Два или более уравнений называются равносильными, если они имеют одни и те же корни. Например, уравнения:
равносильные, потому что имеют одни и те же корни (2 и 1 — это можно проверить подстановкой).
Уравнения, не имеющие корней, также считаются равносильными.
- Преобразование уравнений
- Равносильные уравнения. Равносильные преобразования уравнений
- Равносильными называют уравнения, имеющие одни и те же корни. Равносильными считаются также уравнения, каждое из которых не имеет корней.
- Равносильные преобразования уравнений — это такие преобразования, которые приводят нас к равносильным уравнениям.
- Основные равносильные преобразования уравнений:
- Равносильные уравнения и уравнения следствия
- Если каждый корень первого уравнения является корнем второго уравнения, но при этом у второго также есть корни не подходящие первому, то второе уравнение является следствием второго.
- Равносильные уравнения, преобразование уравнений
- Понятие равносильных уравнений
- Понятие уравнений-следствий
- 📹 Видео
Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать
Преобразование уравнений
Если одно уравнение заменяется другим уравнением, равносильным данному, то такая замена называется преобразованием уравнения. Например, уравнение
можно преобразовать в такое:
Если одно уравнение заменяется другим, равносильным данному и при этом более простым, то такое преобразование называется упрощением уравнения. Например, упростим следующее уравнение:
заменив его равносильным уравнением
Все преобразования уравнений основаны на двух свойствах равенств, и следствиях, которые вытекают из данных свойств.
Если к обеим частям уравнения прибавить или отнять одно и то же число или алгебраическое выражение, то получится уравнение, равносильное данному.
Рассмотрим уравнение x — 5 = 7. Прибавив к обеим частям уравнения число 5
получим уравнение x = 12. Если в уравнение x — 5 = 7 вместо x подставить число 12, то можно удостовериться, что, прибавив к обеим частям уравнения число 5, мы не только получили равносильное уравнение, но и нашли его корень.
Из данного свойства можно вывести три следствия:
- Если в обеих частях уравнения есть одинаковые члены с одинаковыми знаками, то эти члены можно опустить (сократить).
Возьмём уравнение x + 13 = 10 + 13. Отняв от обеих частей по 13, получим
Любой член уравнения можно перенести из одной части в другую, изменив его знак на противоположный.
Рассмотрим уравнение 5x — 4 = 12 + x. Прибавим к обеим частям уравнения по 4:
5x — 4 + 4 = 12 + x + 4.
то есть член 4 перешёл в другую часть с обратным знаком. Теперь вычтем из обеих частей уравнения 5x — 4 = 12 + x по x:
то есть член x перешёл в другую часть с обратным знаком.
Знаки всех членов уравнения можно заменить на противоположные.
Перенесём все члены левой части уравнения 5x — 4 = 12 + x в правую, а все члены правой в левую:
И, учитывая, что части любого равенства ( в том числе и любого уравнения) можно менять местами, то, поменяв левую часть с правой, получим:
то есть получилось, что мы просто заменили знаки всех членов уравнения на противоположные.
Данное преобразование можно также рассматривать как умножение обеих частей уравнения на -1.
Если обе части уравнения умножить или разделить на одно и то же число или алгебраическое выражение, то получится уравнение, равносильное данному.
Рассмотрим уравнение 3x = 12. Разделив обе части уравнения на число 3:
получим уравнение x = 4. Если в уравнение 3x = 12 вместо x подставить число 4, то можно удостовериться, что, разделив обе части уравнения на 3, мы не только получили равносильное уравнение, но и нашли его корень.
Из данного свойства можно вывести два следствия:
- Если все члены уравнения имеют общий множитель, то можно разделить на него все члены уравнения, таким образом, упростив его.
Возьмём уравнение 16x + 8 = 40. Разделив все члены на общий множитель 8, получим:
Если в уравнении есть дробные члены, то от них можно освободить уравнение, приведя все члены к одному знаменателю и затем отбросить его.
x + | 12 — x | = | 26 — x | . |
4 | 2 |
После приведения всех членов к общему знаменателю получим:
4x | + | 12 — x | = | 2(26 — x) | . |
4 | 4 | 4 |
Теперь, умножив все члены уравнения на 4, или, что то же самое, просто отбросив знаменатель, получим:
Видео:СЛОЖИТЕ ДВА КОРНЯСкачать
Равносильные уравнения. Равносильные преобразования уравнений
Равносильными называют уравнения, имеющие одни и те же корни. Равносильными считаются также уравнения, каждое из которых не имеет корней.
- Уравнения (x+2=7) и (2x+1=11) равносильны, так как каждое из них имеет единственный корень – число (5).
- Равносильны и уравнения (x^2+1=0) и (2x^2+3=1) — ни одно из них не имеет корней.
- А вот уравнения (x-6=0) и (x^2=36) неравносильны, поскольку первое имеет только один корень (6), второе имеет два корня: (6) и (-6).
Равносильные преобразования уравнений — это такие преобразования, которые приводят нас к равносильным уравнениям.
Видео:Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать
Основные равносильные преобразования уравнений:
- Перенос слагаемых из одной части уравнения в другую со сменой знака слагаемого на противоположный.
Умножение или деление обеих частей уравнения на одно число или выражение не равное нулю.
Применение всех формул и свойств, которые есть в математике.
Возведение в нечетную степень обеих частей уравнения.
Извлечение корня нечетной степени из обеих частей уравнения.
Видео:Быстрый способ решения квадратного уравненияСкачать
Равносильные уравнения и уравнения следствия
Равносильные преобразования уравнений можно назвать «правильными» или «безошибочными» преобразованиями, потому что, сделав их, вы не нарушите математических законов. Почему тогда математики так их и не назвали: «правильные преобразования уравнений»? Потому что есть еще «полу-правильные» преобразования уравнений. В них уравнение при преобразовании приобретает дополнительные корни по ходу решения, но лишние корни мы при записи ответа не учитываем. Строгие математики их называют уравнениями следствиями:
Если каждый корень первого уравнения является корнем второго уравнения, но при этом у второго также есть корни не подходящие первому, то второе уравнение является следствием второго.
Пример (ОГЭ). Решите уравнение (x^2-2x+sqrt=sqrt+3)
Перенесем оба слагаемых из правой части в левую.
Взаимно уничтожим подобные слагаемые. Это и есть «полу-правильное преобразование», так как после него у уравнения становится два корня вместо изначального одного.
Это уравнение следствие из предыдущего. Найдем корни уравнения по теореме Виета .
Сверяем корни с ОДЗ и исключаем неподходящие.
(↑) не подходит под ОДЗ
Переходить к уравнению следствию не запрещено, но при работе с ними нужно быть осторожным и не забывать про ОДЗ .
Пример. В каких пунктах применялись равносильные преобразования, а в каких был переход к уравнению следствию? Укажите какие виды равносильных преобразований применялись.
Решение:
В пункте a) применялось равносильное преобразование 1.
В пункте b) перешли к уравнению следствию, так как (sqrt) «ушло», то ОДЗ расширилось;
В пункте с) тоже перешли к уравнению следствию, из-за того что умножили на знаменатель;
В пункте d) применялось равносильное преобразование: «Извлечения корня нечетной степени из обеих частей уравнения»;
В пункте e) умножили обе части уравнения на (2) т.е. равносильно преобразовали;
В пункте f) перешли от вида (a^=a^) к виду (f(x) =g(x)), что тоже является равносильным преобразованием.
Видео:Повысь свой уровень по теме КОРНИ | Математика | TutorOnlineСкачать
Равносильные уравнения, преобразование уравнений
Некоторые преобразования позволяют нам перейти от решаемого уравнения к равносильным, а также к уравнениям-следствиям, благодаря чему упрощается решение первоначального уравнения. В данном материале мы расскажем, что из себя представляют эти уравнения, сформулируем основные определения, проиллюстрируем их наглядными примерами и поясним, как именно осуществляется вычисление корней исходного уравнения по корням уравнения-следствия или равносильного уравнения.
Видео:Преобразование выражений, содержащих кв. корни. Сокращение дробей. Практическая часть. 8 класс.Скачать
Понятие равносильных уравнений
Равносильными называются такие уравнения, имеющие одни и те же корни, или же те, в которых корней нет.
Определения такого типа часто встречаются в различных учебниках. Приведем несколько примеров.
Уравнение f ( x ) = g ( x ) считается равносильным уравнению r ( x ) = s ( x ) , если у них одинаковые корни или у них обоих нет корней.
Уравнения с одинаковыми корнями считаются равносильными. Также ими считаются два уравнения, одинаково не имеющие корней.
Если уравнение f ( x ) = g ( x ) имеет то же множество корней, что и уравнение p ( x ) = h ( x ) , то они считаются равносильными по отношению друг к другу.
Когда мы говорим о совпадающем множестве корней, то имеем в виду, что если определенное число будет корнем одного уравнения, то оно подойдет в качестве решения и другому уравнению. Ни одно из уравнений, являющихся равносильными, не может иметь такого корня, который не подходит для другого.
Приведем несколько примеров таких уравнений.
Например, равносильными будут 4 · x = 8 , 2 · x = 4 и x = 2 , поскольку каждое из них имеет только один корень – двойку. Также равносильными будут x · 0 = 0 и 2 + x = x + 2 , поскольку их корнями могут быть любые числа, то есть множества их решений совпадают. Также равносильными будут уравнения x = x + 5 и x 4 = − 1 , каждое из которых не имеет ни одного решения.
Для наглядности рассмотрим несколько примеров неравносильных уравнений.
К примеру, таковыми будут x = 2 и x 2 = 4 , поскольку их корни отличаются. То же относится и к уравнениям x x = 1 и x 2 + 5 x 2 + 5 , потому что во втором решением может быть любое число, а во втором корнем не может быть 0 .
Определения, данные выше, подойдут и для уравнений с несколькими переменными, однако в том случае, когда мы говорим о двух, трех и более корнях, более уместно выражение «решение уравнения». Таким образом, подытожим: равносильные уравнения – это те уравнения, у которых одни и те же решения или их совсем нет.
Возьмем примеры уравнений, которые содержат несколько переменных и являются равносильными друг другу. Так, x 2 + y 2 + z 2 = 0 и 5 · x 2 + x 2 · y 4 · z 8 = 0 включают в себя по три переменных и имеют только одно решение, равное 0 , во всех трех случаях. А пара уравнений x + y = 5 и x · y = 1 равносильной по отношению друг к другу не будет, поскольку, например, значения 5 и 3 подойдут для первого, но не будут решением второго: при подстановке их в первое уравнение мы получим верное равенство, а во второе – неверное.
Видео:Составьте квадратное уравнение, корнями которого являются числаСкачать
Понятие уравнений-следствий
Процитируем несколько примеров определений уравнений-следствий, взятых из учебных пособий.
Следствием уравнения f ( x ) = g ( x ) будет уравнение p ( x ) = h ( x ) при условии, что каждый корень первого уравнения будет в то же время корнем второго.
📹 Видео
Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать
Как осилить уравнение с кубическими корнями? Основной способСкачать
Как считать корни? #shortsСкачать
Свойства арифметического квадратного корня. 8 класс.Скачать
Алгебра 8. Урок 8 - Квадратный корень. Освобождение от иррациональностиСкачать
Квадратный корень. 8 класс.Скачать
ЧТО ТАКОЕ КОРЕНЬ В N- СТЕПЕНИ? Пригодится для ЕГЭ #shorts #егэ #огэ #математика #корни #mathСкачать
Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать
5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать
Математика 2 класс 72 урокСкачать
Свойства корней, которые надо знатьСкачать
Формула корней квадратного уравнения. Алгебра, 8 классСкачать
Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать