Если какое либо слагаемое перенести из одной части уравнения в другую доказательство

Равносильные уравнения. Теоремы о равносильности уравнений

Определение. Два уравнения f1(х) = g1(х) и f2(х) = g2(х) называют­ся равносильными, если множества их корней совпадают.

Например, уравнения х 2 — 9 = 0 и (2 х + 6)( х — 3) = 0 равносильны, так как оба имеют своими корнями числа 3 и -3. Равносильны и урав­нения (3х + 1)-2 = х 2 — + 1 и х 2 + 1 = 0, так как оба не имеют корней, т.е. множества их корней совпадают.

Определение. Замена уравнения равносильным ему уравнением на­зывается равносильным преобразованием.

Выясним теперь, какие преобразования позволяют получать рав­носильные уравнения.

Теорема 1.Пусть уравнение f(х) и g(х)задано на множестве и h(x) — выражение, определенное на том же множестве. Тогда уравнения f(х) = g(х) (1)и f(х) + h(x) = g(х) + h(x) (2) равносильны.

Доказательство. Обозначим через Т1 множество решений уравнения (1), а через Т2 множество решений уравнения (2). Тогда уравнения (1) и (2) будут равносильны, если Т1 = Т2. Чтобы убедиться в этом, необходимо показать, что любой корень из Т1 является корнем уравнения (2) и, наоборот, любой корень из Т2 является корнем урав­нения (1).

Пусть число а — корень уравнения (1). Тогда a ? Т1, и при подста­новке в уравнение (1) обращает его в истинное числовое равенство f(a) = g(a), а выражение h(х) обращает в числовое выражение h(a), имеющее смысл на множестве X. Прибавим к обеим частям истинно­го равенства f(a) = g(a) числовое выражение h(a). Получим, согласно свойствам истинных числовых равенств, истинное числовое равенст­во f(a) + h(a) = g(a) + h(a), которое свидетельствует о том, что число а является корнем уравнения (2).

Итак, доказано, что каждый корень уравнения (1) является корнем и уравнения (2), т.е. Т1 с T2.

Пусть теперь а — корень уравнения (2). Тогда а ? T2 и при подста­новке в уравнение (2) обращает его в истинное числовое равенство f(a) + h(a) = g(a) + h(a). Прибавим к обеим частям этого равенства чис­ловое выражение —h(a), Получим истинное числовое равенство f(х) = g(х), которое свидетельствует о том, что число а — корень уравнения (1).

Итак, доказано, что каждый корень уравнения (2) является и кор­нем уравнения (1), т.е. T2 с Т1.

Так как Т1 с Т2 и Т2 с Т1, то по определению равных множеств Т1 = Т2, а значит, уравнения (1) и (2) равносильны.

Данную теорему можно сформулировать иначе: если к обеим частям уравнения с областью определения X прибавить одно и то же выраже­ние с переменной, определенное на том же множестве, то получим новое уравнение, равносильное данному.

Из этой теоремы вытекают следствия, которые используются при решении уравнений:

1.Если к обеим частям уравнения прибавить одно и то лее число, то получим уравнение, равносильное данному.

2. Если какое-либо слагаемое (числовое выражение или выражение с переменной) перенести из одной части уравнения в другую, поменяв знак слагаемого на противоположный, то получим уравнение, равносильное данному.

Теорема 2. Пусть уравнение f(х) = g(х) задано на множестве X и h(х) — выражение, которое определено на том же множестве и не об­ращается в нуль ни при каких значениях х из множества X. Тогда уравнения f(х) = g(х) и f(х) · h(x) = g(х) · h(x) равносильны.

Доказательство этой теоремы аналогично доказательству теоремы 1.

Теорему 2 можно сформулировать иначе: если обе части уравнения с областью определения X умножить на одно и то же выражение, кото­рое определено на том же множестве и не обращается на нем в нуль, то получим новое уравнение, равносильное данному.

Из этой теоремы вытекает следствие: если обе части уравнения ум­ножить (или разделить) на одно и то же число, отличное от нуля, то получим уравнение, равносильное данному.

Решение уравнений с одной переменной

Решим уравнение 1- x/3 = x/6, x ? R и обоснуем все преобразования, которые мы будем выполнять в процессе решения.

ПреобразованияОбоснование преобразования
1. Приведем выражения, стоящие в левой и правой частях уравнения, к общему знаменателю: (6-2х)/ 6 = х/6Выполнили тождественное преобразование выражения в левой части уравнения.
2. Отбросим общий знаменатель: 6-2х = хУмножили на 6 обе части уравнения (теорема 2), получили уравнение, равносильное данному.
3. Выражение -2х переносим в правую часть уравнения с проти­воположным знаком: 6 = х+2х.Воспользовались следствием из теоремы 1, получили уравнение, равносильное предыдущему и, значит, данному.
4. Приводим подобные члены в правой части уравнения: 6 = 3х.Выполнили тождественное пре­образование выражения.
5. Разделим обе части уравнения на 3: х = 2.Воспользовались следствием из теоремы 2, получили уравнение, равносильное предыдущему, а значит, и данному

Так как все преобразования, которые мы выполняли, решая данное уравнение, были равносильными, то можно утверждать, что 2 — ко­рень этого уравнения.

Если же в процессе решения уравнения не выполняются условия теорем 1 и 2, то может произойти потеря корней или могут появиться посторонние корни. Поэтому важно, осуществляя преобразования уравнения с целью получения более простого, следить за тем, чтобы они приводили к уравнению, равносильному данному.

Рассмотрим, например, уравнение х(х — 1) = 2х, х ? R. Разделим обе части на х, получим уравнение х — 1 = 2, откуда х = 3, т. е. данное уравнение имеет единственный корень — число 3. Но верно ли это? Не­трудно видеть, что если в данное уравнение вместо переменной х подставить 0, оно обратится в истинное числовое равенство 0·(0 — 1) = 2·0. А это означает, что 0 — корень данного уравнения, который мы поте­ряли, выполняя преобразования. Проанализируем их. Первое, что мы сделали, — это разделили обе части уравнения на х, т.е. умножили на выражение1/x , но при х = О оно не имеет смысла. Следовательно, мы не выполнили условие теоремы 2, что и привело к потере корня.

Чтобы убедиться в том, что множество корней данного уравне­ния состоит из двух чисел 0 и 3, приведем другое его решение. Пере­несем выражение 2х из правой части в левую: х(х — 1) — 2х = 0. Выне­сем в левой части уравнения за скобки х и приведем подобные члены: х(х — 3) = 0. Произведение двух множителей равно нулю в том и толь­ко в том случае, когда хотя бы один из них равен нулю, поэтому x= 0 или х — 3 = 0. Отсюда получаем, что корни данного уравнения — 0 и 3.

В начальном курсе математики теоретической основой решения уравнений является взаимосвязь между компонентами и результатами действий. Например, решение уравнения (х·9):24 = 3 обосновывается следующим образом. Так как неизвестное находится в делимом, то, чтобы найти делимое, надо делитель умножить на частное: х ·9 = 24·3, или х·9 = 72.

Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель: х = 72:9, или х = 8, следовательно, корнем данного уравнения является число 8.

Упражнения

1. Установите, какие из следующих записей являются уравнениями с одной переменной:

а) (х -3)·5 = 12х; г) 3 + (12-7)· 5 = 16;

в) (х-3)·17 + 12; е) х 2 — 2х + 5 = 0.

2.Уравнение 2 х 4 + 4 х 2 -6 = 0 задано на множестве натуральных чисел. Объясните, почему число 1 является корнем этого уравнения, а 2 и -1 не являются его корнями.

3.В уравнении (х + . )(2 х + 5) — (х — 3)(2 х + 1) = 20 одно число стерто и заменено точками. Найдите стертое число, если известно, что корнем этого уравнения является число 2.

4.Сформулируйте условия, при которых:

а) число 5 является корнем уравнения f(х) = g(х);

б) число 7 не является корнем уравнения f(х) = g(х).

5. Установите, какие из следующих пар уравнений равносильны на множестве действительных чисел:

а) 3 + 7 х = -4 и 2(3 + 7л х) = -8;

6)3 + 7 х = -4 и 6 + 7 х = -1;

в)3 + 7 х = -4 и л х + 2 = 0.

6. Сформулируйте свойства отношения равносильности уравнений. Какие из них используются в процессе решения уравнения?

7. Решите уравнения (все они заданы на множестве действительных чисел) и обоснуйте все преобразования, выполняемые в процессе их упрощения:

8. Учащийся решил уравнение 5 х + 15 = 3 х + 9 следующим образом: вынес за скобки в левой части число 5, а в правой число 3, полу­чил уравнение 5(х + 3) = 3(х + 3), а затем разделил обе части на вы­ражение х + 3. Получил равенство 5 = 3 и сделал вывод – данное уравнение корней не имеет. Прав ли учащийся?

9. Решите уравнение 2/(2-x) – ½ = 4/((2-x)x); х ? R. Является ли число 2 корнем этого уравнения?

10. Решите уравнения, используя взаимосвязь между компонентами и результатами действий:

а) (х + 70)·4 = 328; в) (85 х + 765): 170 = 98;

б) 560: (х + 9) — 56; г) (х — 13581):709 = 306.

11. Решите задачи арифметическим и алгебраическим способами:

а) На первой полке на 16 книг больше, чем на второй. Если с каж­дой полки снять по 3 книги, то на первой полке книг будет в полтора раза больше, чем на второй. Сколько книг на каждой полке?

б) Весь путь от турбазы до станции, равный 26 км, велосипедист проехал за 1 ч 10 мин. Первые 40 мин этого времени он ехал с одной скоростью, а остальное время — со скоростью на 3 км/ч меньше. Най­дите скорость велосипедиста на первом участке пути.

Если какое либо слагаемое перенести из одной части уравнения в другую доказательство

Если какое либо слагаемое перенести из одной части уравнения в другую доказательство

Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам.

Если какое либо слагаемое перенести из одной части уравнения в другую доказательство

Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор.

Если какое либо слагаемое перенести из одной части уравнения в другую доказательство

Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем.

Если какое либо слагаемое перенести из одной части уравнения в другую доказательство

Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право.

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Видео:Виды уравнений. Свойства уравнений. Перенос слагаемых из одной части уравнения в другую. Алгебра 7.Скачать

Виды уравнений. Свойства уравнений. Перенос слагаемых из одной части уравнения в другую. Алгебра 7.

1. Понятие уравнения и его корней

Равенство с переменной называ­ется уравнением. В общем виде урав­нение с одной переменной x записы­вают так: f (я) = g (я).

Под этой краткой записью пони­мают математическую запись задачи о нахождении значений аргумента, при которых значения двух данных функций равны.

2х = —1 — линейное уравнение; х 2 — 3х + 2 = 0 — квадратное уравнение; чJx + 2 = x — иррациональное уравнение (содер­жит переменную под знаком корня).

Корнем (или решением) уравне­ния с одной переменной называется значение переменной, при подста­новке которого в уравнение получа­ется верное равенство.

Решить уравнение — значит най­ти все его корни (и обосновать, что других корней нет) или доказать, что корней нет.

x = 2 — корень уравнения /x + 2 = x, так как при x = 2 получаем верное равенство: -Д = 2, то есть 2 = 2.

2. Область допустимых значений (ОДЗ)

Областью допустимых зна­чений (или областью опреде­ления) уравнения называется общая область определения для функций f (x) и g (x), стоя­щих в левой и правой частях уравнения.

Для уравнения л/x + 2 = x ОДЗ: x + 2 1 0, то есть x 1 —2, так как область определения функции f (x) = yj x + 2 опре­деляется условием: x + 2 1 0, а область определения функции g (x) = x — множе­ство всех действительных чисел.

Если каждый корень первого уравне­ния является корнем второго, то второе уравнение называется следствием пер­вого уравнения.

Если из правильности первого равенства следует правильность каждого последую­щего, то получаем уравнения-следствия.

При использовании уравнений-след­ствий не происходит потери корней ис­ходного уравнения, но возможно появление посторонних корней. Поэтому при исполь­зовании уравнений-следствий проверка полученных корней подстановкой их в ис­ходное уравнение является составной час­тью решения (см. пункт 5 этой таблицы).

► Возведем обе части уравне­ния в квадрат:

(x + 2) = x 2 , x + 2 = x 2 , x 2 — x — 2 = 0, x1 = 2, x2 = —1. Проверка. x = 2 — корень (см. выше); x = —1 — посторонний ко­рень (при х = —1 получаем не­верное равенство 1 = —1). Ответ: 2. 2 = х обла­стью допустимых значений являются все действительные числа. Это можно записать, например, так. ОДЗ: R, поскольку функции f (x) = x 2 и g (x) = x имеют области определения R.

Понятно, что каждый корень данного уравнения принадлежит как об­ласти определения функции f (x), так и области определения функции g (x) (иначе мы не сможем получить верное числовое равенство). Поэтому каж­дый корень уравнения обязательно принадлежит ОДЗ этого уравнения. Это позволяет в некоторых случаях применить анализ ОДЗ уравнения при его решении.

Например, в уравнении л/x — 2 + /1 — x = x функция g (x) = x определена при всех действительных значениях x, а функция f (x) = л/x — 2 + VT — x ко при условии, что под знаком квадратного корня будут стоять неотрица­тельные выражения. Следовательно, ОДЗ этого уравнения задается систе-

мой -! из которой получаем систему -! не имеющую решений.

[1 — x 10, [x 2 — 1 = 0. Но тогда верно, что (х — 1)(х + 1) = 0. Последнее урав­нение имеет два корня: х = 1 и х = —1. Подставляя их в заданное уравнение, видим, что только корень х = 1 удовлетворяет исходному уравнению. По­чему это случилось?

Это происходит поэтому, что, используя уравнения-следствия, мы гаран­тируем только то, что корни заданного уравнения не теряются (каждый корень первого уравнения является корнем второго). Но второе уравнение, кроме корней первого уравнения, имеет еще и другой корень, который не яв­ляется корнем первого уравнения. Для первого уравнения этот корень явля­ется посторонним, и, чтобы его отсеять, выполняется проверка подстановкой корней в исходное уравнение. (Более полно причины появления посторон­них корней рассмотрены в таблице 7 на с. 54.) Таким образом, чтобы пра­вильно применять уравнения-следствия для решения уравнений, необходи­мо помнить еще один о р и е н т и р: при использовании уравнений-следствий возможно появление посторонних корней, и поэтому проверка подстанов­кой корней в исходное уравнение является составной частью решения.

Схема применения этих ориентиров дана в таблице 6. В пункте 3 этой таблицы приведено решение уравнения

Замечание. Переход от данного уравнения к уравнению-следствию мож­но обозначить специальным значком ^, но его использование для записи решения не является обязательным. Вместе с тем, если этот значок запи­сан, то это свидетельствует о том, что мы воспользовались уравнениями- следствиями, и поэтому обязательно в запись решения необходимо вклю­чить проверку полученных корней.

С понятием равносильности вы знакомы еще из курса алгебры 7 класса, где равносильными назывались те уравнения, которые имели одни и те же корни. Заметим, что равносильными считались и такие два уравнения, ко­торые не имели корней. Формально будем считать, что и в этом случае урав­нения имеют одни и те же корни, поскольку ответы к таким уравнениям одинаковы: «уравнения не имеют корней» (точнее: одинаковыми являются множества корней таких уравнений — они оба пустые, что обозначается символом 0).

В курсе алгебры и начал математического анализа мы будем рассматри­вать более общее понятие равносильности, а именно: равносильность на определенном множестве.

Два уравнения называются равносильными на некотором множе-
стве, если на этом множестве они имеют одни и те же корни, то
есть каждый корень первого уравнения является корнем второго

и, наоборот, каждый корень второго уравнения является корнем
первого.

Для уравнений, заданных на множестве всех действительных чисел (например, для линейных), мы можем однозначно дать ответ на вопрос: «Равносильны ли данные уравнения?» Например, уравнения х + 3 = 0 и 2х + 6 = 0 — равносильные, поскольку оба имеют одинаковый корень х = —3 и других корней не имеют, таким образом, каждое из них имеет те же решения, что и второе.

При рассмотрении равносильности уравнений на множестве, которое от­личается от множества всех действительных чисел, ответ на вопрос «Равно­сильны ли данные уравнения?» может существенно зависеть от того, на каком множестве мы рассматриваем эти уравнения. Например, если рас­смотреть уравнения:

то, как было показано выше, уравнение (3) имеет единственный корень х = 1, а уравнение (4) — два корня: х = 1 и х = —1. Таким образом, на множестве всех действительных чисел эти уравнения не являются равносильными, по­скольку у уравнения (4) есть корень х = —1, которого нет у уравнения (3). Но на множестве положительных действительных чисел эти уравнения равно­

сильны, поскольку на этом множестве уравнение (3) имеет единственный положительный корень х = 1 и уравнение (4) также имеет единственный положительный корень х = 1. Следовательно, на множестве положительных чисел каждое из этих уравнений имеет те же решения, что и второе.

Укажем, что множество, на котором рассматривается равносильность уравнений, как правило, не задается искусственно (как в последнем слу­чае), а чаще всего таким множеством является ОДЗ исходного уравнения. Договоримся, что далее

все равносильные преобразования уравнений (а также неравенств и си­стем уравнений и неравенств) мы будем выполнять на ОДЗ исходного урав­нения (неравенства или системы). Отметим, что в том случае, когда ОДЗ за­данного уравнения является множество всех действительных чисел, мы не всегда будем ее записывать (как не записывали ОДЗ при решении линейных или квадратных уравнений). И в других случаях главное — не записать ОДЗ в решение уравнения, а реально учесть ее при выполнении равносильных преобразований данного уравнения.

Например, для уравнения Ix + 2 = x ОДЗ задается неравенством х + 2 1 0. Когда мы переходим к уравнению х + 2 = х 2 , то для всех его корней это уравнение является верным равенством. Тогда выражение х 2 , стоящее в пра­вой части этого равенства, всегда неотрицательно (х 2 1 0), таким образом, и равное ему выражение х + 2 также будет неотрицательным: х + 2 1 0. Но это и означает, что ОДЗ данного уравнения (х + 2 1 0) учтено автоматически для всех корней второго уравнения и поэтому при переходе от уравнения yjx + 2 = x к уравнению х + 2 = х 2 ОДЗ заданного уравнения можно не запи­сывать в решение.

Для выполнения равносильных преобразований попробуем выделить общие ориентиры, аналогичные соответствующим ориентирам получения уравнений-следствий.

Как указывалось выше, выполняя равносильные преобразования уравне­ний, необходимо учесть ОДЗ данного уравнения — это и есть первый о р и — ентир для выполнения равносильных преобразований уравнений.

По определению равносильности уравнений необходимо гарантировать, чтобы каждый корень первого уравнения был корнем второго и наоборот — каждый корень второго уравнения был корнем первого. Для первой части этого требования мы уже выделили общий ориентир: достаточно гарантиро­вать сохранение правильности равенства при переходе от первого уравнения ко второму (с. 49).

Но тогда, чтобы выполнить вторую часть этого требования, достаточно второе уравнение рассмотреть как верное равенство (то есть взять такое значение переменной, которое является корнем второго уравнения) и га­рантировать, что при переходе к первому верное равенство сохраняется (этот корень остается и корнем первого уравнения). Фактически из опреде­ления равносильности уравнений получаем, что каждое из равносильных уравнений является следствием другого уравнения). Таким образом, при

выполнении равносильных преобразований мы должны гарантировать со­хранение правильности равенства на каждом шаге решения не только при прямых, но и при обратных преобразованиях — это и является вторым о р и — ен т и р ом для решения уравнений с помощью равносильных преобразова­ний. (Соответствующие ориентиры схематически представлены в пункте 5 табл. 6.)

Например, чтобы решить с помощью равносильных преобразований урав-

——- = 0, достаточно учесть его ОДЗ: х + 1 Ф 0 и условие равенства

дроби нулю (дробь равна нулю тогда и только тогда, когда числитель дроби равен нулю, а знаменатель не равен нулю). Также следует обратить внима­ние на то, что на ОДЗ все необходимые преобразования можно выполнить как в прямом, так и в обратном направлениях с сохранением правильности равенства.

Запись решения в этом случае может быть такой:

= 0. ► ОДЗ: х + 1 Ф 0. Тогда х 2 —1 = 0. Отсюда х = 1 (удовлетворяет

условию ОДЗ) или х = —1 (не удовлетворяет условию ОДЗ). Ответ: 1. 2 + л/ x — 2 = 6x + >/ x — 2. Перенесем из правой части уравнения в левую слагаемое tx — 2 с противоположным знаком и приведем подобные члены.

Получим х 2 — 6х = 0, х1 = 0, х2 = 6

к уравнению, ОДЗ которого шире, чем ОДЗ заданного уравнения;

Приведение обе­их частей урав­нения к обще­му знаменателю (при сокращении знаменателя)

4 + 7 = 4 x + 2 x + 3 x 2 + 5x + 6 Умножим обе части уравнения на общий знаменатель всех дробей (х + 2)(х + 3).

4 (х + 3) + 7 (х + 2) = 4,

Возведение обеих частей иррацио­нального уравне­ния в квадрат

yj2x +1 =Vx. 2х + 1 = х,

б) выполне­ние преоб­разований, при которых происходит неявное умно­жение на нуль;

Умножение обеих частей уравнения на выражение с пере­менной

х 2 + х + 1 = 0. Умножим обе части уравнения на х —1.

(х — 1)(х 2 + х + 1) = 0. Получим х 3 — 1 = 0, х = 1

Как получить правильное (или полное) решение

Пример правильного (или полного) решения

при решении уравнения

х1 = 0 не является корнем заданного уравнения

Выполнить про­верку подстановкой корней в заданное уравнение

x 2 + V x — 2 = 6x + >/ x — 2.

► х 2 — 6х = 0, х1 = 0, х2 = 6. Проверка показывает, что х1 = 0 — посторонний корень, х2 = 6 — корень.

Ответ: 6. x + 2 x + 3 x 2 + 5x + 6

► 4 (x + 3) + 7 (x + 2) = 4;

11x = —22, x = —2. Проверка показывает, что х = -2 — посторонний корень. Ответ: корней нет. 2 + х + 1 = 0.

► D = —3 2 = (2х + 1) 2 . Получим 3х 2 + 6х = 0, х1 = 0, х2 = —2

2. Потеря корней

Явное или неяв­ное сужение ОДЗ заданного урав­нения, в частно­сти выполнение преобразований, в ходе которых происходит не­явное деление на нуль

1. Деление обеих ча­стей уравнения на выражение с пе­ременной

Поделив обе части уравнения на х, получим

2. Сложение, вычи­тание, умноже­ние или деление обеих частей уравнения на выражение, ОДЗ которого уже, чем ОДЗ задан­ного уравнения

Если к обеим частям уравнения прибавить [x, то получим уравнение

x 2 + yfx = 1 + yfx, у которого только один корень х = 1

Видео:Решение уравнений. Как переносить слагаемые из одной части уравнения в другую. Математика 6 классСкачать

Решение уравнений. Как переносить слагаемые из одной части уравнения в другую. Математика 6 класс

Равносильные уравнения. Следствия уравнений

При решении уравнений выполняются различные тождественные преобразования над выражениями, входящими в уравнение. При этом исходное уравнение изменяется другими, имеющими те же корни. Такие уравнения называются равносильными.

если каждый корень первого уравнения является корнем второго и обратно, каждый корень второго уравнения является корнем первого, т.е. их решения совпадают.

Например, уравнения 3x-6=0; 2х-1=3 равносильны, т.к. каждое из уравнений имеет один корень х=2.

Любые два уравнения, имеющие пустое множество корней, считают равносильными.

Тот факт, что уравнения

равносильны, обозначают так:

В процессе решения уравнений важно знать, при каких преобразованиях данное уравнение переходит в равносильное ему уравнение.

Теорема 1: Если какое-либо слагаемое перенести из одной части уравнения в другую, изменив его знак, то получим уравнение, равносильное данному.

Доказательство: Докажем, что уравнение

Пусть х=а — корень уравнения. Значит имеет место числовое равенство

Но тогда по свойству действительных чисел будет выполняться и числовое равенство

показывающее, что а — корень уравнения (2). Аналогично доказывается, что каждый корень уравнения (2) является и корнем уравнения (1).

Что и требовалось доказать.

Теорема 2: Если обе части уравнения умножить или разделить на отличное от нуля число, то получим уравнение, равносильное данному.

Доказательство: докажем, что уравнение

так как корни уравнений равны, то уравнения равносильны.

Что и требовалось доказать.

Если какое либо слагаемое перенести из одной части уравнения в другую доказательство

ОДЗ этого уравнения

Мы знаем, что дробь равна нулю в том случае, когда ее числитель равен нулю, т.е.

а знаменатель не равен 0. Решая уравнение

находим корни х1=1, х2 = -2 . Но число 1 не входит в ОДЗ данного уравнения и значит, исходное уравнение имеет один корень х=-2.

В этом случае говорят, что уравнение

есть следствие уравнения

Если какое либо слагаемое перенести из одной части уравнения в другую доказательство

пусть даны два уравнения:

Если каждый корень уравнения (3) является корнем уравнения (4), то уравнение (4) называют следствием уравнения (3).

Если какое либо слагаемое перенести из одной части уравнения в другую доказательство

Этот факт записывают так:

Если какое либо слагаемое перенести из одной части уравнения в другую доказательство

В том случае, когда уравнение (3) — есть также следствие уравнения (4), эти уравнения равносильны.

Два уравнения равносильны в том, и только в том случае, когда каждое из них является следствием другого.

В приведенном выше примере уравнение — следствие

имеет два корня x1=1 и х2 =-2, а исходное уравнение имеет один корень х=-2. В этом случае корень х=1 называют посторонним для исходного уравнения

Если какое либо слагаемое перенести из одной части уравнения в другую доказательство

В общем случае корни уравнения-следствия, не являющиеся корнями исходного уравнения, называют посторонними.

Итак, если при решении уравнения происходит переход к уравнению — следствию, то могли появиться посторонние корни. В этом случае все корни уравнения-следствия нужно проверить, подставляя их в исходное уравнение. В некоторых случаях выявление посторонних корней облегчается знанием ОДЗ исходного уравнения — корни, не принадлежащие ОДЗ, можно сразу отбросить. Так, в приведенном примере посторонний корень х=1 не входит в ОДЗ уравнения

Если какое либо слагаемое перенести из одной части уравнения в другую доказательство

и потому отброшен.

Иногда посторонние корни могут появиться и при тождественных преобразованиях, если они приводят к изменению ОДЗ уравнения. Например, после приведения подобных членов в левой части уравнения

Если какое либо слагаемое перенести из одной части уравнения в другую доказательство

Если какое либо слагаемое перенести из одной части уравнения в другую доказательство

В тех случаях, когда в результате преобразований произошел переход от исходного уравнения к уравнению, не являющемуся его следствием, возможна потеря корней.

Имеет два корня. Действительно, перенося все члены уравнения в левую часть и вынося х+1 за скобки, получим

Если же обе части уравнения (5) разделить («сократить») на х+1, то получим уравнение

имеющее один корень х=-2. В результате такого преобразования корень х=-1 потерян. Поэтому делить обе части уравнения на выражение, содержащее переменную, можно лишь в том случае, когда это выражение отлично от нуля.

Для того, чтобы в процессе решения уравнения избежать потери корней, необходимо следить за тем, чтобы переход осуществлялся либо к равносильным уравнениям, либо к уравнениям-следствиям.

🌟 Видео

Вся суть уравнений за 1 секунду. Хватит путать знаки в уравнениях!Скачать

Вся суть уравнений за 1 секунду. Хватит путать знаки в уравнениях!

Решение уравнений ( подобные слагаемые ) . 6 класс .Скачать

Решение уравнений ( подобные слагаемые ) . 6 класс .

Решение уравнений. Перенос слагаемых. Часть 1. Математика 6 классСкачать

Решение уравнений. Перенос слагаемых. Часть 1. Математика 6 класс

Решение уравнений. Часть 2. 6 класс.Скачать

Решение уравнений. Часть 2. 6 класс.

Доказательство неравенств 8 класс АлгебраСкачать

Доказательство неравенств 8 класс Алгебра

Решение уравненийСкачать

Решение уравнений

Тема:Уравнение и его корни.стр.25. Алгебра 7. Макарычев. Под ред. Теляковского.Скачать

Тема:Уравнение и его корни.стр.25.  Алгебра 7. Макарычев. Под ред. Теляковского.

Решение уравнений, 6 классСкачать

Решение уравнений, 6 класс

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСС

Математика. 6 класс. Равносильные уравнения. Линейное уравнение с одной переменной /13.01.2021/Скачать

Математика. 6 класс. Равносильные уравнения. Линейное уравнение с одной переменной /13.01.2021/

Подобные слагаемые. Приведение подобных слагаемых. 6 класс.Скачать

Подобные слагаемые. Приведение подобных слагаемых. 6 класс.

КАК РЕШАТЬ УРАВНЕНИЯ С ОДНОЙ ПЕРЕМЕННОЙ? · Алгебра Математика 7 классСкачать

КАК РЕШАТЬ УРАВНЕНИЯ С ОДНОЙ ПЕРЕМЕННОЙ? · Алгебра Математика 7 класс

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnline

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

6 класс, 42 урок, Решение уравненийСкачать

6 класс, 42 урок, Решение уравнений

Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

Как решать неравенства? Часть 1| МатематикаСкачать

Как решать неравенства? Часть 1| Математика

Информатика ЕГЭ ОГЭ Перевод из одной системы счисления в другуюСкачать

Информатика ЕГЭ ОГЭ Перевод из одной системы счисления в другую
Поделиться или сохранить к себе: