Если одно из уравнений системы не имеет решений то вся система не имеет решений

Содержание
  1. Если одно из уравнений системы не имеет решений то вся система не имеет решений
  2. Системы линейных уравнений
  3. Линейные уравнения (уравнения первой степени) с двумя неизвестными
  4. Системы из двух линейных уравнений с двумя неизвестными
  5. Системы из трех линейных уравнений с тремя неизвестными
  6. Как решать систему уравнений
  7. Основные понятия
  8. Линейное уравнение с двумя переменными
  9. Система двух линейных уравнений с двумя переменными
  10. Метод подстановки
  11. Пример 1
  12. Пример 2
  13. Пример 3
  14. Метод сложения
  15. Система линейных уравнений с тремя переменными
  16. Решение задач
  17. Задание 1. Как привести уравнение к стандартному виду ах + by + c = 0?
  18. Задание 2. Как решать систему уравнений способом подстановки
  19. Задание 3. Как решать систему уравнений методом сложения
  20. Задание 4. Решить систему уравнений
  21. Задание 5. Как решить систему уравнений с двумя неизвестными
  22. 📽️ Видео

Видео:огэ математика. №14 Какая система не имеет решений. Сколько решений имеет система?Скачать

огэ математика. №14 Какая система не имеет решений. Сколько решений имеет система?

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Системой m линейных уравнений с n неизвестными называется система вида

Если одно из уравнений системы не имеет решений то вся система не имеет решений

где aij и bi (i=1,…,m; b=1,…,n) – некоторые известные числа, а x1,…,xn – неизвестные. В обозначении коэффициентов aij первый индекс iобозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент.

Коэффициенты при неизвестных будем записывать в виде матрицы Если одно из уравнений системы не имеет решений то вся система не имеет решений, которую назовём матрицей системы.

Числа, стоящие в правых частях уравнений, b1,…,bm называются свободными членами.

Совокупность n чисел c1,…,cn называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c1,…,cn вместо соответствующих неизвестных x1,…,xn.

Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации:

  1. Система может иметь единственное решение.
  2. Система может иметь бесконечное множество решений. Например, Если одно из уравнений системы не имеет решений то вся система не имеет решений. Решением этой системы является любая пара чисел, отличающихся знаком.
  3. И третий случай, когда система вообще не имеет решения. Например, Если одно из уравнений системы не имеет решений то вся система не имеет решений, если бы решение существовало, то x1 + x2 равнялось бы одновременно нулю и единице.

Система линейных уравнений, имеющая хотя бы одно решение, называется совместной. В противном случае, т.е. если система не имеет решений, то она называется несовместной.

Рассмотрим способы нахождения решений системы.

МАТРИЧНЫЙ МЕТОД РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Рассмотрим матрицу системы Если одно из уравнений системы не имеет решений то вся система не имеет решенийи матрицы столбцы неизвестных и свободных членов Если одно из уравнений системы не имеет решений то вся система не имеет решений

Если одно из уравнений системы не имеет решений то вся система не имеет решений

т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде

Если одно из уравнений системы не имеет решений то вся система не имеет решенийили короче AX=B.

Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением.

Пусть определитель матрицы отличен от нуля |A| ≠ 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A -1 , обратную матрице A: Если одно из уравнений системы не имеет решений то вся система не имеет решений. Поскольку A -1 A = E и EX = X, то получаем решение матричного уравнения в виде X = A -1 B.

Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных. Однако, матричная запись системы возможна и в случае, когда число уравнений не равно числу неизвестных, тогда матрица A не будет квадратной и поэтому нельзя найти решение системы в виде X = A -1 B.

Примеры. Решить системы уравнений.

    Если одно из уравнений системы не имеет решений то вся система не имеет решений

Найдем матрицу обратную матрице A.

Если одно из уравнений системы не имеет решений то вся система не имеет решений, Если одно из уравнений системы не имеет решений то вся система не имеет решений

Таким образом, x = 3, y = – 1.

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Решите матричное уравнение: XA+B=C, где Если одно из уравнений системы не имеет решений то вся система не имеет решений

Выразим искомую матрицу X из заданного уравнения.

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Найдем матрицу А -1 .

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Решите матричное уравнение AX+B=C, где Если одно из уравнений системы не имеет решений то вся система не имеет решений

Из уравнения получаем Если одно из уравнений системы не имеет решений то вся система не имеет решений.

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Следовательно,Если одно из уравнений системы не имеет решений то вся система не имеет решений

Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных,

Если одно из уравнений системы не имеет решений то вся система не имеет решений

называется определителем системы.

Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Тогда можно доказать следующий результат.

Теорема (правило Крамера). Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Доказательство. Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A11 элемента a11, 2-ое уравнение – на A21 и 3-е – на A31:

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Сложим эти уравнения:

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца

Если одно из уравнений системы не имеет решений то вся система не имеет решений.

Далее рассмотрим коэффициенты при x2:

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Аналогично можно показать, что и Если одно из уравнений системы не имеет решений то вся система не имеет решений.

Наконец несложно заметить, что Если одно из уравнений системы не имеет решений то вся система не имеет решений

Таким образом, получаем равенство: Если одно из уравнений системы не имеет решений то вся система не имеет решений.

Следовательно, Если одно из уравнений системы не имеет решений то вся система не имеет решений.

Аналогично выводятся равенства Если одно из уравнений системы не имеет решений то вся система не имеет решенийи Если одно из уравнений системы не имеет решений то вся система не имеет решений, откуда и следует утверждение теоремы.

Таким образом, заметим, что если определитель системы Δ ≠ 0, то система имеет единственное решение и обратно. Если же определитель системы равен нулю, то система либо имеет бесконечное множество решений, либо не имеет решений, т.е. несовместна.

Примеры. Решить систему уравнений

    Если одно из уравнений системы не имеет решений то вся система не имеет решений

Решите систему уравнений при различных значениях параметра p: Если одно из уравнений системы не имеет решений то вся система не имеет решений

Система имеет единственное решение, если Δ ≠ 0.

Если одно из уравнений системы не имеет решений то вся система не имеет решений. Поэтому Если одно из уравнений системы не имеет решений то вся система не имеет решений.

Если одно из уравнений системы не имеет решений то вся система не имеет решений

  1. При Если одно из уравнений системы не имеет решений то вся система не имеет решений
  2. При p = 30 получаем систему уравнений Если одно из уравнений системы не имеет решений то вся система не имеет решенийкоторая не имеет решений.
  3. При p = –30 система принимает вид Если одно из уравнений системы не имеет решений то вся система не имеет решенийи, следовательно, имеет бесконечное множество решений x=y,y Î R.

Ранее рассмотренные методы можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений. Он заключается в последовательном исключении неизвестных из уравнений системы.

Вновь рассмотрим систему из трёх уравнений с тремя неизвестными:

Если одно из уравнений системы не имеет решений то вся система не имеет решений.

Первое уравнение оставим без изменения, а из 2-го и 3-го исключим слагаемые, содержащие x1. Для этого второе уравнение разделим на а21 и умножим на –а11, а затем сложим с 1-ым уравнением. Аналогично третье уравнение разделим на а31 и умножим на –а11, а затем сложим с первым. В результате исходная система примет вид:

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Теперь из последнего уравнения исключим слагаемое, содержащее x2. Для этого третье уравнение разделим на Если одно из уравнений системы не имеет решений то вся система не имеет решений, умножим на Если одно из уравнений системы не имеет решений то вся система не имеет решенийи сложим со вторым. Тогда будем иметь систему уравнений:

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Отсюда из последнего уравнения легко найти x3, затем из 2-го уравнения x2 и, наконец, из 1-го – x1.

При использовании метода Гаусса уравнения при необходимости можно менять местами.

Часто вместо того, чтобы писать новую систему уравнений, ограничиваются тем, что выписывают расширенную матрицу системы:

Если одно из уравнений системы не имеет решений то вся система не имеет решений

и затем приводят её к треугольному или диагональному виду с помощью элементарных преобразований.

К элементарным преобразованиям матрицы относятся следующие преобразования:

  1. перестановка строк или столбцов;
  2. умножение строки на число, отличное от нуля;
  3. прибавление к одной строке другие строки.

Примеры: Решить системы уравнений методом Гаусса.

    Если одно из уравнений системы не имеет решений то вся система не имеет решений

Вернувшись к системе уравнений, будем иметь

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Выпишем расширенную матрицу системы и сведем ее к треугольному виду.

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Вернувшись к системе уравнений, несложно заметить, что третье уравнения системы будет ложным, а значит, система решений не имеет.

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Разделим вторую строку матрицы на 2 и поменяем местами первый и третий столбики. Тогда первый столбец будет соответствовать коэффициентам при неизвестной z, а третий – при x.

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Вернемся к системе уравнений. Если одно из уравнений системы не имеет решений то вся система не имеет решений

Из третьего уравнения выразим одну неизвестную через другую и подставим в первое.

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Таким образом, система имеет бесконечное множество решений.

Видео:Система уравнений не имеет решений или имеет бесчисленное множество решенийСкачать

Система уравнений не имеет решений или имеет бесчисленное множество решений

Системы линейных уравнений

Если одно из уравнений системы не имеет решений то вся система не имеет решенийЛинейные уравнения (уравнения первой степени) с двумя неизвестными
Если одно из уравнений системы не имеет решений то вся система не имеет решенийСистемы из двух линейных уравнений с двумя неизвестными
Если одно из уравнений системы не имеет решений то вся система не имеет решенийСистемы из трех линейных уравнений с тремя неизвестными

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Линейные уравнения (уравнения первой степени) с двумя неизвестными

Определение 1 . Линейным уравнением (уравнением первой степени) с двумя неизвестными x и y называют уравнение, имеющее вид

ax +by = c ,(1)

где a , b , c – заданные числа.

Определение 2 . Решением уравнения (1) называют пару чисел (x ; y) , для которых формула (1) является верным равенством.

Пример 1 . Найти решение уравнения

2x +3y = 10(2)

Решение . Выразим из равенства (2) переменную y через переменную x :

Если одно из уравнений системы не имеет решений то вся система не имеет решений(3)

Из формулы (3) следует, что решениями уравнения (2) служат все пары чисел вида

Если одно из уравнений системы не имеет решений то вся система не имеет решений

где x – любое число.

Замечание . Как видно из решения примера 1, уравнение (2) имеет бесконечно много решений. Однако важно отметить, что не любая пара чисел (x ; y) является решением этого уравнения. Для того, чтобы получить какое-нибудь решение уравнения (2), число x можно взять любым, а число y после этого вычислить по формуле (3).

Видео:15. Однородная система линейных уравнений / фундаментальная система решенийСкачать

15. Однородная система линейных уравнений / фундаментальная система решений

Системы из двух линейных уравнений с двумя неизвестными

Определение 3 . Системой из двух линейных уравнений с двумя неизвестными x и y называют систему уравнений, имеющую вид

Если одно из уравнений системы не имеет решений то вся система не имеет решений(4)

Определение 4 . В системе уравнений (4) числа a1 , b1 , a2 , b2 называют коэффициентами при неизвестных , а числа c1 , c2 – свободными членами .

Определение 5 . Решением системы уравнений (4) называют пару чисел (x ; y) , являющуюся решением как одного, так и другого уравнения системы (4).

Определение 6 . Две системы уравнений называют равносильными (эквивалентными) , если все решения первой системы уравнений являются решениями второй системы, и все решения второй системы являются решениями первой системы.

Равносильность систем уравнений обозначают, используя символ «Если одно из уравнений системы не имеет решений то вся система не имеет решений»

Системы линейных уравнений решают с помощью метода последовательного исключения неизвестных , который мы проиллюстрируем на примерах.

Пример 2 . Решить систему уравнений

Если одно из уравнений системы не имеет решений то вся система не имеет решений(5)

Решение . Для того, чтобы решить систему (5) исключим из второго уравнения системы неизвестное х .

С этой целью сначала преобразуем систему (5) к виду, в котором коэффициенты при неизвестном x в первом и втором уравнениях системы станут одинаковыми.

Если первое уравнение системы (5) умножить на коэффициент, стоящий при x во втором уравнении (число 7 ), а второе уравнение умножить на коэффициент, стоящий при x в первом уравнении (число 2 ), то система (5) примет вид

Если одно из уравнений системы не имеет решений то вся система не имеет решений(6)

Теперь совершим над системой (6) следующие преобразования:

  • первое уравнение системы оставим без изменений;
  • из второго уравнения вычтем первое уравнение и заменим второе уравнение системы на полученную разность.

В результате система (6) преобразуется в равносильную ей систему

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Из второго уравнения находим y = 3 , и, подставив это значение в первое уравнение, получаем

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Пример 3 . Найти все значения параметра p , при которых система уравнений

Если одно из уравнений системы не имеет решений то вся система не имеет решений(7)

а) имеет единственное решение;

б) имеет бесконечно много решений;

в) не имеет решений.

Решение . Выражая x через y из второго уравнения системы (7) и подставляя полученное выражение вместо x в первое уравнение системы (7), получим

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Следовательно, система (7) равносильна системе

Если одно из уравнений системы не имеет решений то вся система не имеет решений(8)

Исследуем решения системы (8) в зависимости от значений параметра p . Для этого сначала рассмотрим первое уравнение системы (8):

y (2 – p) (2 + p) = 2 + p(9)

Если Если одно из уравнений системы не имеет решений то вся система не имеет решений, то уравнение (9) имеет единственное решение

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Следовательно, система (8) равносильна системе

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Таким образом, в случае, когда Если одно из уравнений системы не имеет решений то вся система не имеет решений, система (7) имеет единственное решение

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Если p = – 2 , то уравнение (9) принимает вид

Если одно из уравнений системы не имеет решений то вся система не имеет решений,

и его решением является любое число Если одно из уравнений системы не имеет решений то вся система не имеет решений. Поэтому решением системы (7) служит бесконечное множество всех пар чисел

Если одно из уравнений системы не имеет решений то вся система не имеет решений,

где y – любое число.

Если p = 2 , то уравнение (9) принимает вид

Если одно из уравнений системы не имеет решений то вся система не имеет решений

и решений не имеет, откуда вытекает, что и система (7) решений не имеет.

Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Системы из трех линейных уравнений с тремя неизвестными

Определение 7 . Системой из трех линейных уравнений с тремя неизвестными x , y и z называют систему уравнений, имеющую вид

Если одно из уравнений системы не имеет решений то вся система не имеет решений(10)

Определение 9 . Решением системы уравнений (10) называют тройку чисел (x ; y ; z) , при подстановке которых в каждое из трех уравнений системы (10) получается верное равенство.

Пример 4 . Решить систему уравнений

Если одно из уравнений системы не имеет решений то вся система не имеет решений(11)

Решение . Будем решать систему (11) при помощи метода последовательного исключения неизвестных .

Для этого сначала исключим из второго и третьего уравнений системы неизвестное y , совершив над системой (11) следующие преобразования:

  • первое уравнение системы оставим без изменений;
  • ко второму уравнению прибавим первое уравнение и заменим второе уравнение системы на полученную сумму;
  • из третьего уравнения вычтем первое уравнение и заменим третье уравнение системы на полученную разность.

В результате система (11) преобразуется в равносильную ей систему

Если одно из уравнений системы не имеет решений то вся система не имеет решений(12)

Теперь исключим из третьего уравнения системы неизвестное x , совершив над системой (12) следующие преобразования:

  • первое и второе уравнения системы оставим без изменений;
  • из третьего уравнения вычтем второе уравнение и заменим третье уравнение системы на полученную разность.

В результате система (12) преобразуется в равносильную ей систему

Если одно из уравнений системы не имеет решений то вся система не имеет решений(13)

Из системы (13) последовательно находим

Пример 5 . Решить систему уравнений

Если одно из уравнений системы не имеет решений то вся система не имеет решений(14)

Решение . Заметим, что из данной системы можно получить удобное следствие, сложив все три уравнения системы:

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Если числа (x ; y ; z) являются решением системы (14), то они должны удовлетворять и уравнению (15). Однако в таком случае числа (x ; y ; z) должны также быть решением системы, которая получается, если из каждого уравнения системы (14) вычесть уравнение (15):

Если одно из уравнений системы не имеет решений то вся система не имеет решений

Поскольку мы использовали следствие из системы (14), не задумываясь о том, являются ли сделанные преобразования системы (14) равносильными, то полученный результат нужно проверить. Подставив тройку чисел (3 ; 0 ; –1) в исходную систему (14), убеждаемся, что числа (3 ; 0 ; –1) действительно являются ее решением.

Замечание . Рекомендуем посетителю нашего сайта, интересующемуся методами решения систем уравнений, ознакомиться также c разделом справочника «Системы с нелинейными уравнениями» и нашим учебным пособием «Системы уравнений».

Видео:Решение систем уравнений второго порядка. 8 класс.Скачать

Решение систем уравнений второго порядка. 8 класс.

Как решать систему уравнений

Если одно из уравнений системы не имеет решений то вся система не имеет решений

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Видео:Система уравнений не имеет решений | Системы уравнений | Алгебра 1Скачать

Система уравнений не имеет решений | Системы уравнений | Алгебра 1

Основные понятия

Алгебра в 8 и 9 классе становится сложнее. Но если изучать темы последовательно и регулярно практиковаться в тетрадке и онлайн — ходить на уроки математики будет не так страшно.

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в исходное уравнение получилось верное числовое равенство.

Например, возьмем 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.

Уравнением можно назвать, например, равенство 3 + x = 7 с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Система уравнений — это несколько уравнений, для которых надо найти значения неизвестных, каждое из которых соответствует данным уравнениям.

Так как существует множество уравнений, составленных с их использованием систем уравнений также много. Поэтому для удобства изучения существуют отдельные группы по схожим характеристикам. Рассмотрим способы решения систем уравнений.

Видео:#75 Урок 36. Определение количества решений системы уравнений. Алгебра 7 класс.Скачать

#75 Урок 36. Определение количества решений системы уравнений. Алгебра 7 класс.

Линейное уравнение с двумя переменными

Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому уравнению и обращает его в верное числовое равенство.

Теорема, которую нужно запомнить: если в линейном уравнение есть хотя бы один не нулевой коэффициент при переменной — его графиком будет прямая линия.

Вот алгоритм построения графика ax + by + c = 0, где a ≠ 0, b ≠ 0:

Дать переменной 𝑥 конкретное значение x = x₁, и найти значение y = y₁ при ax₁ + by + c = 0.

Дать x другое значение x = x₂, и найти соответствующее значение y = y₂ при ax₂ + by + c = 0.

Построить на координатной плоскости xy точки: (x₁; y₁); (x₂; y₂).

Провести прямую через эти две точки и вуаля — график готов.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Видео:Алгебраическое определение количества решений системы линейных уравнений | Алгебра IСкачать

Алгебраическое определение количества решений системы линейных уравнений |  Алгебра I

Система двух линейных уравнений с двумя переменными

Для ax + by + c = 0 можно сколько угодно раз брать произвольные значение для x и находить значения для y. Решений в таком случае может быть бесчисленное множество.

Система линейных уравнений (ЛУ) с двумя переменными образуется в случае, когда x и y связаны не одним, а двумя уравнениями. Такая система может иметь одно решение или не иметь решений совсем. Выглядит это вот так:

Из первого линейного уравнения a₁x + b₁y + c₁ = 0 можно получить линейную функцию, при условии если b₁ ≠ 0: y = k₁x + m₁. График — прямая линия.

Из второго ЛУ a₂x + b₂y + c₂ = 0 можно получить линейную функцию, если b₂ ≠ 0: y = k₂x + m₂. Графиком снова будет прямая линия.

Можно записать систему иначе:

Множеством решений первого ЛУ является множество точек, лежащих на определенной прямой, аналогично и для второго ЛУ. Если эти прямые пересекаются — у системы есть единственное решение. Это возможно при условии, если k₁ ≠ k₂.

Две прямые могут быть параллельны, а значит, они никогда не пересекутся и система не будет иметь решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ ≠ m₂.

Две прямые могут совпасть, и тогда каждая точка будет решением, а у системы будет бесчисленное множество решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ = m₂.

Видео:9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

Метод подстановки

Разберем решение систем уравнений методом подстановки. Вот алгоритм при переменных x и y:

Выразить одну переменную через другую из более простого уравнения системы.

Подставить то, что получилось на место этой переменной в другое уравнение системы.

Решить полученное уравнение, найти одну из переменных.

Подставить поочередно каждый из найденных корней в уравнение, которое получили на первом шаге, и найти второе неизвестное значение.

Записать ответ. Ответ принято записывать в виде пар значений (x; y).

Решим систему уравнений методом подстановки

Потренируемся решать системы линейных уравнений методом подстановки.

Пример 1

Решите систему уравнений:

x − y = 4
x + 2y = 10

Выразим x из первого уравнения:

x − y = 4
x = 4 + y

Подставим получившееся выражение во второе уравнение вместо x:

x + 2y = 10
4 + y + 2y = 10

Решим второе уравнение относительно переменной y:

4 + y + 2y = 10
4 + 3y = 10
3y = 10 − 4
3y = 6
y = 6 : 3
y = 2

Полученное значение подставим в первое уравнение вместо y и решим уравнение:

x − y = 4
x − 2 = 4
x = 4 + 2
x = 6

Ответ: (6; 2).

Пример 2

Решите систему линейных уравнений:

x + 5y = 7
3x = 4 + 2y

Сначала выразим переменную x из первого уравнения:

x + 5y = 7
x = 7 − 5y

Выражение 7 − 5y подставим вместо переменной x во второе уравнение:

3x = 4 + 2y
3 (7 − 5y) = 4 + 2y

Решим второе линейное уравнение в системе:

3 (7 − 5y) = 4 + 2y
21 − 15y = 4 + 2y
21 − 15y − 2y = 4
21 − 17y = 4
17y = 21 − 4
17y = 17
y = 17 : 17
y = 1

Подставим значение y в первое уравнение и найдем значение x:

x + 5y = 7
x + 5 = 7
x = 7 − 5
x = 2

Ответ: (2; 1).

Пример 3

Решите систему линейных уравнений:

x − 2y = 3
5x + y = 4

Из первого уравнения выразим x:

x − 2y = 3
x = 3 + 2y

Подставим 3 + 2y во второе уравнение системы и решим его:

5x + y = 4
5 (3 + 2y) + y = 4
15 + 10y + y = 4
15 + 11y = 4
11y = 4 − 15
11y = −11
y = −11 : 11
y = −1

Подставим получившееся значение в первое уравнение и решим его:

x − 2y = 3
x − 2 (−1) = 3
x + 2 = 3
x = 3 − 2
x = 1

Ответ: (1; −1).

Видео:Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

Метод сложения

Теперь решим систему уравнений способом сложения. Алгоритм с переменными x и y:

При необходимости умножаем почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами.

Складываем почленно левые и правые части уравнений системы.

Решаем получившееся уравнение с одной переменной.

Находим соответствующие значения второй переменной.

Запишем ответ в в виде пар значений (x; y).

Пример.

Домножим первое уравнение системы на -2, второе оставим без изменений. Система примет вид:

Сложим уравнения, получим

Отсюда y = -3, а, значит, x = 2

Ответ: (2; -3).

Видео:Решение систем уравнений второй степени. Алгебра, 9 классСкачать

Решение систем уравнений второй степени. Алгебра, 9 класс

Система линейных уравнений с тремя переменными

Системы ЛУ с тремя переменными решают так же, как и с двумя. В них присутствуют три неизвестных с коэффициентами и свободный член. Выглядит так:

Решений в таком случае может быть бесчисленное множество. Придавая двум переменным различные значения, можно найти третье значение. Ответ принято записывать в виде тройки значений (x; y; z).

Если x, y, z связаны между собой тремя уравнениями, то образуется система трех ЛУ с тремя переменными. Для решения такой системы можно применять метод подстановки и метод сложения.

Видео:Решение системы неравенствСкачать

Решение системы неравенств

Решение задач

Разберем примеры решения систем уравнений.

Задание 1. Как привести уравнение к стандартному виду ах + by + c = 0?

5x − 8y = 4x − 9y + 3

5x − 8y = 4x − 9y + 3

5x − 8y − 4x + 9y = 3

Задание 2. Как решать систему уравнений способом подстановки

Выразить у из первого уравнения:

Подставить полученное выражение во второе уравнение:

Найти соответствующие значения у:

Задание 3. Как решать систему уравнений методом сложения

  1. Решение систем линейных уравнений начинается с внимательного просмотра задачи. Заметим, что можно исключить у. Для этого умножим первое уравнение на минус два и сложим со вторым:
  1. Решаем полученное квадратное уравнение любым способом. Находим его корни:
  1. Найти у, подставив найденное значение в любое уравнение:
  1. Ответ: (1; 1), (1; -1).

Задание 4. Решить систему уравнений

Решим второе уравнение и найдем х = 2, х = 5. Подставим значение переменной х в первое уравнение и найдем соответствующее значение у.

Задание 5. Как решить систему уравнений с двумя неизвестными

При у = -2 первое уравнение не имеет решений, при у = 2 получается:

📽️ Видео

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэ

Решение системы уравнений методом Гаусса. Бесконечное множество решенийСкачать

Решение системы уравнений методом Гаусса. Бесконечное множество решений

При каких λ однородная система уравнений имеет ненулевое решение?Скачать

При каких λ однородная система уравнений имеет ненулевое решение?

СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать

СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэ

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

Способы решения систем нелинейных уравнений. 9 класс.Скачать

Способы решения систем нелинейных уравнений. 9 класс.

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.
Поделиться или сохранить к себе: