Если к обеим частям уравнения прибавить или вычесть то

Если к обеим частям уравнения прибавить или вычесть то

Два уравнения называют равносильными, если они имеют одно и тоже множество корней.

Содержание
  1. Общие сведения об уравнениях
  2. Что такое уравнение?
  3. Выразить одно через другое
  4. Правила нахождения неизвестных
  5. Компоненты
  6. Равносильные уравнения
  7. Умножение на минус единицу
  8. Приравнивание к нулю
  9. Альтернатива правилам нахождения неизвестных
  10. Когда корней несколько
  11. Когда корней бесконечно много
  12. Когда корней нет
  13. Буквенные уравнения
  14. Линейные уравнения с одним неизвестным
  15. Презентация по математике по теме: «Решение уравнений» (6 класс)
  16. Описание презентации по отдельным слайдам:
  17. Математика: теория и методика преподавания в образовательной организации
  18. Дистанционное обучение как современный формат преподавания
  19. Педагогическая деятельность в контексте профессионального стандарта педагога и ФГОС
  20. Дистанционные курсы для педагогов
  21. Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
  22. Материал подходит для УМК
  23. Другие материалы
  24. Вам будут интересны эти курсы:
  25. Оставьте свой комментарий
  26. Автор материала
  27. Дистанционные курсы для педагогов
  28. Подарочные сертификаты
  29. 🔥 Видео
Свойства уравнений
  • Если к обеим частям данного уравнения прибавить (или из обеих частей вычесть) одно и то же число, то получим уравнение, равносильное данному.
  • Если какое-либо слагаемое перенести из одной части уравнения в другую, изменив при этом его знак на противоположный, то получим уравнение, равносильное данному.
  • Если обе части уравнения умножить (разделить) на одно и то же отличное от нуля число, то получим уравнение, равносильное данному
Линейное уравнение

Уравнение вида Если к обеим частям уравнения прибавить или вычесть то, где Если к обеим частям уравнения прибавить или вычесть то— переменная, Если к обеим частям уравнения прибавить или вычесть тои Если к обеим частям уравнения прибавить или вычесть тонекоторые числа, называют линейным уравнением с одной переменной.

Значения Если к обеим частям уравнения прибавить или вычесть тои Если к обеим частям уравнения прибавить или вычесть тоЕсли к обеим частям уравнения прибавить или вычесть тоЕсли к обеим частям уравнения прибавить или вычесть тоЕсли к обеим частям уравнения прибавить или вычесть то
Корни уравнения Если к обеим частям уравнения прибавить или вычесть тоЕсли к обеим частям уравнения прибавить или вычесть тоЕсли к обеим частям уравнения прибавить или вычесть то-любое числокорней нет
Одночлены и многочлены
Одночлены
  • Выражения, являющиеся произведениями чисел, переменных и их степеней, называют одночленами.
  • Одночлен, содержащий только один отличный от нуля числовой множитель, стоящий на первом месте, а все остальные множители которого — степени с разными основаниями, называют одночленом стандартного вида. К одночленам стандартного вида также относят числа, отличные от нуля, переменные и их степени.
  • Числовой множитель одночлена, записанного в стандартном виде, называют коэффициентом одночлена.
  • Одночлены, имеющие одинаковые буквенные части, называют подобными. Степенью одночлена называют сумму показателей степеней всех переменных, входящих в него. Степень одночлена, являющегося числом, отличным от нуля, считают равной нулю.
  • Нуль-одночлен степени не имеет.
Многочлены
  • Выражение, являющееся суммой нескольких одночленов, называют многочленом.
  • Одночлены, из которых состоит многочлен, называют членами многочлена.
  • Одночлен является частным случаем многочлена. Считают, что такой многочлен состоит из одного члена.
Умножение одночлена на многочлен

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый член многочлена и полученные произведения сложить.

Умножение многочлена на многочлен

Чтобы умножить многочлен на многочлен, можно каждый член одного многочлена умножить на каждый член другого и полученные произведения сложить.

Формулы сокращенного умножения
Разность квадратов двух выражений

Разность квадратов двух выражений равна произведению разности этих выражений и их суммы:

Если к обеим частям уравнения прибавить или вычесть то

Произведение разности и суммы двух выражений

Произведение разности двух выражений и их суммы равно разности квадратов этих выражений:

Если к обеим частям уравнения прибавить или вычесть то

Квадрат суммы и квадрат разности двух выражений

Квадрат суммы двух выражений равен квадрату первого выражения плюс удвоенное произведение первого и второго выражений, плюс квадрат второго выражения:

Если к обеим частям уравнения прибавить или вычесть то

Квадрат разности двух выражений равен квадрату первого выражения минус удвоенное произведение первого и второго выражений пл юс квадрат второго выражении:

Если к обеим частям уравнения прибавить или вычесть то

Преобразование многочлена в квадрат суммы или разности двух выражений

Если к обеим частям уравнения прибавить или вычесть то

Если к обеим частям уравнения прибавить или вычесть то

позволяют «свернуть» трёхчлен в квадрат двучлена.

Трёхчлен, который можно представить в виде квадрата двучлена, н а зывают полным квадратом.

Сумма и разность кубов двух выражений

Многочлен Если к обеим частям уравнения прибавить или вычесть тоназывают неполным квадратом разности.

Сумма кубов двух выражений равна произведению суммы этих выр а жений и неполного квадрата их разности:

Если к обеим частям уравнения прибавить или вычесть то

Многочлен Если к обеим частям уравнения прибавить или вычесть тоназывают неполным квадратом суммы.

Разность кубов двух выражений равна произведению разности этих выражений и неполного квадрата их суммы:

Если к обеим частям уравнения прибавить или вычесть то

Степень. Свойства степени с целым показателем
Свойства степени с целым показателем

Для любого Если к обеим частям уравнения прибавить или вычесть тои любых целых Если к обеим частям уравнения прибавить или вычесть товыполняются равенства:

Если к обеим частям уравнения прибавить или вычесть то

Если к обеим частям уравнения прибавить или вычесть то

Если к обеим частям уравнения прибавить или вычесть то

Для любых Если к обеим частям уравнения прибавить или вычесть то, Если к обеим частям уравнения прибавить или вычесть тои любого целого Если к обеим частям уравнения прибавить или вычесть товыполняются равенства:

Если к обеим частям уравнения прибавить или вычесть то

Если к обеим частям уравнения прибавить или вычесть то

Если к обеим частям уравнения прибавить или вычесть то

Функция. Область определения и область значений функции
Функция

Правило, с помощью которого по каждому значению независимой переменной можно найти единственное значение зависимой переменной, называют функцией, а соответствующую зависимость одной п e ременной от другой — функциональной.
Обычно независимую переменную обозначают Если к обеим частям уравнения прибавить или вычесть то, зависимую обозначают Если к обеим частям уравнения прибавить или вычесть то, функцию(правило) — Если к обеим частям уравнения прибавить или вычесть то.
Независимую переменную Если к обеим частям уравнения прибавить или вычесть тоназывают аргументом функции. Значение зависимой переменной Если к обеим частям уравнения прибавить или вычесть тоназывают значением функции.
Тогда функциональную зависимость обозначают Если к обеим частям уравнения прибавить или вычесть то.
Значения, которые принимает аргумент, образуют область определения функции. Все значения, которые принимает зависимая переменная, образуют область значений функции.

Способы задания функции

Описательный, табличный, с помощью формулы, графический.

График функции

Графиком функции называют геометрическую фигуру, состоящую из всех тех и только тех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты — соответствующим значениям функции.

Линейная функция, её график и свойства
  • Функцию, которую можно задать формулой вида Если к обеим частям уравнения прибавить или вычесть то, где Если к обеим частям уравнения прибавить или вычесть тои Если к обеим частям уравнения прибавить или вычесть то— некоторые числа, Если к обеим частям уравнения прибавить или вычесть то— независимая переменная, называют линейной.
  • Графиком линейной функции является прямая.
  • Линейную функцию, заданную формулой Если к обеим частям уравнения прибавить или вычесть то, где Если к обеим частям уравнения прибавить или вычесть то, называют прямой пропорциональностью.
Системы линейных уравнений с двумя переменными
Уравнение с двумя переменными

Пару значений переменных, обращающую уравнение с двумя переменными в верное равенство, называют решением уравнения с двумя переменными.

Решить уравнение с двумя переменными — значит найти все его решения или показать, что оно не имеет решений.

Графиком уравнения с двумя переменными называют геометрическую фигуру, состоящую из всех тех и только тех точек координатной плоскости, координаты которых (пары чисел) являются решениями данного уравнения.

Если некоторая фигура является графиком уравнения, то выполняются два условия:

  • все решения уравнения являются координатами точек, принадлежащих графику;
  • координаты любой точки, принадлежащей графику, — это пара чисел, являющаяся решением данного уравнения.
Графический метод решения системы двух линейных уравнений с двумя переменными

Графический метод решения системы уравнений заключается в следующем:

  • построить в одной координатной плоскости графики уравнений, входящих в систему;
  • найти координаты всех точек пересечения построенных графиков;
  • полученные пары чисел и будут искомыми решениями.

Если графиками уравнений, входящих в систему линейных уравнении, являются прямые, то количество решений этой системы зависит от взаимного расположения двух прямых на плоскости:

  • если прямые пересекаются, то система имеет единственное решение.
  • если прямые совпадают, то система имеет бесконечно много решении.
  • если прямые параллельны, то система решений не имеет.
Решение системы двух линейных уравнений с двумя переменными методом подстановки

Чтобы решить систему линейных уравнений методом подстановки, следует:

  • выразить из любого уравнения системы одну переменную через другую;
  • подставить в уравнение системы вместо этой переменной выражение, полученное на первом шаге;
  • решить уравнение с одной переменной, полученное на втором шаге;
  • подставить найденное значение переменной в выражение, полученное на первом шаге;
  • вычислить значение второй переменной;
  • записать ответ.
Решение систем линейных уравнений методом сложения

Чтобы решить систему линейных уравнений методом сложения, следует:

  • подобрать такие множители для уравнений, чтобы после преобразований коэффициенты при одной из переменной стали противоположными числами
  • сложить почленно левые и правые части уравнений, полученных на первом шаге
  • решить уравнение с одной переменной, полученной на втором шаге
  • подставить найденное на третьем шаге значение переменной в любое из уравнений исходной системы;
  • вычислить значение второй переменной;
  • записать ответ.

Видео:Системы уравнений. Способ уравнивания коэффициентов - 1Скачать

Системы уравнений. Способ уравнивания коэффициентов - 1

Общие сведения об уравнениях

Уравнения — одна из сложных тем для усвоения, но при этом они являются достаточно мощным инструментом для решения большинства задач.

С помощью уравнений описываются различные процессы, протекающие в природе. Уравнения широко применяются в других науках: в экономике, физике, биологии и химии.

В данном уроке мы попробуем понять суть простейших уравнений, научимся выражать неизвестные и решим несколько уравнений. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.

Видео:Равносильные уравнения. Совокупность уравнений. Подготовка к ГВЭ11 + ЕГЭ 2021 по математике #41Скачать

Равносильные уравнения. Совокупность уравнений. Подготовка к ГВЭ11 + ЕГЭ 2021 по математике #41

Что такое уравнение?

Уравнение — это равенство, содержащее в себе переменную, значение которой требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.

Например выражение 3 + 2 = 5 является равенством. При вычислении левой части получается верное числовое равенство 5 = 5 .

А вот равенство 3 + x = 5 является уравнением, поскольку содержит в себе переменную x , значение которой можно найти. Значение должно быть таким, чтобы при подстановке этого значения в исходное уравнение, получилось верное числовое равенство.

Другими словами, мы должны найти такое значение, при котором знак равенства оправдал бы свое местоположение — левая часть должна быть равна правой части.

Уравнение 3 + x = 5 является элементарным. Значение переменной x равно числу 2. При любом другом значении равенство соблюдáться не будет

Если к обеим частям уравнения прибавить или вычесть то

Говорят, что число 2 является корнем или решением уравнения 3 + x = 5

Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.

Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.

Переменную, входящую в уравнение, иначе называют неизвестным. Вы вправе называть как вам удобнее. Это синонимы.

Примечание. Словосочетание «решить уравнение» говорит самó за себя. Решить уравнение означает «уравнять» равенство — сделать его сбалансированным, чтобы левая часть равнялась правой части.

Видео:Равносильные уравнения. Рациональные уравнения - 8 класс алгебраСкачать

Равносильные уравнения. Рациональные уравнения - 8 класс алгебра

Выразить одно через другое

Изучение уравнений по традиции начинается с того, чтобы научиться выражать одно число, входящее в равенство, через ряд других. Давайте не будем нарушать эту традицию и поступим также.

Рассмотрим следующее выражение:

Данное выражение является суммой чисел 8 и 2. Значение данного выражения равно 10

Получили равенство. Теперь можно выразить любое число из этого равенства через другие числа, входящие в это же равенство. К примеру, выразим число 2.

Чтобы выразить число 2, нужно задать вопрос: «что нужно сделать с числами 10 и 8, чтобы получить число 2». Понятно, что для получения числа 2, нужно из числа 10 вычесть число 8.

Так и делаем. Записываем число 2 и через знак равенства говорим, что для получения этого числа 2 мы из числа 10 вычли число 8:

Мы выразили число 2 из равенства 8 + 2 = 10 . Как видно из примера, ничего сложного в этом нет.

При решении уравнений, в частности при выражении одного числа через другие, знак равенства удобно заменять на слово «есть». Делать это нужно мысленно, а не в самом выражении.

Так, выражая число 2 из равенства 8 + 2 = 10 мы получили равенство 2 = 10 − 8 . Данное равенство можно прочесть так:

2 есть 10 − 8

То есть знак = заменен на слово «есть». Более того, равенство 2 = 10 − 8 можно перевести с математического языка на полноценный человеческий язык. Тогда его можно будет прочитать следующим образом:

Число 2 есть разность числа 10 и числа 8

Число 2 есть разница между числом 10 и числом 8.

Но мы ограничимся лишь заменой знака равенства на слово «есть», и то будем делать это не всегда. Элементарные выражения можно понимать и без перевода математического языка на язык человеческий.

Вернём получившееся равенство 2 = 10 − 8 в первоначальное состояние:

Выразим в этот раз число 8. Что нужно сделать с остальными числами, чтобы получить число 8? Верно, нужно из числа 10 вычесть число 2

Вернем получившееся равенство 8 = 10 − 2 в первоначальное состояние:

В этот раз выразим число 10. Но оказывается, что десятку выражать не нужно, поскольку она уже выражена. Достаточно поменять местами левую и правую часть, тогда получится то, что нам нужно:

Пример 2. Рассмотрим равенство 8 − 2 = 6

Выразим из этого равенства число 8. Чтобы выразить число 8 остальные два числа нужно сложить:

Вернем получившееся равенство 8 = 6 + 2 в первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно из 8 вычесть 6

Пример 3. Рассмотрим равенство 3 × 2 = 6

Выразим число 3. Чтобы выразить число 3, нужно 6 разделить 2

Если к обеим частям уравнения прибавить или вычесть то

Вернем получившееся равенство Если к обеим частям уравнения прибавить или вычесть тов первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно 6 разделить 3

Если к обеим частям уравнения прибавить или вычесть то

Пример 4. Рассмотрим равенство Если к обеим частям уравнения прибавить или вычесть то

Выразим из этого равенства число 15. Чтобы выразить число 15, нужно перемножить числа 3 и 5

Вернем получившееся равенство 15 = 3 × 5 в первоначальное состояние:

Если к обеим частям уравнения прибавить или вычесть то

Выразим из этого равенства число 5. Чтобы выразить число 5, нужно 15 разделить 3

Если к обеим частям уравнения прибавить или вычесть то

Видео:Свойство уравнений сложение вычитаниеСкачать

Свойство уравнений сложение вычитание

Правила нахождения неизвестных

Рассмотрим несколько правил нахождения неизвестных. Возможно, они вам знакомы, но не мешает повторить их ещё раз. В дальнейшем их можно будет забыть, поскольку мы научимся решать уравнения, не применяя эти правила.

Вернемся к первому примеру, который мы рассматривали в предыдущей теме, где в равенстве 8 + 2 = 10 требовалось выразить число 2.

В равенстве 8 + 2 = 10 числа 8 и 2 являются слагаемыми, а число 10 — суммой.

Если к обеим частям уравнения прибавить или вычесть то

Чтобы выразить число 2, мы поступили следующим образом:

То есть из суммы 10 вычли слагаемое 8.

Теперь представим, что в равенстве 8 + 2 = 10 вместо числа 2 располагается переменная x

В этом случае равенство 8 + 2 = 10 превращается в уравнение 8 + x = 10 , а переменная x берет на себя роль так называемого неизвестного слагаемого

Если к обеим частям уравнения прибавить или вычесть то

Наша задача найти это неизвестное слагаемое, то есть решить уравнение 8 + x = 10 . Для нахождения неизвестного слагаемого предусмотрено следующее правило:

Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.

Что мы в принципе и сделали, когда выражали двойку в равенстве 8 + 2 = 10 . Чтобы выразить слагаемое 2, мы из суммы 10 вычли другое слагаемое 8

А сейчас, чтобы найти неизвестное слагаемое x , мы должны из суммы 10 вычесть известное слагаемое 8:

Если вычислить правую часть получившегося равенства, то можно узнать чему равна переменная x

Мы решили уравнение. Значение переменной x равно 2 . Для проверки значение переменной x отправляют в исходное уравнение 8 + x = 10 и подставляют вместо x. Так желательно поступать с любым решённым уравнением, поскольку нельзя быть точно уверенным, что уравнение решено правильно:

Если к обеим частям уравнения прибавить или вычесть то

В результате получается верное числовое равенство. Значит уравнение решено правильно.

Это же правило действовало бы в случае, если неизвестным слагаемым было бы первое число 8.

В этом уравнении x — это неизвестное слагаемое, 2 — известное слагаемое, 10 — сумма. Чтобы найти неизвестное слагаемое x , нужно из суммы 10 вычесть известное слагаемое 2

Если к обеим частям уравнения прибавить или вычесть то

Вернемся ко второму примеру из предыдущей темы, где в равенстве 8 − 2 = 6 требовалось выразить число 8.

В равенстве 8 − 2 = 6 число 8 это уменьшаемое, число 2 — вычитаемое, число 6 — разность

Если к обеим частям уравнения прибавить или вычесть то

Чтобы выразить число 8, мы поступили следующим образом:

То есть сложили разность 6 и вычитаемое 2.

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 8 располагается переменная x

В этом случае переменная x берет на себя роль так называемого неизвестного уменьшаемого

Если к обеим частям уравнения прибавить или вычесть то

Для нахождения неизвестного уменьшаемого предусмотрено следующее правило:

Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.

Что мы и сделали, когда выражали число 8 в равенстве 8 − 2 = 6 . Чтобы выразить уменьшаемое 8, мы к разности 6 прибавили вычитаемое 2.

А сейчас, чтобы найти неизвестное уменьшаемое x , мы должны к разности 6 прибавить вычитаемое 2

Если вычислить правую часть, то можно узнать чему равна переменная x

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 2 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного вычитаемого

Если к обеим частям уравнения прибавить или вычесть то

Для нахождения неизвестного вычитаемого предусмотрено следующее правило:

Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.

Что мы и сделали, когда выражали число 2 в равенстве 8 − 2 = 6. Чтобы выразить число 2, мы из уменьшаемого 8 вычли разность 6.

А сейчас, чтобы найти неизвестное вычитаемое x, нужно опять же из уменьшаемого 8 вычесть разность 6

Вычисляем правую часть и находим значение x

Вернемся к третьему примеру из предыдущей темы, где в равенстве 3 × 2 = 6 мы пробовали выразить число 3.

В равенстве 3 × 2 = 6 число 3 — это множимое, число 2 — множитель, число 6 — произведение

Если к обеим частям уравнения прибавить или вычесть то

Чтобы выразить число 3 мы поступили следующим образом:

Если к обеим частям уравнения прибавить или вычесть то

То есть разделили произведение 6 на множитель 2.

Теперь представим, что в равенстве 3 × 2 = 6 вместо числа 3 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного множимого.

Если к обеим частям уравнения прибавить или вычесть то

Для нахождения неизвестного множимого предусмотрено следующее правило:

Чтобы найти неизвестное множимое, нужно произведение разделить на множитель.

Что мы и сделали, когда выражали число 3 из равенства 3 × 2 = 6 . Произведение 6 мы разделили на множитель 2.

А сейчас для нахождения неизвестного множимого x , нужно произведение 6 разделить на множитель 2.

Если к обеим частям уравнения прибавить или вычесть то

Вычисление правой части позволяет нам найти значение переменной x

Это же правило применимо в случае, если переменная x располагается вместо множителя, а не множимого. Представим, что в равенстве 3 × 2 = 6 вместо числа 2 располагается переменная x .

Если к обеим частям уравнения прибавить или вычесть то

В этом случае переменная x берет на себя роль неизвестного множителя. Для нахождения неизвестного множителя предусмотрено такое же, что и для нахождения неизвестного множимого, а именно деление произведения на известный множитель:

Чтобы найти неизвестный множитель, нужно произведение разделить на множимое.

Если к обеим частям уравнения прибавить или вычесть то

Что мы и сделали, когда выражали число 2 из равенства 3 × 2 = 6 . Тогда для получения числа 2 мы разделили произведение 6 на множимое 3.

А сейчас для нахождения неизвестного множителя x мы разделили произведение 6 на множимое 3.

Вычисление правой части равенства Если к обеим частям уравнения прибавить или вычесть топозволяет узнать чему равно x

Множимое и множитель вместе называют сомножителями. Поскольку правила нахождения множимого и множителя совпадают, мы можем сформулировать общее правило нахождения неизвестного сомножителя:

Чтобы найти неизвестный сомножитель, нужно произведение разделить на известный сомножитель.

Например, решим уравнение 9 × x = 18 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 18 разделить на известный сомножитель 9

Если к обеим частям уравнения прибавить или вычесть то

Отсюда Если к обеим частям уравнения прибавить или вычесть то.

Решим уравнение x × 3 = 27 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 27 разделить на известный сомножитель 3

Если к обеим частям уравнения прибавить или вычесть то

Отсюда Если к обеим частям уравнения прибавить или вычесть то.

Вернемся к четвертому примеру из предыдущей темы, где в равенстве Если к обеим частям уравнения прибавить или вычесть тотребовалось выразить число 15. В этом равенстве число 15 — это делимое, число 5 — делитель, число 3 — частное.

Если к обеим частям уравнения прибавить или вычесть то

Чтобы выразить число 15 мы поступили следующим образом:

То есть умножили частное 3 на делитель 5.

Теперь представим, что в равенстве Если к обеим частям уравнения прибавить или вычесть товместо числа 15 располагается переменная x

Если к обеим частям уравнения прибавить или вычесть то

В этом случае переменная x берет на себя роль неизвестного делимого.

Если к обеим частям уравнения прибавить или вычесть то

Для нахождения неизвестного делимого предусмотрено следующее правило:

Чтобы найти неизвестное делимое, нужно частное умножить на делитель.

Что мы и сделали, когда выражали число 15 из равенства Если к обеим частям уравнения прибавить или вычесть то. Чтобы выразить число 15, мы умножили частное 3 на делитель 5.

А сейчас, чтобы найти неизвестное делимое x , нужно частное 3 умножить на делитель 5

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Теперь представим, что в равенстве Если к обеим частям уравнения прибавить или вычесть товместо числа 5 располагается переменная x .

Если к обеим частям уравнения прибавить или вычесть то

В этом случае переменная x берет на себя роль неизвестного делителя.

Если к обеим частям уравнения прибавить или вычесть то

Для нахождения неизвестного делителя предусмотрено следующее правило:

Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Что мы и сделали, когда выражали число 5 из равенства Если к обеим частям уравнения прибавить или вычесть то. Чтобы выразить число 5, мы разделили делимое 15 на частное 3.

А сейчас, чтобы найти неизвестный делитель x , нужно делимое 15 разделить на частное 3

Если к обеим частям уравнения прибавить или вычесть то

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Итак, для нахождения неизвестных мы изучили следующие правила:

  • Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
  • Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
  • Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность;
  • Чтобы найти неизвестное множимое, нужно произведение разделить на множитель;
  • Чтобы найти неизвестный множитель, нужно произведение разделить на множимое;
  • Чтобы найти неизвестное делимое, нужно частное умножить на делитель;
  • Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Компоненты

Компонентами мы будем называть числа и переменные, входящие в равенство

Так, компонентами сложения являются слагаемые и сумма

Если к обеим частям уравнения прибавить или вычесть то

Компонентами вычитания являются уменьшаемое, вычитаемое и разность

Если к обеим частям уравнения прибавить или вычесть то

Компонентами умножения являются множимое, множитель и произведение

Если к обеим частям уравнения прибавить или вычесть то

Компонентами деления являются делимое, делитель и частное

Если к обеим частям уравнения прибавить или вычесть то

В зависимости от того, с какими компонентами мы будем иметь дело, будут применяться соответствующие правила нахождения неизвестных. Эти правила мы изучили в предыдущей теме. При решении уравнений желательно знать эти правило наизусть.

Пример 1. Найти корень уравнения 45 + x = 60

45 — слагаемое, x — неизвестное слагаемое, 60 — сумма. Имеем дело с компонентами сложения. Вспоминаем, что для нахождения неизвестного слагаемого, нужно из суммы вычесть известное слагаемое:

Вычислим правую часть, получим значение x равное 15

Значит корень уравнения 45 + x = 60 равен 15.

Чаще всего неизвестное слагаемое необходимо привести к виду при котором его можно было бы выразить.

Пример 2. Решить уравнение Если к обеим частям уравнения прибавить или вычесть то

Здесь в отличие от предыдущего примера, неизвестное слагаемое нельзя выразить сразу, поскольку оно содержит коэффициент 2. Наша задача привести это уравнение к виду при котором можно было бы выразить x

В данном примере мы имеем дело с компонентами сложения — слагаемыми и суммой. 2x — это первое слагаемое, 4 — второе слагаемое, 8 — сумма.

Если к обеим частям уравнения прибавить или вычесть то

При этом слагаемое 2x содержит переменную x . После нахождения значения переменной x слагаемое 2x примет другой вид. Поэтому слагаемое 2x можно полностью принять за неизвестное слагаемое:

Если к обеим частям уравнения прибавить или вычесть то

Теперь применяем правило нахождения неизвестного слагаемого. Вычитаем из суммы известное слагаемое:

Если к обеим частям уравнения прибавить или вычесть то

Вычислим правую часть получившегося уравнения:

Если к обеим частям уравнения прибавить или вычесть то

Мы получили новое уравнение Если к обеим частям уравнения прибавить или вычесть то. Теперь мы имеем дело с компонентами умножения: множимым, множителем и произведением. 2 — множимое, x — множитель, 4 — произведение

Если к обеим частям уравнения прибавить или вычесть то

При этом переменная x является не просто множителем, а неизвестным множителем

Если к обеим частям уравнения прибавить или вычесть то

Чтобы найти этот неизвестный множитель, нужно произведение разделить на множимое:

Если к обеим частям уравнения прибавить или вычесть то

Вычислим правую часть, получим значение переменной x

Если к обеим частям уравнения прибавить или вычесть то

Для проверки найденный корень отправим в исходное уравнение Если к обеим частям уравнения прибавить или вычесть тои подставим вместо x

Если к обеим частям уравнения прибавить или вычесть то

Получили верное числовое равенство. Значит уравнение решено правильно.

Пример 3. Решить уравнение 3x + 9x + 16x = 56

Cразу выразить неизвестное x нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить.

Приведем подобные слагаемые в левой части данного уравнения:

Если к обеим частям уравнения прибавить или вычесть то

Имеем дело с компонентами умножения. 28 — множимое, x — множитель, 56 — произведение. При этом x является неизвестным множителем. Чтобы найти неизвестный множитель, нужно произведение разделить на множимое:

Если к обеим частям уравнения прибавить или вычесть то

Отсюда x равен 2

Если к обеим частям уравнения прибавить или вычесть то

Видео:РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ. §7 алгебра 8 классСкачать

РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ. §7 алгебра 8 класс

Равносильные уравнения

В предыдущем примере при решении уравнения 3x + 9x + 16x = 56 , мы привели подобные слагаемые в левой части уравнения. В результате получили новое уравнение 28x = 56 . Старое уравнение 3x + 9x + 16x = 56 и получившееся новое уравнение 28x = 56 называют равносильными уравнениями, поскольку их корни совпадают.

Уравнения называют равносильными, если их корни совпадают.

Проверим это. Для уравнения 3x + 9x + 16x = 56 мы нашли корень равный 2 . Подставим этот корень сначала в уравнение 3x + 9x + 16x = 56 , а затем в уравнение 28x = 56 , которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства

Если к обеим частям уравнения прибавить или вычесть то

Согласно порядку действий, в первую очередь выполняется умножение:

Если к обеим частям уравнения прибавить или вычесть то

Подставим корень 2 во второе уравнение 28x = 56

Если к обеим частям уравнения прибавить или вычесть то

Видим, что у обоих уравнений корни совпадают. Значит уравнения 3x + 9x + 16x = 56 и 28x = 56 действительно являются равносильными.

Для решения уравнения 3x + 9x + 16x = 56 мы воспользовались одним из тождественных преобразований — приведением подобных слагаемых. Правильное тождественное преобразование уравнения позволило нам получить равносильное уравнение 28x = 56 , которое проще решать.

Из тождественных преобразований на данный момент мы умеем только сокращать дроби, приводить подобные слагаемые, выносить общий множитель за скобки, а также раскрывать скобки. Существуют и другие преобразования, которые следует знать. Но для общего представления о тождественных преобразованиях уравнений, изученных нами тем вполне хватает.

Рассмотрим некоторые преобразования, которые позволяют получить равносильное уравнение

Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.

Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.

Другими словами, корень уравнения не изменится, если к обеим частям данного уравнения прибавить (или вычесть из обеих частей) одно и то же число.

Пример 1. Решить уравнение Если к обеим частям уравнения прибавить или вычесть то

Вычтем из обеих частей уравнения число 10

Если к обеим частям уравнения прибавить или вычесть то

Приведем подобные слагаемые в обеих частях:

Если к обеим частям уравнения прибавить или вычесть то

Получили уравнение 5x = 10 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 10 разделить на известный сомножитель 5.

Если к обеим частям уравнения прибавить или вычесть то

Отсюда Если к обеим частям уравнения прибавить или вычесть то.

Вернемся к исходному уравнению Если к обеим частям уравнения прибавить или вычесть тои подставим вместо x найденное значение 2

Если к обеим частям уравнения прибавить или вычесть то

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение Если к обеим частям уравнения прибавить или вычесть томы вычли из обеих частей уравнения число 10 . В результате получили равносильное уравнение Если к обеим частям уравнения прибавить или вычесть то. Корень этого уравнения, как и уравнения Если к обеим частям уравнения прибавить или вычесть тотак же равен 2

Если к обеим частям уравнения прибавить или вычесть то

Пример 2. Решить уравнение 4(x + 3) = 16

Раскроем скобки в левой части равенства:

Если к обеим частям уравнения прибавить или вычесть то

Вычтем из обеих частей уравнения число 12

Если к обеим частям уравнения прибавить или вычесть то

Приведем подобные слагаемые в обеих частях уравнения:

Если к обеим частям уравнения прибавить или вычесть тоВ левой части останется 4x , а в правой части число 4

Если к обеим частям уравнения прибавить или вычесть то

Получили уравнение 4x = 4 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 4 разделить на известный сомножитель 4

Если к обеим частям уравнения прибавить или вычесть то

Отсюда Если к обеим частям уравнения прибавить или вычесть то

Вернемся к исходному уравнению 4(x + 3) = 16 и подставим вместо x найденное значение 1

Если к обеим частям уравнения прибавить или вычесть то

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение 4(x + 3) = 16 мы вычли из обеих частей уравнения число 12 . В результате получили равносильное уравнение 4x = 4 . Корень этого уравнения, как и уравнения 4(x + 3) = 16 так же равен 1

Если к обеим частям уравнения прибавить или вычесть то

Пример 3. Решить уравнение Если к обеим частям уравнения прибавить или вычесть то

Раскроем скобки в левой части равенства:

Если к обеим частям уравнения прибавить или вычесть то

Прибавим к обеим частям уравнения число 8

Если к обеим частям уравнения прибавить или вычесть то

Приведем подобные слагаемые в обеих частях уравнения:

Если к обеим частям уравнения прибавить или вычесть то

В левой части останется 2x , а в правой части число 9

Если к обеим частям уравнения прибавить или вычесть то

В получившемся уравнении 2x = 9 выразим неизвестное слагаемое x

Если к обеим частям уравнения прибавить или вычесть то

Отсюда Если к обеим частям уравнения прибавить или вычесть то

Вернемся к исходному уравнению Если к обеим частям уравнения прибавить или вычесть тои подставим вместо x найденное значение 4,5

Если к обеим частям уравнения прибавить или вычесть то

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение Если к обеим частям уравнения прибавить или вычесть томы прибавили к обеим частям уравнения число 8. В результате получили равносильное уравнение Если к обеим частям уравнения прибавить или вычесть то. Корень этого уравнения, как и уравнения Если к обеим частям уравнения прибавить или вычесть тотак же равен 4,5

Если к обеим частям уравнения прибавить или вычесть то

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.

Рассмотрим следующее уравнение:

Если к обеим частям уравнения прибавить или вычесть то

Корень данного уравнения равен 2. Подставим вместо x этот корень и проверим получается ли верное числовое равенство

Если к обеим частям уравнения прибавить или вычесть то

Получается верное равенство. Значит число 2 действительно является корнем уравнения Если к обеим частям уравнения прибавить или вычесть то.

Теперь попробуем поэкспериментировать со слагаемыми этого уравнения, перенося их из одной части в другую, изменяя знаки.

Например, слагаемое 3x располагается в левой части равенства. Перенесём его в правую часть, изменив знак на противоположный:

Если к обеим частям уравнения прибавить или вычесть то

Получилось уравнение 12 = 9x − 3x . Приведем подобные слагаемые в правой части данного уравнения:

Если к обеим частям уравнения прибавить или вычесть то

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Если к обеим частям уравнения прибавить или вычесть то

Отсюда x = 2 . Как видим, корень уравнения не изменился. Значит уравнения 12 + 3x = 9x и 12 = 9x − 3x являются равносильными.

На самом деле данное преобразование является упрощенным методом предыдущего преобразования, где к обеим частям уравнения прибавлялось (или вычиталось) одно и то же число.

Мы сказали, что в уравнении 12 + 3x = 9x слагаемое 3x было перенесено в правую часть, изменив знак. В реальности же происходило следующее: из обеих частей уравнения вычли слагаемое 3x

Если к обеим частям уравнения прибавить или вычесть то

Затем в левой части были приведены подобные слагаемые и получено уравнение 12 = 9x − 3x. Затем опять были приведены подобные слагаемые, но уже в правой части, и получено уравнение 12 = 6x.

Но так называемый «перенос» более удобен для подобных уравнений, поэтому он и получил такое широкое распространение. Решая уравнения, мы часто будем пользоваться именно этим преобразованием.

Равносильными также являются уравнения 12 + 3x = 9x и 3x − 9x = −12 . В этот раз в уравнении 12 + 3x = 9x слагаемое 12 было перенесено в правую часть, а слагаемое 9x в левую. Не следует забывать, что знаки этих слагаемых были изменены во время переноса

Если к обеим частям уравнения прибавить или вычесть то

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом:

Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.

Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные выражения.

Сначала рассмотрим примеры, в которых обе части уравнения будут умножаться на одно и то же число.

Пример 1. Решить уравнение Если к обеим частям уравнения прибавить или вычесть то

При решении уравнений, содержащих дробные выражения, сначала принято упростить это уравнение.

В данном случае мы имеем дело именно с таким уравнением. В целях упрощения данного уравнения обе его части можно умножить на 8:

Если к обеим частям уравнения прибавить или вычесть то

Мы помним, что для умножения дроби на число, нужно числитель данной дроби умножить на это число. У нас имеются две дроби и каждая из них умножается на число 8. Наша задача умножить числители дробей на это число 8

Если к обеим частям уравнения прибавить или вычесть то

Теперь происходит самое интересное. В числителях и знаменателях обеих дробей содержится множитель 8, который можно сократить на 8. Это позволит нам избавиться от дробного выражения:

Если к обеим частям уравнения прибавить или вычесть то

В результате останется простейшее уравнение

Если к обеим частям уравнения прибавить или вычесть то

Ну и нетрудно догадаться, что корень этого уравнения равен 4

Если к обеим частям уравнения прибавить или вычесть то

Вернемся к исходному уравнению Если к обеим частям уравнения прибавить или вычесть тои подставим вместо x найденное значение 4

Если к обеим частям уравнения прибавить или вычесть то

Получается верное числовое равенство. Значит уравнение решено правильно.

При решении данного уравнения мы умножили обе его части на 8. В результате получили уравнение Если к обеим частям уравнения прибавить или вычесть то. Корень этого уравнения, как и уравнения Если к обеим частям уравнения прибавить или вычесть торавен 4. Значит эти уравнения равносильны.

Множитель на который умножаются обе части уравнения принято записывать перед частью уравнения, а не после неё. Так, решая уравнение Если к обеим частям уравнения прибавить или вычесть то, мы умножили обе части на множитель 8 и получили следующую запись:

Если к обеим частям уравнения прибавить или вычесть то

От этого корень уравнения не изменился, но если бы мы сделали это находясь в школе, то нам сделали бы замечание, поскольку в алгебре множитель принято записывать перед тем выражением, с которым он перемножается. Поэтому умножение обеих частей уравнения Если к обеим частям уравнения прибавить или вычесть тона множитель 8 желательно переписать следующим образом:

Если к обеим частям уравнения прибавить или вычесть то

Пример 2. Решить уравнение Если к обеим частям уравнения прибавить или вычесть то

Умнóжим обе части уравнения на 15

Если к обеим частям уравнения прибавить или вычесть то

В левой части множители 15 можно сократить на 15, а в правой части множители 15 и 5 можно сократить на 5

Если к обеим частям уравнения прибавить или вычесть то

Перепишем то, что у нас осталось:

Если к обеим частям уравнения прибавить или вычесть то

Раскроем скобки в правой части уравнения:

Если к обеим частям уравнения прибавить или вычесть то

Перенесем слагаемое x из левой части уравнения в правую часть, изменив знак. А слагаемое 15 из правой части уравнения перенесем в левую часть, опять же изменив знак:

Если к обеим частям уравнения прибавить или вычесть то

Приведем подобные слагаемые в обеих частях, получим

Если к обеим частям уравнения прибавить или вычесть то

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Если к обеим частям уравнения прибавить или вычесть то

Отсюда Если к обеим частям уравнения прибавить или вычесть то

Вернемся к исходному уравнению Если к обеим частям уравнения прибавить или вычесть тои подставим вместо x найденное значение 5

Если к обеим частям уравнения прибавить или вычесть то

Получается верное числовое равенство. Значит уравнение решено правильно. При решении данного уравнения мы умножили обе го части на 15 . Далее выполняя тождественные преобразования, мы получили уравнение 10 = 2x . Корень этого уравнения, как и уравнения Если к обеим частям уравнения прибавить или вычесть торавен 5 . Значит эти уравнения равносильны.

Пример 3. Решить уравнение Если к обеим частям уравнения прибавить или вычесть то

Умнóжим обе части уравнения на 3

Если к обеим частям уравнения прибавить или вычесть то

В левой части можно сократить две тройки, а правая часть будет равна 18

Если к обеим частям уравнения прибавить или вычесть то

Останется простейшее уравнение Если к обеим частям уравнения прибавить или вычесть то. Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Если к обеим частям уравнения прибавить или вычесть то

Отсюда Если к обеим частям уравнения прибавить или вычесть то

Вернемся к исходному уравнению Если к обеим частям уравнения прибавить или вычесть тои подставим вместо x найденное значение 9

Если к обеим частям уравнения прибавить или вычесть то

Получается верное числовое равенство. Значит уравнение решено правильно.

Пример 4. Решить уравнение Если к обеим частям уравнения прибавить или вычесть то

Умнóжим обе части уравнения на 6

Если к обеим частям уравнения прибавить или вычесть то

В левой части уравнения раскроем скобки. В правой части множитель 6 можно поднять в числитель:

Если к обеим частям уравнения прибавить или вычесть то

Сократим в обеих частях уравнениях то, что можно сократить:

Если к обеим частям уравнения прибавить или вычесть то

Перепишем то, что у нас осталось:

Если к обеим частям уравнения прибавить или вычесть то

Раскроем скобки в обеих частях уравнения:

Если к обеим частям уравнения прибавить или вычесть то

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное x , сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой:

Если к обеим частям уравнения прибавить или вычесть то

Приведем подобные слагаемые в обеих частях:

Если к обеим частям уравнения прибавить или вычесть то

Теперь найдем значение переменной x . Для этого разделим произведение 28 на известный сомножитель 7

Если к обеим частям уравнения прибавить или вычесть то

Вернемся к исходному уравнению Если к обеим частям уравнения прибавить или вычесть тои подставим вместо x найденное значение 4

Если к обеим частям уравнения прибавить или вычесть то

Получилось верное числовое равенство. Значит уравнение решено правильно.

Пример 5. Решить уравнение Если к обеим частям уравнения прибавить или вычесть то

Раскроем скобки в обеих частях уравнения там, где это можно:

Если к обеим частям уравнения прибавить или вычесть то

Умнóжим обе части уравнения на 15

Если к обеим частям уравнения прибавить или вычесть то

Раскроем скобки в обеих частях уравнения:

Если к обеим частям уравнения прибавить или вычесть то

Сократим в обеих частях уравнения, то что можно сократить:

Если к обеим частям уравнения прибавить или вычесть то

Перепишем то, что у нас осталось:

Если к обеим частям уравнения прибавить или вычесть то

Раскроем скобки там, где это можно:

Если к обеим частям уравнения прибавить или вычесть то

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Не забываем, что во время переноса, слагаемые меняют свои знаки на противоположные:

Если к обеим частям уравнения прибавить или вычесть то

Приведем подобные слагаемые в обеих частях уравнения:

Если к обеим частям уравнения прибавить или вычесть то

Найдём значение x

Если к обеим частям уравнения прибавить или вычесть то

В получившемся ответе можно выделить целую часть:

Если к обеим частям уравнения прибавить или вычесть то

Вернемся к исходному уравнению и подставим вместо x найденное значение Если к обеим частям уравнения прибавить или вычесть то

Если к обеим частям уравнения прибавить или вычесть то

Получается довольно громоздкое выражение. Воспользуемся переменными. Левую часть равенства занесем в переменную A , а правую часть равенства в переменную B

Если к обеим частям уравнения прибавить или вычесть то

Наша задача состоит в том, чтобы убедиться равна ли левая часть правой. Другими словами, доказать равенство A = B

Найдем значение выражения, находящегося в переменной А.

Если к обеим частям уравнения прибавить или вычесть то

Значение переменной А равно Если к обеим частям уравнения прибавить или вычесть то. Теперь найдем значение переменной B . То есть значение правой части нашего равенства. Если и оно равно Если к обеим частям уравнения прибавить или вычесть то, то уравнение будет решено верно

Если к обеим частям уравнения прибавить или вычесть то

Видим, что значение переменной B , как и значение переменной A равно Если к обеим частям уравнения прибавить или вычесть то. Это значит, что левая часть равна правой части. Отсюда делаем вывод, что уравнение решено правильно.

Теперь попробуем не умножать обе части уравнения на одно и то же число, а делить.

Рассмотрим уравнение 30x + 14x + 14 = 70x − 40x + 42 . Решим его обычным методом: слагаемые, содержащие неизвестные, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Далее выполняя известные тождественные преобразования, найдем значение x

Если к обеим частям уравнения прибавить или вычесть то

Подставим найденное значение 2 вместо x в исходное уравнение:

Если к обеим частям уравнения прибавить или вычесть то

Теперь попробуем разделить все слагаемые уравнения 30x + 14x + 14 = 70x − 40x + 42 на какое-нибудь число. Замечаем, что все слагаемые этого уравнения имеют общий множитель 2. На него и разделим каждое слагаемое:

Если к обеим частям уравнения прибавить или вычесть то

Выполним сокращение в каждом слагаемом:

Если к обеим частям уравнения прибавить или вычесть то

Перепишем то, что у нас осталось:

Если к обеим частям уравнения прибавить или вычесть то

Решим это уравнение, пользуясь известными тождественными преобразованиями:

Если к обеим частям уравнения прибавить или вычесть то

Получили корень 2 . Значит уравнения 15x + 7x + 7 = 35x − 20x + 21 и 30x + 14x + 14 = 70x − 40x + 42 равносильны.

Деление обеих частей уравнения на одно и то же число позволяет освобождать неизвестное от коэффициента. В предыдущем примере когда мы получили уравнение 7x = 14 , нам потребовалось разделить произведение 14 на известный сомножитель 7. Но если бы мы в левой части освободили неизвестное от коэффициента 7, корень нашелся бы сразу. Для этого достаточно было разделить обе части на 7

Если к обеим частям уравнения прибавить или вычесть то

Этим методом мы тоже будем пользоваться часто.

Видео:Решение уравнений. Как переносить слагаемые из одной части уравнения в другую. Математика 6 классСкачать

Решение уравнений. Как переносить слагаемые из одной части уравнения в другую. Математика 6 класс

Умножение на минус единицу

Если обе части уравнения умножить на минус единицу, то получится уравнение равносильное данному.

Это правило следует из того, что от умножения (или деления) обеих частей уравнения на одно и то же число, корень данного уравнения не меняется. А значит корень не поменяется если обе его части умножить на −1 .

Данное правило позволяет поменять знаки всех компонентов, входящих в уравнение. Для чего это нужно? Опять же, чтобы получить равносильное уравнение, которое проще решать.

Рассмотрим уравнение Если к обеим частям уравнения прибавить или вычесть то. Чему равен корень этого уравнения?

Прибавим к обеим частям уравнения число 5

Если к обеим частям уравнения прибавить или вычесть то

Приведем подобные слагаемые:

Если к обеим частям уравнения прибавить или вычесть то

А теперь вспомним про коэффициент буквенного выражения. Что же представляет собой левая часть уравнения Если к обеим частям уравнения прибавить или вычесть то. Это есть произведение минус единицы и переменной x

Если к обеим частям уравнения прибавить или вычесть то

То есть минус, стоящий перед переменной x, относится не к самой переменной x , а к единице, которую мы не видим, поскольку коэффициент 1 принято не записывать. Это означает, что уравнение Если к обеим частям уравнения прибавить или вычесть тона самом деле выглядит следующим образом:

Если к обеим частям уравнения прибавить или вычесть то

Имеем дело с компонентами умножения. Чтобы найти х , нужно произведение −5 разделить на известный сомножитель −1 .

Если к обеим частям уравнения прибавить или вычесть то

или разделить обе части уравнения на −1 , что еще проще

Если к обеим частям уравнения прибавить или вычесть то

Итак, корень уравнения Если к обеим частям уравнения прибавить или вычесть торавен 5 . Для проверки подставим его в исходное уравнение. Не забываем, что в исходном уравнении минус стоящий перед переменной x относится к невидимой единице

Если к обеим частям уравнения прибавить или вычесть то

Получилось верное числовое равенство. Значит уравнение решено верно.

Теперь попробуем умножить обе части уравнения Если к обеим частям уравнения прибавить или вычесть тона минус единицу:

Если к обеим частям уравнения прибавить или вычесть то

После раскрытия скобок в левой части образуется выражение Если к обеим частям уравнения прибавить или вычесть то, а правая часть будет равна 10

Если к обеим частям уравнения прибавить или вычесть то

Корень этого уравнения, как и уравнения Если к обеим частям уравнения прибавить или вычесть торавен 5

Если к обеим частям уравнения прибавить или вычесть то

Значит уравнения Если к обеим частям уравнения прибавить или вычесть тои Если к обеим частям уравнения прибавить или вычесть торавносильны.

Пример 2. Решить уравнение Если к обеим частям уравнения прибавить или вычесть то

В данном уравнении все компоненты являются отрицательными. С положительными компонентами работать удобнее, чем с отрицательными, поэтому поменяем знаки всех компонентов, входящих в уравнение Если к обеим частям уравнения прибавить или вычесть то. Для этого умнóжим обе части данного уравнения на −1 .

Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.

Так, умножение уравнения Если к обеим частям уравнения прибавить или вычесть тона −1 можно записать подробно следующим образом:

Если к обеим частям уравнения прибавить или вычесть то

либо можно просто поменять знаки всех компонентов:

Если к обеим частям уравнения прибавить или вычесть то

Получится то же самое, но разница будет в том, что мы сэкономим себе время.

Итак, умножив обе части уравнения Если к обеим частям уравнения прибавить или вычесть тона −1 , мы получили уравнение Если к обеим частям уравнения прибавить или вычесть то. Решим данное уравнение. Из обеих частей вычтем число 4 и разделим обе части на 3

Если к обеим частям уравнения прибавить или вычесть то

Когда корень найден, переменную обычно записывают в левой части, а её значение в правой, что мы и сделали.

Пример 3. Решить уравнение Если к обеим частям уравнения прибавить или вычесть то

Умнóжим обе части уравнения на −1 . Тогда все компоненты поменяют свои знаки на противоположные:

Если к обеим частям уравнения прибавить или вычесть то

Из обеих частей получившегося уравнения вычтем 2x и приведем подобные слагаемые:

Если к обеим частям уравнения прибавить или вычесть то

Прибавим к обеим частям уравнения единицу и приведем подобные слагаемые: Если к обеим частям уравнения прибавить или вычесть то

Видео:Решение уравнений, 6 классСкачать

Решение уравнений, 6 класс

Приравнивание к нулю

Недавно мы узнали, что если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

А что будет если перенести из одной части в другую не одно слагаемое, а все слагаемые? Верно, в той части откуда забрали все слагаемые останется ноль. Иными словами, не останется ничего.

В качестве примера рассмотрим уравнение Если к обеим частям уравнения прибавить или вычесть то. Решим данное уравнение, как обычно — слагаемые, содержащие неизвестные сгруппируем в одной части, а числовые слагаемые, свободные от неизвестных оставим в другой. Далее выполняя известные тождественные преобразования, найдем значение переменной x

Если к обеим частям уравнения прибавить или вычесть то

Теперь попробуем решить это же уравнение, приравняв все его компоненты к нулю. Для этого перенесем все слагаемые из правой части в левую, изменив знаки:

Если к обеим частям уравнения прибавить или вычесть то

Приведем подобные слагаемые в левой части:

Если к обеим частям уравнения прибавить или вычесть то

Прибавим к обеим частям 77 , и разделим обе части на 7

Видео:МЕРЗЛЯК-6. РЕШЕНИЕ УРАВНЕНИЙ. ПАРАГРАФ-41Скачать

МЕРЗЛЯК-6. РЕШЕНИЕ УРАВНЕНИЙ. ПАРАГРАФ-41

Альтернатива правилам нахождения неизвестных

Очевидно, что зная о тождественных преобразованиях уравнений, можно не заучивать наизусть правила нахождения неизвестных.

К примеру, для нахождения неизвестного в уравнении Если к обеим частям уравнения прибавить или вычесть томы произведение 10 делили на известный сомножитель 2

Если к обеим частям уравнения прибавить или вычесть то

Но если в уравнении Если к обеим частям уравнения прибавить или вычесть тообе части разделить на 2 корень найдется сразу. В левой части уравнения в числителе множитель 2 и в знаменателе множитель 2 сократятся на 2. А правая часть будет равна 5

Если к обеим частям уравнения прибавить или вычесть то

Уравнения вида Если к обеим частям уравнения прибавить или вычесть томы решали выражая неизвестное слагаемое:

Если к обеим частям уравнения прибавить или вычесть то

Если к обеим частям уравнения прибавить или вычесть то

Если к обеим частям уравнения прибавить или вычесть то

Но можно воспользоваться тождественными преобразованиями, которые мы сегодня изучили. В уравнении Если к обеим частям уравнения прибавить или вычесть тослагаемое 4 можно перенести в правую часть, изменив знак:

Если к обеим частям уравнения прибавить или вычесть то

Если к обеим частям уравнения прибавить или вычесть то

Далее разделить обе части на 2

Если к обеим частям уравнения прибавить или вычесть то

В левой части уравнения сократятся две двойки. Правая часть будет равна 2. Отсюда Если к обеим частям уравнения прибавить или вычесть то.

Либо можно было из обеих частей уравнения вычесть 4. Тогда получилось бы следующее:

Если к обеим частям уравнения прибавить или вычесть то

В случае с уравнениями вида Если к обеим частям уравнения прибавить или вычесть тоудобнее делить произведение на известный сомножитель. Сравним оба решения:

Если к обеим частям уравнения прибавить или вычесть то

Первое решение намного короче и аккуратнее. Второе решение можно значительно укоротить, если выполнить деление в уме.

Тем не менее, необходимо знать оба метода, и только затем использовать тот, который больше нравится.

Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnline

Когда корней несколько

Уравнение может иметь несколько корней. Например уравнение x(x + 9) = 0 имеет два корня: 0 и −9 .

Если к обеим частям уравнения прибавить или вычесть то

В уравнении x(x + 9) = 0 нужно было найти такое значение x при котором левая часть была бы равна нулю. В левой части этого уравнения содержатся выражения x и (x + 9) , которые являются сомножителями. Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

То есть в уравнении x(x + 9) = 0 равенство будет достигаться, если x будет равен нулю или (x + 9) будет равно нулю.

Приравняв к нулю оба этих выражения, мы сможем найти корни уравнения x(x + 9) = 0 . Первый корень, как видно из примера, нашелся сразу. Для нахождения второго корня нужно решить элементарное уравнение x + 9 = 0 . Несложно догадаться, что корень этого уравнения равен −9 . Проверка показывает, что корень верный:

Пример 2. Решить уравнение Если к обеим частям уравнения прибавить или вычесть то

Данное уравнение имеет два корня: 1 и 2. Левая часть уравнения является произведение выражений (x − 1) и (x − 2) . А произведение равно нулю, если хотя бы один из сомножителей равен нулю (или сомножитель (x − 1) или сомножитель (x − 2) ).

Найдем такое x при котором выражения (x − 1) или (x − 2) обращаются в нули:

Если к обеим частям уравнения прибавить или вычесть то

Подставляем по-очереди найденные значения в исходное уравнение Если к обеим частям уравнения прибавить или вычесть тои убеждаемся, что при этих значениях левая часть равняется нулю:

Если к обеим частям уравнения прибавить или вычесть то

Видео:Серия 31, составим уравнениеСкачать

Серия 31, составим уравнение

Когда корней бесконечно много

Уравнение может иметь бесконечно много корней. То есть подставив в такое уравнение любое число, мы получим верное числовое равенство.

Пример 1. Решить уравнение Если к обеим частям уравнения прибавить или вычесть то

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 14 = 14 . Это равенство будет получаться при любом x

Если к обеим частям уравнения прибавить или вычесть то

Пример 2. Решить уравнение Если к обеим частям уравнения прибавить или вычесть то

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения, то получится равенство 10x + 12 = 10x + 12. Это равенство будет получаться при любом x

Видео:Подготовка к ЕГЭ #41. Равносильные уравнения. Совокупность уравненийСкачать

Подготовка к ЕГЭ #41. Равносильные уравнения. Совокупность уравнений

Когда корней нет

Случается и так, что уравнение вовсе не имеет решений, то есть не имеет корней. Например уравнение Если к обеим частям уравнения прибавить или вычесть тоне имеет корней, поскольку при любом значении x , левая часть уравнения не будет равна правой части. Например, пусть Если к обеим частям уравнения прибавить или вычесть то. Тогда уравнение примет следующий вид

Если к обеим частям уравнения прибавить или вычесть то

Пусть Если к обеим частям уравнения прибавить или вычесть то

Если к обеим частям уравнения прибавить или вычесть то

Пример 2. Решить уравнение Если к обеим частям уравнения прибавить или вычесть то

Раскроем скобки в левой части равенства:

Если к обеим частям уравнения прибавить или вычесть то

Приведем подобные слагаемые:

Если к обеим частям уравнения прибавить или вычесть то

Видим, что левая часть не равна правой части. И так будет при любом значении y . Например, пусть y = 3 .

Если к обеим частям уравнения прибавить или вычесть то

Видео:Как решить уравнение x^3+1=2cbrt(2x−1)?Скачать

Как решить уравнение x^3+1=2cbrt(2x−1)?

Буквенные уравнения

Уравнение может содержать не только числа с переменными, но и буквы.

Например, формула нахождения скорости является буквенным уравнением:

Если к обеим частям уравнения прибавить или вычесть то

Данное уравнение описывает скорость движения тела при равноускоренном движении.

Полезным навыком является умение выразить любой компонент, входящий в буквенное уравнение. Например, чтобы из уравнения Если к обеим частям уравнения прибавить или вычесть тоопределить расстояние, нужно выразить переменную s .

Умнóжим обе части уравнения Если к обеим частям уравнения прибавить или вычесть тона t

Если к обеим частям уравнения прибавить или вычесть то

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

Если к обеим частям уравнения прибавить или вычесть то

В получившемся уравнении левую и правую часть поменяем местами:

Если к обеим частям уравнения прибавить или вычесть то

У нас получилась формула нахождения расстояния, которую мы изучали ранее.

Попробуем из уравнения Если к обеим частям уравнения прибавить или вычесть тоопределить время. Для этого нужно выразить переменную t .

Умнóжим обе части уравнения на t

Если к обеим частям уравнения прибавить или вычесть то

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

Если к обеим частям уравнения прибавить или вычесть то

В получившемся уравнении v × t = s обе части разделим на v

Если к обеим частям уравнения прибавить или вычесть то

В левой части переменные v сократим на v и перепишем то, что у нас осталось:

Если к обеим частям уравнения прибавить или вычесть то

У нас получилась формула определения времени, которую мы изучали ранее.

Предположим, что скорость поезда равна 50 км/ч

А расстояние равно 100 км

Тогда буквенное уравнение Если к обеим частям уравнения прибавить или вычесть топримет следующий вид

Если к обеим частям уравнения прибавить или вычесть то

Из этого уравнения можно найти время. Для этого нужно суметь выразить переменную t . Можно воспользоваться правилом нахождения неизвестного делителя, разделив делимое на частное и таким образом определить значение переменной t

Если к обеим частям уравнения прибавить или вычесть то

либо можно воспользоваться тождественными преобразованиями. Сначала умножить обе части уравнения на t

Если к обеим частям уравнения прибавить или вычесть то

Затем разделить обе части на 50

Если к обеим частям уравнения прибавить или вычесть то

Пример 2. Дано буквенное уравнение Если к обеим частям уравнения прибавить или вычесть то. Выразите из данного уравнения x

Вычтем из обеих частей уравнения a

Если к обеим частям уравнения прибавить или вычесть то

Разделим обе части уравнения на b

Если к обеим частям уравнения прибавить или вычесть то

Теперь, если нам попадется уравнение вида a + bx = c , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения. Те значения, которые будут подставляться вместо букв a, b, c принято называть параметрами. А уравнения вида a + bx = c называют уравнением с параметрами. В зависимости от параметров, корень будет меняться.

Решим уравнение 2 + 4x = 10 . Оно похоже на буквенное уравнение a + bx = c . Вместо того, чтобы выполнять тождественные преобразования, мы можем воспользоваться готовым решением. Сравним оба решения:

Если к обеим частям уравнения прибавить или вычесть то

Видим, что второе решение намного проще и короче.

Для готового решения необходимо сделать небольшое замечание. Параметр b не должен быть равным нулю (b ≠ 0) , поскольку деление на ноль на допускается.

Пример 3. Дано буквенное уравнение Если к обеим частям уравнения прибавить или вычесть то. Выразите из данного уравнения x

Раскроем скобки в обеих частях уравнения

Если к обеим частям уравнения прибавить или вычесть то

Воспользуемся переносом слагаемых. Параметры, содержащие переменную x , сгруппируем в левой части уравнения, а параметры свободные от этой переменной — в правой.

Если к обеим частям уравнения прибавить или вычесть то

В левой части вынесем за скобки множитель x

Если к обеим частям уравнения прибавить или вычесть то

Разделим обе части на выражение a − b

Если к обеим частям уравнения прибавить или вычесть то

В левой части числитель и знаменатель можно сократить на a − b . Так окончательно выразится переменная x

Если к обеим частям уравнения прибавить или вычесть то

Теперь, если нам попадется уравнение вида a(x − c) = b(x + d) , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения.

Допустим нам дано уравнение 4(x − 3) = 2(x + 4) . Оно похоже на уравнение a(x − c) = b(x + d) . Решим его двумя способами: при помощи тождественных преобразований и при помощи готового решения:

Для удобства вытащим из уравнения 4(x − 3) = 2(x + 4) значения параметров a, b, c, d . Это позволит нам не ошибиться при подстановке:

Если к обеим частям уравнения прибавить или вычесть то

Если к обеим частям уравнения прибавить или вычесть то

Как и в прошлом примере знаменатель здесь не должен быть равным нулю (a − b ≠ 0) . Если нам встретится уравнение вида a(x − c) = b(x + d) в котором параметры a и b будут одинаковыми, мы сможем не решая его сказать, что у данного уравнения корней нет, поскольку разность одинаковых чисел равна нулю.

Например, уравнение 2(x − 3) = 2(x + 4) является уравнением вида a(x − c) = b(x + d) . В уравнении 2(x − 3) = 2(x + 4) параметры a и b одинаковые. Если мы начнём его решать, то придем к тому, что левая часть не будет равна правой части:

Если к обеим частям уравнения прибавить или вычесть то

Пример 4. Дано буквенное уравнение Если к обеим частям уравнения прибавить или вычесть то. Выразите из данного уравнения x

Приведем левую часть уравнения к общему знаменателю:

Если к обеим частям уравнения прибавить или вычесть то

Умнóжим обе части на a

Если к обеим частям уравнения прибавить или вычесть то

В левой части x вынесем за скобки

Если к обеим частям уравнения прибавить или вычесть то

Разделим обе части на выражение (1 − a)

Если к обеим частям уравнения прибавить или вычесть то

Видео:Уравнение Основные свойства уравненийСкачать

Уравнение  Основные свойства уравнений

Линейные уравнения с одним неизвестным

Рассмотренные в данном уроке уравнения называют линейными уравнениями первой степени с одним неизвестным.

Если уравнение дано в первой степени, не содержит деления на неизвестное, а также не содержит корней из неизвестного, то его можно назвать линейным. Мы еще не изучали степени и корни, поэтому чтобы не усложнять себе жизнь, слово «линейный» будем понимать как «простой».

Большинство уравнений, решенных в данном уроке, в конечном итоге сводились к простейшему уравнению, в котором нужно было произведение разделить на известный сомножитель. Таковым к примеру является уравнение 2 (x + 3) = 16 . Давайте решим его.

Раскроем скобки в левой части уравнения, получим 2 x + 6 = 16. Перенесем слагаемое 6 в правую часть, изменив знак. Тогда получим 2 x = 16 − 6. Вычислим правую часть, получим 2x = 10. Чтобы найти x , разделим произведение 10 на известный сомножитель 2. Отсюда x = 5.

Уравнение 2 (x + 3) = 16 является линейным. Оно свелось к уравнению 2x = 10 , для нахождения корня которого потребовалось разделить произведение на известный сомножитель. Такое простейшее уравнение называют линейным уравнением первой степени с одним неизвестным в каноническом виде. Слово «канонический» является синонимом слов «простейший» или «нормальный».

Линейное уравнение первой степени с одним неизвестным в каноническом виде называют уравнение вида ax = b.

Полученное нами уравнение 2x = 10 является линейным уравнением первой степени с одним неизвестным в каноническом виде. У этого уравнения первая степень, одно неизвестное, оно не содержит деления на неизвестное и не содержит корней из неизвестного, и представлено оно в каноническом виде, то есть в простейшем виде при котором легко можно определить значение x . Вместо параметров a и b в нашем уравнении содержатся числа 2 и 10. Но подобное уравнение может содержать и другие числа: положительные, отрицательные или равные нулю.

Если в линейном уравнении a = 0 и b = 0 , то уравнение имеет бесконечно много корней. Действительно, если a равно нулю и b равно нулю, то линейное уравнение ax = b примет вид 0x = 0 . При любом значении x левая часть будет равна правой части.

Если в линейном уравнении a = 0 и b ≠ 0 , то уравнение корней не имеет. Действительно, если a равно нулю и b равно какому-нибудь числу, не равному нулю, скажем числу 5, то уравнение ax = b примет вид 0x = 5 . Левая часть будет равна нулю, а правая часть пяти. А ноль не равен пяти.

Если в линейном уравнении a ≠ 0 , и b равно любому числу, то уравнение имеет один корень. Он определяется делением параметра b на параметр a

Если к обеим частям уравнения прибавить или вычесть то

Действительно, если a равно какому-нибудь числу, не равному нулю, скажем числу 3 , и b равно какому-нибудь числу, скажем числу 6 , то уравнение Если к обеим частям уравнения прибавить или вычесть топримет вид Если к обеим частям уравнения прибавить или вычесть то.
Отсюда Если к обеим частям уравнения прибавить или вычесть то.

Существует и другая форма записи линейного уравнения первой степени с одним неизвестным. Выглядит она следующим образом: ax − b = 0 . Это то же самое уравнение, что и ax = b , но параметр b перенесен в левую часть с противоположным знаком. Такие уравнение мы тоже решали в данном уроке. Например, уравнение 7x − 77 = 0 . Уравнение вида ax − b = 0 называют линейным уравнением первой степени с одним неизвестным в общем виде.

В будущем после изучения рациональных выражений, мы рассмотрим такие понятия, как посторонние корни и потеря корней. А пока рассмотренного в данном уроке будет достаточным.

Видео:Серия 31, составим уравнение. РазборСкачать

Серия 31, составим уравнение. Разбор

Презентация по математике по теме: «Решение уравнений» (6 класс)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Рабочие листы и материалы для учителей и воспитателей

Более 2 500 дидактических материалов для школьного и домашнего обучения

Если к обеим частям уравнения прибавить или вычесть то

Описание презентации по отдельным слайдам:

Если к обеим частям уравнения прибавить или вычесть то

Решение уравнений
6 класс
УМК: А.Г. Мерзляк и др.

Если к обеим частям уравнения прибавить или вычесть то

ВСПОМНИМ
1. Уравнением называют равенство, содержащее букву, значение которой надо найти.
2. Корнем уравнения называют то значение неизвестного, при котором это уравнение обращается в верное числовое равенство.
3. Решить уравнение это значит найти все его корни или убедиться, что это уравнение не имеет ни одного корня.

Если к обеим частям уравнения прибавить или вычесть то

Если к обеим частям уравнения прибавить или вычесть то

Свойства уравнений
1). Если к обеим частям данного уравнения прибавить (или вычесть) одно и то же число, то получим уравнение, имеющее те же корни, что и данное.
2). Если обе части уравнения умножить (или разделить) на одно и то же отличное от нуля число, то получим уравнение, имеющее те же корни, что и данное.
3). Если какое-нибудь слагаемое перенести из одной части уравнения в другую, изменив при этом знак на противоположный, то получим уравнение, имеющее те же корни, что и данное.

Если к обеим частям уравнения прибавить или вычесть то

Алгоритм решения уравнений
1).сначала уравнение упрости (раскрой скобки)
2).перенеси слагаемые с буквой в левую часть уравнения, без буквы – в правую часть
3).приведи подобные слагаемые
4).раздели левую и правую части уравнения на множитель перед буквой

Если к обеим частям уравнения прибавить или вычесть то

Например (образец решения)
8 – 5х = 13 – 3х
Решение
-5х + 3х = — 8 + 13
-2х = 5
х = 5 : (-2) = -2,5
Ответ: -2,5
2(х+3)-5 = 4 -(х-9)
2х + 6 – 5 = 4 – х + 9
2х + х = -6 +5 +4 +9
3х = 12
х = 12 : 3 = 4
Ответ: 4

Если к обеим частям уравнения прибавить или вычесть то

Решите самостоятельно
а) 3х-1=х+1
2х = 2
х = 1
Ответ: 1
б) 3а+1=3а-1
0а = -2
Ответ: решений нет
в) х+4=7х+9
-6х = 5
х = — 5/6
Ответ: -5/6
г) в-9=в-9
0в = 0
Ответ:
в-любое число

Если к обеим частям уравнения прибавить или вычесть то

1. Примеры решения уравнений
Образец решения уравнения
5х — 3 = 2х +6
Решение: 5х — 2х = +3 + 6
3·х = 9
х = 9 : 3
х = 3
Ответ: 3

Решаем уравнения:
1). 5 – 6х = -5х + 1
2). 5 – 3х = -7х – 9
3). -7 – 4х = -10х — 6
4). 5х – 3 = 12
5). -х + 9 = 16

Если к обеим частям уравнения прибавить или вычесть то

Решите самостоятельно
1). 2х = 18 — х
2). 9х + 4 = 48 – 2х
3). 7х + 3 = 30 – 2х
4). 7 – 2х = 3х — 18
5). 0,4х + 3,8 = 2,6 – 0,8х
Проверим ответы:
1). 6
2). 4
3). 3
4). 5
5). -1

Если к обеим частям уравнения прибавить или вычесть то

2. Примеры решения уравнений
Образец решения уравнения
4(х + 5) = 12
Решение: 4х + 20 = 12
4х = — 20 + 12
4х = — 8
х = -8 : 4 = -2
Ответ: -2

Решим уравнения:
1). – (14 -21х) = 56
2). 7(х + 7) = 10х
3). 3(х +8) = — 3х
4). (45 — у) + 8 = 28
5). 5(х — 5) = — 8х + 1

Если к обеим частям уравнения прибавить или вычесть то

Решите самостоятельно
1). 3(х — 2) = х + 2
2). (7х +1) – (9х + 4) = 5
3). 5 – 2(х — 1) = 4 – х
4). 14х – 14 = 7(2х — 3) +7
5). 3,4 + 2у = 7(у – 2,3)
Проверим ответы:
1). 4
2). — 4
3). 3
4). Любое число
5). 3,9

Если к обеим частям уравнения прибавить или вычесть то

3. Примеры решения уравнений
Образец решения уравнения:
3(2х — 4) -2(х+3)= -2 +8х
6х – 12 -2х – 6 = -2 + 8х
6х — 2х – 8х = +12+6 – 2
— 4х = 16
х = 16 : (-4) = — 4
Ответ: -4
Решим уравнения:
1). (7х +1) – (9х +3) = 5
2). 3(6х-1) = 2(9х+1) — 10
3). 4(5х+2)=10(2х-3)+15
4). 2(7х — 7) = 7(2х-3) + 7
5). 3(х+6) = х +2(х+9)

Если к обеим частям уравнения прибавить или вычесть то

Решите самостоятельно
1). (8х + 3) – (10х + 6) = 9
2). 2(7х — 7) = 7(2х — 3) + 7
3). 5(х — 12) = 6(х — 10) — х
4).7(4х — 1) = 6 – 2(3 – 14х)
5).5,6 – 3(2 – 0,4х) = 0,4(4х — 1)
Проверим ответы:
1). -6
2). Любое число
3). Любое число
4). – ½ = — 0,5
5). 0

Если к обеим частям уравнения прибавить или вычесть то

4. Примеры решения уравнений
Образец решения уравнения

Решение:
3·(х — 8) = 7·(х + 2)
3х – 24 = 7х + 14
3х – 7х = + 24 + 14
— 4х = 38
х = 38 : (- 4) = …
Решим уравнения:
1).

Если к обеим частям уравнения прибавить или вычесть то

Если к обеим частям уравнения прибавить или вычесть то

5. Примеры решения уравнений
Образец решения уравнения
│х — 24│ = 22
+(х — 24)=22 -(х — 24)=22
х – 24 =22 -х +24 =22
х = +24 +22 -х= -24 +22
х = 46 -х = — 2; х=2
Ответ: 2; 46
Решим уравнения:
1). │2х — 1│ = 3
2). │5х + 1│= 2
3). │5х + 1│= — 4
4). │21х + 2│ = 23
5). │10х — 1│ = 0

Если к обеим частям уравнения прибавить или вычесть то

Решите самостоятельно
1). │х — 4│ = 2
2). │х + 4│ = 9
3). │х — 3│ = 12
4). │3х — 2│ = 4
5). │2х + 2│ = — 1

Проверим ответы:
1). 2 и 6
2). -13 и 5
3). -9 и 15
4). -2/3 и 2
5). Нет решения

Если к обеим частям уравнения прибавить или вычесть то

Желаю УСПЕХОВ
в изучении
МАТЕМАТИКИ!

Если к обеим частям уравнения прибавить или вычесть то

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 710 человек из 76 регионов

Если к обеим частям уравнения прибавить или вычесть то

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 859 человек из 77 регионов

Если к обеим частям уравнения прибавить или вычесть то

Курс повышения квалификации

Педагогическая деятельность в контексте профессионального стандарта педагога и ФГОС

  • Сейчас обучается 48 человек из 21 региона

«Мотивация здорового образа жизни. Организация секций»

Свидетельство и скидка на обучение каждому участнику

  • Для всех учеников 1-11 классов
    и дошкольников
  • Интересные задания
    по 16 предметам

Если к обеим частям уравнения прибавить или вычесть то Если к обеим частям уравнения прибавить или вычесть то

«Как закрыть гештальт: практики и упражнения»

Свидетельство и скидка на обучение каждому участнику

Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

Дистанционные курсы для педагогов

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 848 771 материал в базе

Материал подходит для УМК

Если к обеим частям уравнения прибавить или вычесть то

«Математика», Мерзляк А.Г., Полонский В.Б., Якир М.С.

§ 41. Решение уравнений

Ищем педагогов в команду «Инфоурок»

Другие материалы

  • 13.04.2022
  • 53
  • 0

Если к обеим частям уравнения прибавить или вычесть то

  • 13.04.2022
  • 770
  • 354

Если к обеим частям уравнения прибавить или вычесть то

  • 13.04.2022
  • 47
  • 0
  • 13.04.2022
  • 50
  • 1

Если к обеим частям уравнения прибавить или вычесть то

  • 13.04.2022
  • 46
  • 0

Если к обеим частям уравнения прибавить или вычесть то

  • 13.04.2022
  • 87
  • 0

Если к обеим частям уравнения прибавить или вычесть то

  • 13.04.2022
  • 92
  • 5

Если к обеим частям уравнения прибавить или вычесть то

  • 13.04.2022
  • 36
  • 1

«Учись, играя: эффективное обучение иностранным языкам дошкольников»

Свидетельство и скидка на обучение
каждому участнику

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 13.04.2022 421
  • PPTX 713.5 кбайт
  • 154 скачивания
  • Оцените материал:

Настоящий материал опубликован пользователем Арзамасцева Наталья Андреевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

Если к обеим частям уравнения прибавить или вычесть то

  • На сайте: 5 лет и 5 месяцев
  • Подписчики: 0
  • Всего просмотров: 7945
  • Всего материалов: 18

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Видео:Решение уравнений через обратные действияСкачать

Решение уравнений через обратные действия

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Если к обеим частям уравнения прибавить или вычесть то

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Если к обеим частям уравнения прибавить или вычесть то

25% школ выбрали компьютерный формат проведения ВПР

Время чтения: 1 минута

Если к обеим частям уравнения прибавить или вычесть то

В России выросло число детей с ОВЗ, поступающих в колледжи

Время чтения: 1 минута

Если к обеим частям уравнения прибавить или вычесть то

В Госдуму внесли законопроект о возможности повторной сдачи ЕГЭ

Время чтения: 1 минута

Если к обеим частям уравнения прибавить или вычесть то

Роспотребнадзор сообщил об опасности размещения вышек сотовой связи на территории школ

Время чтения: 1 минута

Если к обеим частям уравнения прибавить или вычесть то

Минпросвещения предлагает изменить форму для проведения ВОШ

Время чтения: 1 минута

Если к обеим частям уравнения прибавить или вычесть то

Путин объявил 2022-2031 годы Десятилетием науки и технологий

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

🔥 Видео

Равносильные преобразования в уравнениях. ПравилаСкачать

Равносильные преобразования в уравнениях.  Правила

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Решение системы линейных уравнений методом исключения | МатематикаСкачать

Решение системы линейных уравнений методом исключения | Математика
Поделиться или сохранить к себе: