Теорема Виета помогает решать квадратные уравнения путём подбора. В этой статье даны определения, доказательства, формулы и примеры решений квадратных уравнений для чайников.
- Что такое теорема Виета
- Доказательство теоремы Виета
- Теорема, обратная теореме Виета
- Доказательство обратной теоремы Виета
- Примеры с решениями по теореме Виета
- Теорема Виета для квадратного уравнения
- Основные понятия
- Формула Виета
- Доказательство теоремы Виета
- Обратная теорема Виета
- Докажем теорему, обратную теореме Виета
- Примеры
- Неприведенное квадратное уравнение
- Квадратное уравнение
- 💥 Видео
Видео:Квадратный Трехчлен / Разложение квадратного трехчлена на множители, Как решать Квадратные УравненияСкачать
Что такое теорема Виета
Франсуа Виет (1540-1603 гг) – математика, создатель знаменитых формул Виета
Теорема Виета нужна для быстрого решения квадратных уравнений (простыми словами).
Если более подробно, то т еорема Виета – это сумма корней данного квадратного уравнения равняется второму коэффициенту, который взят с противоположным знаком, а произведение равно свободному члену. Это свойство обладает любым приведённым квадратным уравнением, у которого есть корни.
При помощи теоремы Виета можно легко решать квадратные уравнения путём подбора, поэтому скажем “спасибо” этому математику с мечем в руках за наш счастливый 7 класс.
Нужна помощь в написании работы?
Написание учебной работы за 1 день от 100 рублей. Посмотрите отзывы наших клиентов и узнайте стоимость вашей работы.
Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать
Доказательство теоремы Виета
Чтобы доказать теорему, можно воспользоваться известными формулами корней, благодаря которым составим сумму и произведение корней квадратного уравнения. Только после этого мы сможем убедиться, что они равны и, соответственно, .
Допустим у нас есть уравнение: . У этого уравнения есть такие корни: и . Докажем, что , .
По формулам корней квадратного уравнения:
, .
1. Найдём сумму корней:
.
Разберём это уравнение, как оно у нас получилось именно таким:
= .
Шаг 1 . Приводим дроби к общему знаменателю, получается:
= = .
Шаг 2 . У нас получилась дробь, где нужно раскрыть скобки:
= = . Сокращаем дробь на 2 и получаем:
.
Мы доказали соотношение для суммы корней квадратного уравнения по теореме Виета.
2. Найдём произведение корней:
=
= = = = = .
Докажем это уравнение:
.
Шаг 1 . Есть правило умножение дробей, по которому мы и умножаем данное уравнение:
.
Шаг 2 . Далее выполняется умножение скобку на скобку (в числителе). Можно воспользоваться формулой сокращённого умножения (ФСУ) – формула разности, откуда получается:
.
Теперь вспоминаем определение квадратного корня и считаем:
= .
Шаг 3 . Вспоминаем дискриминант квадратного уравнения: . Поэтому в последнюю дробь вместо D (дискриминанта) мы подставляем , тогда получается:
= .
Шаг 4 . Раскрываем скобки и приводим подобные слагаемые к дроби:
.
Шаг 5 . Сокращаем «4a» и получаем .
Вот мы и доказали соотношение для произведения корней по теореме Виета.
ВАЖНО! Если дискриминант равняется нулю, тогда у квадратного уравнения всего один корень.
Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать
Теорема, обратная теореме Виета
По теореме, обратной теореме Виета можно проверять, правильно ли решено наше уравнение. Чтобы понять саму теорему, нужно более подробно её рассмотреть.
Если числа и такие:
и , тогда они и есть корнями квадратного уравнения .
Видео:Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать
Доказательство обратной теоремы Виета
Шаг 1. Подставим в уравнение выражения для его коэффициентов:
Шаг 2. Преобразуем левую часть уравнения:
;
.
Шаг 3 . Найдём Корни уравнения , а для этого используем свойство о равенстве произведения нулю:
или . Откуда и получается: или .
Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать
Примеры с решениями по теореме Виета
Найдите сумму, произведение и сумму квадратов корней квадратного уравнения , не находя корней уравнения.
Шаг 1 . Вспомним формулу дискриминанта . Подставляем наши цифры под буквы. То есть, , – это заменяет , а . Отсюда следует:
. Получается:
0″ title=»Rendered by QuickLaTeX.com» height=»13″ width=»170″ style=»vertical-align: -1px;» />. Если дискриминант больше нуля, тогда у уравнения есть корни. По теореме Виета их сумма , а произведение .
Выразим сумму квадратов корней через их сумму и произведение:
.
Решите уравнение . При этом не применяйте формулы квадратного уравнения.
У данного уравнения есть корни, которые по дискриминанту (D) больше нуля. Соответственно, по теореме Виета сумма корней этого уравнения равна 4, а произведение – 5. Сначала определяем делители числа , сумма которых равняется 4. Это числа «5» и «-1». Их произведение равно – 5, а сумма – 4. Значит, по теореме, обратной теореме Виета, они являются корнями данного уравнения.
и
Задание
Найдите, если это возможно, сумму и произведение корней уравнения:
Решение
. Так как дискриминант меньше нуля, значит у уравнения нет корней.
Ответ
Задание
Составьте уравнение, каждый корень которого в два раза больше соответствующего корня уравнения:
Решение
По теореме Виета сумма корней данного уравнения равна 12, а произведение = 7. Значит, два корня положительны.
Сумма корней нового уравнения будет равна:
, а произведение .
По теореме, обратной теореме Виета, новое уравнение имеет вид:
Ответ
Получилось уравнение, каждый корень которого в два раза больше:
Итак, мы рассмотрели, как решать уравнение при помощи теоремы Виета. Очень удобно пользоваться данной теоремой, если решаются задания, которые связаны со знаками корней квадратных уравнений. То есть, если в формуле свободный член – число положительное, и если в квадратном уравнении имеются действительные корни, тогда они оба могут быть либо отрицательными, либо положительными.
А если свободный член – отрицательное число, и если в квадратном уравнении есть действительные корни, тогда оба знака будут разными. То есть, если один корень положительный, тогда другой корень будет только отрицательный.
Полезные источники:
- Дорофеев Г. В., Суворова С. Б., Бунимович Е. А. Алгебра 8 класс: Москва “Просвещение”, 2016 – 318 с.
- Рубин А. Г., Чулков П. В. – учебник Алгебра 8 класс:Москва “Баласс”, 2015 – 237 с.
- Никольский С. М., Потопав М. К., Решетников Н. Н., Шевкин А. В. – Алгебра 8 класс: Москва “Просвещение”, 2014 – 300
Видео:НЕПОЛНЫЕ КВАДРАТНЫЕ УРАВНЕНИЯ 8 классСкачать
Теорема Виета для квадратного уравнения
О чем эта статья:
Видео:Формула корней квадратного уравнения. Алгебра, 8 классСкачать
Основные понятия
Квадратное уравнение — это ax 2 + bx + c = 0, где a — первый коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.
Существует три вида квадратных уравнений:
- не имеют корней;
- имеют один корень;
- имеют два различных корня.
Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Формула для его поиска записывается так: D = b 2 − 4ac. Его свойства:
- если D 0, есть два различных корня.
В случае, когда второй коэффициент четный, можно воспользоваться формулой нахождения дискриминанта , где .
В математике теоремой принято называть утверждение, у которого ранее было сформулировано доказательство.
Видео:найти корень по теореме Виета и свободный член уравненияСкачать
Формула Виета
Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:
Рассмотрим квадратное уравнение, в котором первый коэффициент равен 1: . Такие уравнения называют приведенными квадратными уравнениями. Сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.
Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:
Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.
Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.
Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:
Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:
Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>
Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>
Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>
Результат проделанных вычислений в том, что мы убедились в справедливости выражения:
Обучение на курсах по математике помогает быстрее разобраться в новых темах и подтянуть оценки в школе.
Видео:Быстрый способ решения квадратного уравненияСкачать
Доказательство теоремы Виета
Дано квадратное уравнение x 2 + bx + c = 0. Если его дискриминант больше нуля, то оно имеет два корня, сумма которых равна второму коэффициенту с противоположным знаком, а произведение корней равно свободному члену:
Докажем, что следующие равенства верны
- x₁ + x₂ = −b,
- x₁ * x₂ = c.