d. Фактор должен объяснять поведение изучаемого показателя согласно принятым положениям экономической теории

11. При построении модели множественной регрессии методом пошагового включения переменных на первом этапе рассматривается модель с …

a. Одной объясняющей переменной, которая имеет с зависимой переменной наименьший коэффициент корреляции

b. Одной объясняющей переменной, которая имеет с зависимой переменной наибольший коэффициент корреляции

c. Несколькими объясняющими переменными, которые имеют с зависимой переменной коэффициенты корреляции по модулю больше 0,5

d. Полным перечнем объясняющих переменных

12. Параметры при факторах в линейной множественной регрессии
Если уравнение регрессии является существенным то фактическое значение критерияхарактеризуют

a. Долю дисперсии результативной переменной, объясненную регрессией в его общей дисперсии

b. Тесноту связи между результативной переменной и соответствующим фактором, при устранении влияния других факторов, включенных в модель

c. Среднее изменение результативной переменной с изменением соответствующего фактора на единицу, при неизменном значении других факторов, закрепленных на среднем уровне

d. На сколько процентов в среднем изменяется результативная переменная с изменением соответствующего фактора на 1%

13. Стандартизация переменных проводится по формуле

a. Если уравнение регрессии является существенным то фактическое значение критерия

b. Если уравнение регрессии является существенным то фактическое значение критерия

c. Если уравнение регрессии является существенным то фактическое значение критерия

d. Если уравнение регрессии является существенным то фактическое значение критерия

14. Уравнение множественной регрессии в стандартизованном масштабе имеет вид Если уравнение регрессии является существенным то фактическое значение критерия. На результативный признак оказывает большое влияние:

a. Если уравнение регрессии является существенным то фактическое значение критерия

b. Если уравнение регрессии является существенным то фактическое значение критерияи Если уравнение регрессии является существенным то фактическое значение критерия

c. Если уравнение регрессии является существенным то фактическое значение критерия

d. нельзя сделать вывод

15. Уравнение множественной регрессии в естественной форме имеет вид
Если уравнение регрессии является существенным то фактическое значение критерия. На результативный признак оказывает большое влияние:

a. Если уравнение регрессии является существенным то фактическое значение критерия

b. Если уравнение регрессии является существенным то фактическое значение критерияи Если уравнение регрессии является существенным то фактическое значение критерия

c. Если уравнение регрессии является существенным то фактическое значение критерия

d. нельзя сделать вывод

16. К свойствам уравнения регрессии в стандартизированном виде относятся …

a. Коэффициенты регрессии при объясняющих переменных равны между собой

b. Постоянный параметр (свободный член уравнения) регрессии отсутствует

c. Стандартизированные коэффициенты регрессии несравнимы между собой

d. Входящие в состав уравнения переменные являются безразмерными

17. Тесноту совместного влияния факторов на результат в уравнении линейной множественной регрессии оценивает

a. Коэффициент парной корреляции

b. Коэффициент частной корреляции

c. Коэффициент множественной корреляции

d. Коэффициент множественной детерминации

18. Установите соответствие

а) общая сумма квадратов отклонений TSS1) Если уравнение регрессии является существенным то фактическое значение критерия
b) регрессионная сумма квадратов отклонений RSS2) Если уравнение регрессии является существенным то фактическое значение критерия
c) остаточная сумма квадратов отклонений ЕSS3) Если уравнение регрессии является существенным то фактическое значение критерия
4) Если уравнение регрессии является существенным то фактическое значение критерия

19. Коэффициент множественной корреляции для линейной зависимости можно рассчитать по формуле

a. Если уравнение регрессии является существенным то фактическое значение критерия

b. Если уравнение регрессии является существенным то фактическое значение критерия

c. Если уравнение регрессии является существенным то фактическое значение критерия

d. Если уравнение регрессии является существенным то фактическое значение критерия

20. Верные утверждения относительно коэффициента множественной корреляции

a. Чем ближе значение к единице Если уравнение регрессии является существенным то фактическое значение критерия, тем теснее связь результативного признака со всеми факторами

b. Чем ближе значение к нулю Если уравнение регрессии является существенным то фактическое значение критерия, тем теснее связь результативного признака со всеми факторами

c. Если уравнение регрессии является существенным то фактическое значение критерияпринимает значения из промежутка [0, 1]

d. Если уравнение регрессии является существенным то фактическое значение критерияпринимает значения из промежутка [– 1, 1]

21. Коэффициент множественной детерминации характеризует

a. Тесноту совместного влияния факторов на результат в уравнении линейной множественной регрессии

b. Тесноту связи между результатом и соответствующим фактором, при устранении влияния других факторов, включенных в модель

c. Долю дисперсии результативного признака, объясненную регрессией в его общей дисперсии

d. Среднее изменение результативной переменной с изменением соответствующего фактора на единицу, при неизменном значении других факторов, закрепленных на среднем уровне

22. Для общей (TSS), регрессионной (RSS) и остаточной (ESS) суммы квадратов отклонений и коэффициента детерминации Если уравнение регрессии является существенным то фактическое значение критериявыполняется равенство …

a. Если уравнение регрессии является существенным то фактическое значение критерия

b. Если уравнение регрессии является существенным то фактическое значение критерия

c. Если уравнение регрессии является существенным то фактическое значение критерия

d. Если уравнение регрессии является существенным то фактическое значение критерия

e. Если уравнение регрессии является существенным то фактическое значение критерия

23. Отношение остаточной дисперсии к общей дисперсии равно 0,05. Это означает …

a. Коэффициент детерминации Если уравнение регрессии является существенным то фактическое значение критерия

b. Коэффициент детерминации Если уравнение регрессии является существенным то фактическое значение критерия

c. Разность Если уравнение регрессии является существенным то фактическое значение критерия, где Если уравнение регрессии является существенным то фактическое значение критерия– коэффициент детерминации

d. Разность Если уравнение регрессии является существенным то фактическое значение критерия, где Если уравнение регрессии является существенным то фактическое значение критерия– коэффициент детерминации

24. Для устранения систематической ошибки остаточной дисперсии для оценки качества модели линейной множественной регрессии используется

a. Коэффициент множественной детерминации

b. Коэффициент множественной корреляции

c. Скорректированный коэффициент множественной детерминации

d. Скорректированный коэффициент частной корреляции

25. Оценка статистической значимости уравнения линейной множественной регрессии в целом осуществляется с помощью

a. Критерия Стьюдента

b. Критерия Фишера

c. Критерия Дарбина-Уотсона

d. Критерия Фостера-Стюарта

26. Оценка статистической значимости коэффициентов линейной множественной регрессии осуществляется с помощью

a. Критерия Стьюдента

b. Критерия Фишера

c. Критерия Дарбина-Уотсона

d. Критерия Фостера-Стюарта

27. Если коэффициент регрессии является существенным, то для него выполняются условия

a. Фактическое значение t-критерия Стьюдента меньше критического

b. Фактическое значение t-критерия Стьюдента больше критического

c. Доверительный интервал проходит через ноль

d. Стандартная ошибка не превышает половины значения параметра

28. Если уравнение регрессии является существенным, то фактическое значение F-критерия …

a. больше критического

b. меньше критического

c. близко к единице

d. близко к нулю

29. Предпосылками МНК являются…

a. Дисперсия случайных отклонений постоянна для всех наблюдений

b. Дисперсия случайных отклонений не постоянна для всех наблюдений

c. Случайные отклонения коррелируют друг с другом

d. Случайные отклонения являются независимыми друг от друга

30. Укажите выводы, которые соответствуют графику зависимости остатков

Если уравнение регрессии является существенным то фактическое значение критерия

a. Нарушена предпосылка МНК о независимости остатков друг от друга

b. Имеет место автокорреляция остатков

c. Отсутствует закономерность в поведении остатков

d. Отсутствует автокорреляция остатков

31. При выполнении предпосылок метода наименьших квадратов (МНК) остатки уравнения регрессии, как правило, характеризуются…

a. Нулевой средней величиной

c. Случайным характером

d. Высокой степенью автокорреляции

32. К методам обнаружения гетероскедастичности остатков относятся

a. Критерий Дарбина-Уотсона

b. Тест Голдфелда-Квандта

c. Графический анализ остатков

d. Метод наименьших квадратов

33. Фиктивными переменными в уравнении множественной регрессии являются …

a. Качественные переменные, преобразованные в количественные

b. Переменные, представляющие простейшие функции от уже включенных в модель переменных

c. Дополнительные количественные переменные, улучшающие решение

d. Комбинации из включенных в уравнение регрессии факторов, повышающие адекватность модели

34. Для отражения влияния качественной сопутствующей переменной, имеющей m состояний, обычно включают в модель … фиктивную переменную

a. Если уравнение регрессии является существенным то фактическое значение критерия

b. Если уравнение регрессии является существенным то фактическое значение критерия

c. Если уравнение регрессии является существенным то фактическое значение критерия

d. Если уравнение регрессии является существенным то фактическое значение критерия

Нелинейная регрессия

35. Регрессии, нелинейные по объясняющим переменным, но линейные по оцениваемым параметрам

a. Если уравнение регрессии является существенным то фактическое значение критерия

b. Если уравнение регрессии является существенным то фактическое значение критерия

c. Если уравнение регрессии является существенным то фактическое значение критерия

d. Если уравнение регрессии является существенным то фактическое значение критерия

e. Если уравнение регрессии является существенным то фактическое значение критерия

f. Если уравнение регрессии является существенным то фактическое значение критерия

36. Регрессии, нелинейные по оцениваемым параметрам

a. Если уравнение регрессии является существенным то фактическое значение критерия

b. Если уравнение регрессии является существенным то фактическое значение критерия

c. Если уравнение регрессии является существенным то фактическое значение критерия

d. Если уравнение регрессии является существенным то фактическое значение критерия

e. Если уравнение регрессии является существенным то фактическое значение критерия

f. Если уравнение регрессии является существенным то фактическое значение критерия

37. Укажите верные утверждения по поводу модели

Если уравнение регрессии является существенным то фактическое значение критерия

a. Относится к типу моделей нелинейных по объясняющим переменным, но линейных по оцениваемым параметрам

b. Относится к типу моделей, нелинейных по оцениваемым параметрам

c. Относится к типу линейных моделей

d. Нельзя привести к линейному виду

e. Можно привести к линейному виду

38. Укажите верные утверждения по поводу модели

Если уравнение регрессии является существенным то фактическое значение критерия

a. Линеаризуется линейную модель множественной регрессии

b. Линеаризуется линейную модель парной регрессии

c. Относится к классу нелинейных моделей по объясняющим переменным, но линейных по оцениваемым параметрам

d. Относится к классу линейных моделей

39. Модель Если уравнение регрессии является существенным то фактическое значение критерияотносится к классу … эконометрических моделей нелинейной регрессии

40. Модель Если уравнение регрессии является существенным то фактическое значение критерияотносится к классу … эконометрических моделей нелинейной регрессии

41. Модель Если уравнение регрессии является существенным то фактическое значение критерияотносится к классу … эконометрических моделей нелинейной регрессии

42. Было замечено, что при увеличении количества вносимых удобрений урожайность также возрастает, однако, по достижении определенного значения фактора моделируемый показатель начинает убывать. Для исследования данной зависимости можно использовать спецификацию уравнения регрессии…

a. Если уравнение регрессии является существенным то фактическое значение критерия

b. Если уравнение регрессии является существенным то фактическое значение критерия

c. Если уравнение регрессии является существенным то фактическое значение критерия

d. Если уравнение регрессии является существенным то фактическое значение критерия

43. Для получения оценок параметров степенной регрессионной модели Если уравнение регрессии является существенным то фактическое значение критерия

a. Метод наименьших квадратов неприменим

b. Требуется подобрать соответствующую подстановку

c. Необходимо выполнить логарифмическое преобразование

d. Необходимо выполнить тригонометрическое преобразование

44. С помощью метода наименьших квадратов нельзя оценить значения параметров уравнения регрессии …

a. Если уравнение регрессии является существенным то фактическое значение критерия

b. Если уравнение регрессии является существенным то фактическое значение критерия

c. Если уравнение регрессии является существенным то фактическое значение критерия

d. Если уравнение регрессии является существенным то фактическое значение критерия

Анализ временных рядов

45. Под изменением, определяющим общее направление развития, основную тенденцию временного ряда, понимается …

b. Сезонная компонента

c. Циклическая компонента

d. Случайная компонента

46. Регулярными компонентами временного ряда являются

b. Сезонная компонента

c. Циклическая компонента

d. Случайная компонента

47. Если период циклических колебаний уровней временного ряда не превышает одного года, то их называют …

48. Пусть Если уравнение регрессии является существенным то фактическое значение критерия– временной ряд, Если уравнение регрессии является существенным то фактическое значение критерия– трендовая компонента, Если уравнение регрессии является существенным то фактическое значение критерия– сезонная компонента, Если уравнение регрессии является существенным то фактическое значение критерия– случайная компонента. Аддитивная модель временного ряда имеет вид …

a. Если уравнение регрессии является существенным то фактическое значение критерия

b. Если уравнение регрессии является существенным то фактическое значение критерия

c. Если уравнение регрессии является существенным то фактическое значение критерия

d. Если уравнение регрессии является существенным то фактическое значение критерия

49. Пусть Если уравнение регрессии является существенным то фактическое значение критерия– временной ряд, Если уравнение регрессии является существенным то фактическое значение критерия– трендовая компонента, Если уравнение регрессии является существенным то фактическое значение критерия– сезонная компонента, Если уравнение регрессии является существенным то фактическое значение критерия– случайная компонента. Мультипликативная модель временного ряда имеет вид …

a. Если уравнение регрессии является существенным то фактическое значение критерия

b. Если уравнение регрессии является существенным то фактическое значение критерия

c. Если уравнение регрессии является существенным то фактическое значение критерия

d. Если уравнение регрессии является существенным то фактическое значение критерия

50. Построена аддитивная модель временного ряда, где Если уравнение регрессии является существенным то фактическое значение критерия– временной ряд, Если уравнение регрессии является существенным то фактическое значение критерия– трендовая компонента, Если уравнение регрессии является существенным то фактическое значение критерия– сезонная компонента, Если уравнение регрессии является существенным то фактическое значение критерия– случайная компонента. Если Если уравнение регрессии является существенным то фактическое значение критерия, то правильно найдены значения компонент ряда …

a. Если уравнение регрессии является существенным то фактическое значение критерия

b. Если уравнение регрессии является существенным то фактическое значение критерия

c. Если уравнение регрессии является существенным то фактическое значение критерия

d. Если уравнение регрессии является существенным то фактическое значение критерия

51. Определить наличие тренда во временном ряду можно …

a. По графику временного ряда

b. По объему временного ряда

c. По отсутствию случайной компоненты

d. С помощью статистической проверки гипотезы о существовании тренда

52. Определить наличие циклических (сезонных) колебаний во временном ряду можно …

a. В результате анализа автокорреляционной функции

b. По графику временного ряда

c. По объему временного ряда

d. С помощью критерия Фостера-Стюарта

53. Пусть Если уравнение регрессии является существенным то фактическое значение критерия– временной ряд с квартальными наблюдениями, Если уравнение регрессии является существенным то фактическое значение критерия– аддитивная сезонная компонента. Оценки сезонной компоненты для первого, второго и четвертого кварталов соответственно равны Если уравнение регрессии является существенным то фактическое значение критерия, Если уравнение регрессии является существенным то фактическое значение критерия, Если уравнение регрессии является существенным то фактическое значение критерия. Оценка сезонной компоненты для третьего квартала равна …

54. В результате сглаживания временного ряда 6, 2, 7, 5, 12 простой трехчленной скользящей средней первое сглаженное значение равно …

55. В результате сглаживания временного ряда 6, 2, 7, 5, 12 простой четырехчленной скользящей средней первое сглаженное значение равно …

56. Для описания тенденции временного ряда используется кривая роста с насыщением …

a. Если уравнение регрессии является существенным то фактическое значение критерия

b. Если уравнение регрессии является существенным то фактическое значение критерия

c. Если уравнение регрессии является существенным то фактическое значение критерия

d. Если уравнение регрессии является существенным то фактическое значение критерия

57. Коэффициент автокорреляции первого порядка

a. Коэффициент частной корреляции между соседними уровнями временного ряда

b. Линейный коэффициент парной корреляции между произвольными уровнями временного ряда

c. Линейный коэффициент парной корреляции между соседними уровнями временного ряда

d. Линейный коэффициент парной корреляции между уровнем временного ряда и его номером

58. Автокорреляционная функция …

a. Зависимость коэффициента автокорреляции от первых разностей уровней временного ряда

b. Зависимость уровня временного ряда от коэффициента корреляции с его номером

c. Последовательность коэффициентов автокорреляции, расположенных по возрастанию их порядка

d. Последовательность коэффициентов автокорреляции, расположенных по возрастанию их значений

59. Если наиболее высоким оказался коэффициент автокорреляции 4 порядка, то временной ряд имеет

a. линейный тренд

b. случайную компоненту

c. тренд в виде полинома 4 порядка

d. циклические колебания с периодом 4

60. Известны значения коэффициентов автокорреляции Если уравнение регрессии является существенным то фактическое значение критерия, Если уравнение регрессии является существенным то фактическое значение критерия, Если уравнение регрессии является существенным то фактическое значение критерия, Если уравнение регрессии является существенным то фактическое значение критерия. Укажите верные утверждения…

a. Временной ряд содержит линейный тренд

b. Временной ряд содержит тренд в виде полинома 4 порядка

c. Временной ряд содержит циклические колебания с периодом 2

d. Временной ряд содержит циклические колебания с периодом 4

61. Известны значения коэффициентов автокорреляции Если уравнение регрессии является существенным то фактическое значение критерия, Если уравнение регрессии является существенным то фактическое значение критерия, Если уравнение регрессии является существенным то фактическое значение критерия, Если уравнение регрессии является существенным то фактическое значение критерия. Можно сделать вывод…

a. Временной ряд содержит линейный тренд

b. Временной ряд является случайным

c. Временной ряд содержит циклические колебания с периодом 2

d. Временной ряд содержит циклические колебания с периодом 4

62. Модель временного ряда считается адекватной, если значения остатков …

a. имеют нулевое математическое ожидание

b. значение фактическое значение F-критерия меньше табличного

c. подчиняются нормальному закону распределения

d. подчиняются равномерному закону распределения

f. являются случайными и независимыми

63. Независимость остатков модели временного ряда может быть проверена с помощью

a. Критерия Дарбина-Уотсона

b. Критерия Пирсона

c. Критерия Фишера

d. Анализа автокорреляционной функции остатков

64. Случайность остатков модели временного ряда может быть проверена с помощью

a. Анализа автокорреляционной функции остатков

b. Критерия Пирсона

c. Проверки гипотезы о наличии тренда

d. Расчета асимметрии и эксцесса

65. Для экспоненциального сглаживания используется формула

a. Если уравнение регрессии является существенным то фактическое значение критерия

b. Если уравнение регрессии является существенным то фактическое значение критерия

c. Если уравнение регрессии является существенным то фактическое значение критерия

d. Если уравнение регрессии является существенным то фактическое значение критерия

66. Постоянная сглаживания Если уравнение регрессии является существенным то фактическое значение критерияв модели экспоненциального сглаживания Если уравнение регрессии является существенным то фактическое значение критерияпринимает значения

67. Выбор оптимального значения постоянной сглаживания Если уравнение регрессии является существенным то фактическое значение критерияв модели экспоненциального сглаживания Если уравнение регрессии является существенным то фактическое значение критерияосуществляется

a. Всегда используется значение Если уравнение регрессии является существенным то фактическое значение критерия

b. Всегда используется значение Если уравнение регрессии является существенным то фактическое значение критерия

c. Оптимальным считается такое значение Если уравнение регрессии является существенным то фактическое значение критерия, при котором получена наименьшая дисперсия ошибки

d. Оптимальным считается такое значение Если уравнение регрессии является существенным то фактическое значение критерия, при котором получена наибольшая дисперсия ошибки

68. Параметр адаптации Если уравнение регрессии является существенным то фактическое значение критерия, Если уравнение регрессии является существенным то фактическое значение критерия, Если уравнение регрессии является существенным то фактическое значение критерия, Если уравнение регрессии является существенным то фактическое значение критерия. Значение Если уравнение регрессии является существенным то фактическое значение критерия, полученное в результате экспоненциального сглаживания временного ряда по формуле Если уравнение регрессии является существенным то фактическое значение критерия, равно…

69. Временной ряд содержит тренд и для его сглаживания используется модель Хольта: Если уравнение регрессии является существенным то фактическое значение критерия, Если уравнение регрессии является существенным то фактическое значение критерия. Если Если уравнение регрессии является существенным то фактическое значение критерия, Если уравнение регрессии является существенным то фактическое значение критерия, Если уравнение регрессии является существенным то фактическое значение критерия, Если уравнение регрессии является существенным то фактическое значение критерия. Значение Если уравнение регрессии является существенным то фактическое значение критерияравно …

Видео:Нелинейная регрессия в MS Excel. Как подобрать уравнение регрессии? Некорректное значение R^2Скачать

Нелинейная регрессия в MS Excel. Как подобрать уравнение регрессии? Некорректное значение R^2

Линейная множественная регрессия

Тесты по эконометрике

Введение

1. Эконометрическая модель имеет вид

2. Установите соответствие

а) регрессионная модель1) x-1=0, x=0x-1, x>0
b) система одновременных уравнений2) R=a1+b11M+b12Y+ε1,Y=a2+b21R+ε2,
c) модель временного ряда1. 3) y=a+b1x1+b2x2+ε
4) yt=Tt+St+Et

3. Регрессия – это

a. зависимость значений результативной переменной от значений объясняющих переменных (факторов)

b. правило, согласно которому каждому значению одной переменной ставится в соответствие единственное значение другой переменной

c. правило, согласно которому каждому значению независимой переменной ставится в соответствие значение зависимой переменной

d. зависимость среднего значения результативной переменной от значений объясняющих переменных (факторов)

4. Метод наименьших квадратов …

a. Позволяет получить оценки параметров линейной регрессии, исходя из условия i=1nyi-yi2→min

b. Позволяет получить оценки параметров регрессии, исходя из условия ln⁡(i=1nf(yi,)→max

c. Позволяет проверить статистическую значимость параметров регрессии

d. Позволяет получить оценки параметров нелинейной регрессии, исходя из условия i=1ny-yi2→min

Линейная множественная регрессия

5. Уравнение линейной множественной регрессии

6. Для линейного уравнения множественной регрессии установите соответствие

5. а) Факторные переменные6. 1) y
7. b) Результативная переменная8. 2) a
9. c) Параметры10. 3) a, ε
11. d) Случайная компонента12. 4) x1, x2
13.14. 5) ε
15.16. 6) a, b1, b2

17. Ответ: a-4, b-1, c-6, d-5

7. Проблема спецификации регрессионной модели включает в себя

a. Отбор факторов, включаемых в уравнение регрессии

b. Оценка параметров уравнения регрессии

c. Оценка надежности результатов регрессионного анализа

d. Выбор вида уравнения регрессии

19. Требования к факторам, включаемым в модель линейной множественной регрессии…

a. Число факторов должно быть в 6 раз меньше объема совокупности

b. Факторы должны представлять временные ряды

c. Факторы должны иметь одинаковую размерность

d. Между факторами не должно быть высокой корреляции

21. Верные утверждения относительно мультиколлинеарности факторов

e. В модель линейной множественной регрессии рекомендуется включать мультиколлинеарные факторы

f. Мультиколлинеарность факторов приводит к снижению надежности оценок параметров уравнения регрессии

Если уравнение регрессии является существенным то фактическое значение критерия

g. Мультиколинеарность факторов проявляется в наличии парных коэффициентов межфакторной корреляции со значениями, большими 0,7

h. Мультиколинеарность факторов проявляется в наличии парных коэффициентов межфакторной корреляции со значениями, меньшими 0,3

23. Верные утверждения о включении в уравнение линейной множественной регрессии факторов

i. Включение фактора в модель приводит к заметному возрастанию коэффициента множественной детерминации

j. Коэффициент парной корреляции для фактора и результативной переменной меньше 0,3

k. Значение t-критерия Стьюдента для коэффициента регрессии при факторе меньше табличного значения

l. Фактор должен объяснять поведение изучаемого показателя согласно принятым положениям экономической теории

25. При построении модели множественной регрессии методом пошагового включения переменных на первом этапе рассматривается модель с …

m. Одной объясняющей переменной, которая имеет с зависимой переменной наименьший коэффициент корреляции

n. Одной объясняющей переменной, которая имеет с зависимой переменной наибольший коэффициент корреляции

o. Несколькими объясняющими переменными, которые имеют с зависимой переменной коэффициенты корреляции по модулю больше 0,5

p. Полным перечнем объясняющих переменных

8. Параметры при факторах в линейной множественной регрессии
y=a+b1x1+b2x2+…+bpxp характеризуют

a. Долю дисперсии результативной переменной, объясненную регрессией в его общей дисперсии

b. Тесноту связи между результативной переменной и соответствующим фактором, при устранении влияния других факторов, включенных в модель

c. Среднее изменение результативной переменной с изменением соответствующего фактора на единицу, при неизменном значении других факторов, закрепленных на среднем уровне

d. На сколько процентов в среднем изменяется результативная переменная с изменением соответствующего фактора на 1%

28. Стандартизация переменных проводится по формуле

9. Уравнение множественной регрессии в стандартизованном масштабе имеет вид ty=20+0,9tx1+0,5tx2+ε. На результативный признак оказывает большое влияние:

x. нельзя сделать вывод

10. Уравнение множественной регрессии в естественной форме имеет вид
y=20+0,7×1+0,5×2+ε. На результативный признак оказывает большое влияние:

bb. нельзя сделать вывод

30. К свойствам уравнения регрессии в стандартизированном виде относятся …

cc. Коэффициенты регрессии при объясняющих переменных равны между собой

dd. Постоянный параметр (свободный член уравнения) регрессии отсутствует

ee. Стандартизированные коэффициенты регрессии несравнимы между собой

ff. Входящие в состав уравнения переменные являются безразмерными

32. Тесноту совместного влияния факторов на результат в уравнении линейной множественной регрессии оценивает

gg. Коэффициент парной корреляции

hh. Коэффициент частной корреляции

ii. Коэффициент множественной корреляции

jj. Коэффициент множественной детерминации

34. Установите соответствие

35. а) общая сумма квадратов отклонений TSS36. 1) y-y2
37. b) регрессионная сумма квадратов отклонений RSS38. 2) y-x2
39. c) остаточная сумма квадратов отклонений ЕSS40. 3) y-y2
41.42. 4) y-y2

43. Коэффициент множественной корреляции для линейной зависимости можно рассчитать по формуле

mm. Если уравнение регрессии является существенным то фактическое значение критерия

45. Верные утверждения относительно коэффициента множественной корреляции

oo. Чем ближе значение к единице Ryx1…xp, тем теснее связь результативного признака со всеми факторами

pp. Чем ближе значение к нулю Ryx1…xp, тем теснее связь результативного признака со всеми факторами

qq. Ryx1…xp принимает значения из промежутка [0, 1]

rr. Ryx1…xp принимает значения из промежутка [– 1, 1]

47. Коэффициент множественной детерминации характеризует

ss. Тесноту совместного влияния факторов на результат в уравнении линейной множественной регрессии

tt. Тесноту связи между результатом и соответствующим фактором, при устранении влияния других факторов, включенных в модель

uu. Долю дисперсии результативного признака, объясненную регрессией в его общей дисперсии

vv. Среднее изменение результативной переменной с изменением соответствующего фактора на единицу, при неизменном значении других факторов, закрепленных на среднем уровне

49. Для общей (TSS), регрессионной (RSS) и остаточной (ESS) суммы квадратов отклонений и коэффициента детерминации R2 выполняется равенство …

51. Отношение остаточной дисперсии к общей дисперсии равно 0,05. Это означает …

bbb. Коэффициент детерминации R2=0,95

ccc. Коэффициент детерминации R2=0,05

ddd. Разность (1-R2)=0,95, где R2 – коэффициент детерминации

eee. Разность (1-R2)=0,05, где R2 – коэффициент детерминации

53. Для устранения систематической ошибки остаточной дисперсии для оценки качества модели линейной множественной регрессии используется

fff. Коэффициент множественной детерминации

ggg. Коэффициент множественной корреляции

hhh. Скорректированный коэффициент множественной детерминации

iii. Скорректированный коэффициент частной корреляции

55. Оценка статистической значимости уравнения линейной множественной регрессии в целом осуществляется с помощью

jjj. Критерия Стьюдента

kkk. Критерия Фишера

lll. Критерия Дарбина-Уотсона

56. Оценка статистической значимости коэффициентов линейной множественной регрессии осуществляется с помощью

nnn. Критерия Стьюдента

ooo. Критерия Фишера

ppp. Критерия Дарбина-Уотсона

qqq. Критерия Фостера-Стюарта

57. Если коэффициент регрессии является существенным, то для него выполняются условия

rrr. Фактическое значение t-критерия Стьюдента меньше критического

sss. Фактическое значение t-критерия Стьюдента больше критического

ttt. Доверительный интервал проходит через ноль

uuu. Стандартная ошибка не превышает половины значения параметра

59. Если уравнение регрессии является существенным, то фактическое значение F-критерия …

vvv. больше критического

www. меньше критического

xxx. близко к единице

yyy. близко к нулю

61. Предпосылками МНК являются…

zzz. Дисперсия случайных отклонений постоянна для всех наблюдений

aaaa. Дисперсия случайных отклонений не постоянна для всех наблюдений

bbbb. Случайные отклонения коррелируют друг с другом

cccc. Случайные отклонения являются независимыми друг от друга

63. Укажите выводы, которые соответствуют графику зависимости остатков

dddd. Нарушена предпосылка МНК о независимости остатков друг от друга

eeee. Имеет место автокорреляция остатков

ffff. Отсутствует закономерность в поведении остатков

gggg. Отсутствует автокорреляция остатков

66. При выполнении предпосылок метода наименьших квадратов (МНК) остатки уравнения регрессии, как правило, характеризуются…

hhhh. Нулевой средней величиной

jjjj. Случайным характером

kkkk. Высокой степенью автокорреляции

68. К методам обнаружения гетероскедастичности остатков относятся

llll. Критерий Дарбина-Уотсона

mmmm. Тест Голдфелда-Квандта

nnnn. Графический анализ остатков

oooo. Метод наименьших квадратов

70. Фиктивными переменными в уравнении множественной регрессии являются …

pppp. Качественные переменные, преобразованные в количественные

qqqq. Переменные, представляющие простейшие функции от уже включенных в модель переменных

rrrr. Дополнительные количественные переменные, улучшающие решение

ssss. Комбинации из включенных в уравнение регрессии факторов, повышающие адекватность модели

71. Для отражения влияния качественной сопутствующей переменной, имеющей m состояний, обычно включают в модель … фиктивную переменную

Нелинейная регрессия

72. Регрессии, нелинейные по объясняющим переменным, но линейные по оцениваемым параметрам

73. Регрессии, нелинейные по оцениваемым параметрам

74. Укажите верные утверждения по поводу модели

jjjjj. Относится к типу моделей нелинейных по объясняющим переменным, но линейных по оцениваемым параметрам

kkkkk. Относится к типу моделей, нелинейных по оцениваемым параметрам

lllll. Относится к типу линейных моделей

mmmmm. Нельзя привести к линейному виду

nnnnn. Можно привести к линейному виду

76. Укажите верные утверждения по поводу модели

ooooo. Линеаризуется линейную модель множественной регрессии

ppppp. Линеаризуется линейную модель парной регрессии

qqqqq. Относится к классу нелинейных моделей по объясняющим переменным, но линейных по оцениваемым параметрам

rrrrr. Относится к классу линейных моделей

79. Модель y=a∙bx∙ε относится к классу … эконометрических моделей нелинейной регрессии

81. Модель y=a∙xb∙ε относится к классу … эконометрических моделей нелинейной регрессии

83. Модель y=a+bx+cx2+ε относится к классу … эконометрических моделей нелинейной регрессии

85. Было замечено, что при увеличении количества вносимых удобрений урожайность также возрастает, однако, по достижении определенного значения фактора моделируемый показатель начинает убывать. Для исследования данной зависимости можно использовать спецификацию уравнения регрессии…

87. Для получения оценок параметров степенной регрессионной модели y=a∙xb …

iiiiii. Метод наименьших квадратов неприменим

jjjjjj. Требуется подобрать соответствующую подстановку

kkkkkk. Необходимо выполнить логарифмическое преобразование

llllll. Необходимо выполнить тригонометрическое преобразование

89. С помощью метода наименьших квадратов нельзя оценить значения параметров уравнения регрессии …

🔥 Видео

Множественная регрессия в ExcelСкачать

Множественная регрессия в Excel

Эконометрика. Множественная регрессия и корреляция.Скачать

Эконометрика. Множественная регрессия и корреляция.

Эконометрика. Линейная парная регрессияСкачать

Эконометрика. Линейная парная регрессия

Регрессия в ExcelСкачать

Регрессия в Excel

Эконометрика Линейная регрессия и корреляцияСкачать

Эконометрика  Линейная регрессия и корреляция

Выбор факторов, влияющих на результативный показательСкачать

Выбор факторов, влияющих на результативный показатель

t-критерий Стьюдента для проверки гипотезы о средней в MS ExcelСкачать

t-критерий Стьюдента для проверки гипотезы о средней в MS Excel

1.1 Нелинейная регрессия в ExcelСкачать

1.1 Нелинейная регрессия в Excel

Множественная регрессия в Excel и мультиколлинеарностьСкачать

Множественная регрессия в Excel и мультиколлинеарность

Множественная регрессияСкачать

Множественная регрессия

Корреляция: коэффициенты Пирсона и Спирмена, линейная регрессияСкачать

Корреляция: коэффициенты Пирсона и Спирмена, линейная регрессия

Парная регрессия: линейная зависимостьСкачать

Парная регрессия: линейная зависимость

РЕГРЕССИОННЫЙ АНАЛИЗ. Статистика в ТрейдингеСкачать

РЕГРЕССИОННЫЙ АНАЛИЗ. Статистика в Трейдинге

Линейная регрессия. Что спросят на собеседовании? ч.1Скачать

Линейная регрессия. Что спросят на собеседовании? ч.1
Поделиться или сохранить к себе: