- «Если к обеим частям данного уравнения прибавить (или вычесть) одно и то же число, то получится уравнение, имеющее те же корни, что и исходное.»
- Если к обеим частям данного уравнения прибавить или вычесть
- Презентация по математике по теме: «Решение уравнений» (6 класс)
- Описание презентации по отдельным слайдам:
- Математика: теория и методика преподавания в образовательной организации
- Дистанционное обучение как современный формат преподавания
- Педагогическая деятельность в контексте профессионального стандарта педагога и ФГОС
- Дистанционные курсы для педагогов
- Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
- Материал подходит для УМК
- Другие материалы
- Вам будут интересны эти курсы:
- Оставьте свой комментарий
- Автор материала
- Дистанционные курсы для педагогов
- Подарочные сертификаты
- 🎬 Видео
Видео:РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ. §7 алгебра 8 классСкачать
«Если к обеим частям данного уравнения прибавить (или вычесть) одно и то же число, то получится уравнение, имеющее те же корни, что и исходное.»
«Если какое-нибудь слагаемое перенести из одной части уравнения в другую, поменяв при этом его знак на противоположный, то получится уравнение, имеющее те же корни, что и исходное.»
Применяя данное правило, решите уравнения:
17,43 — p + 32,32 = -74,75
Применяйте аккуратно оба правила решения уравнения:
-64 : (u + 73) = -41 + 73
Решите пожалуйста быстро нужен только ответ)
ПОМОГИТЕ)))))))))
Видео:Равносильные уравнения. Совокупность уравнений. Подготовка к ГВЭ11 + ЕГЭ 2021 по математике #41Скачать
Если к обеим частям данного уравнения прибавить или вычесть
Два уравнения называют равносильными, если они имеют одно и тоже множество корней.
Свойства уравнений
- Если к обеим частям данного уравнения прибавить (или из обеих частей вычесть) одно и то же число, то получим уравнение, равносильное данному.
- Если какое-либо слагаемое перенести из одной части уравнения в другую, изменив при этом его знак на противоположный, то получим уравнение, равносильное данному.
- Если обе части уравнения умножить (разделить) на одно и то же отличное от нуля число, то получим уравнение, равносильное данному
Линейное уравнение
Уравнение вида , где — переменная, и некоторые числа, называют линейным уравнением с одной переменной.
Значения и | |||
---|---|---|---|
Корни уравнения | -любое число | корней нет |
Одночлены и многочлены
Одночлены
- Выражения, являющиеся произведениями чисел, переменных и их степеней, называют одночленами.
- Одночлен, содержащий только один отличный от нуля числовой множитель, стоящий на первом месте, а все остальные множители которого — степени с разными основаниями, называют одночленом стандартного вида. К одночленам стандартного вида также относят числа, отличные от нуля, переменные и их степени.
- Числовой множитель одночлена, записанного в стандартном виде, называют коэффициентом одночлена.
- Одночлены, имеющие одинаковые буквенные части, называют подобными. Степенью одночлена называют сумму показателей степеней всех переменных, входящих в него. Степень одночлена, являющегося числом, отличным от нуля, считают равной нулю.
- Нуль-одночлен степени не имеет.
Многочлены
- Выражение, являющееся суммой нескольких одночленов, называют многочленом.
- Одночлены, из которых состоит многочлен, называют членами многочлена.
- Одночлен является частным случаем многочлена. Считают, что такой многочлен состоит из одного члена.
Умножение одночлена на многочлен
Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый член многочлена и полученные произведения сложить.
Умножение многочлена на многочлен
Чтобы умножить многочлен на многочлен, можно каждый член одного многочлена умножить на каждый член другого и полученные произведения сложить.
Формулы сокращенного умножения
Разность квадратов двух выражений
Разность квадратов двух выражений равна произведению разности этих выражений и их суммы:
Произведение разности и суммы двух выражений
Произведение разности двух выражений и их суммы равно разности квадратов этих выражений:
Квадрат суммы и квадрат разности двух выражений
Квадрат суммы двух выражений равен квадрату первого выражения плюс удвоенное произведение первого и второго выражений, плюс квадрат второго выражения:
Квадрат разности двух выражений равен квадрату первого выражения минус удвоенное произведение первого и второго выражений пл юс квадрат второго выражении:
Преобразование многочлена в квадрат суммы или разности двух выражений
позволяют «свернуть» трёхчлен в квадрат двучлена.
Трёхчлен, который можно представить в виде квадрата двучлена, н а зывают полным квадратом.
Сумма и разность кубов двух выражений
Многочлен называют неполным квадратом разности.
Сумма кубов двух выражений равна произведению суммы этих выр а жений и неполного квадрата их разности:
Многочлен называют неполным квадратом суммы.
Разность кубов двух выражений равна произведению разности этих выражений и неполного квадрата их суммы:
Степень. Свойства степени с целым показателем
Свойства степени с целым показателем
Для любого и любых целых выполняются равенства:
Для любых , и любого целого выполняются равенства:
Функция. Область определения и область значений функции
Функция
Правило, с помощью которого по каждому значению независимой переменной можно найти единственное значение зависимой переменной, называют функцией, а соответствующую зависимость одной п e ременной от другой — функциональной.
Обычно независимую переменную обозначают , зависимую обозначают , функцию(правило) — .
Независимую переменную называют аргументом функции. Значение зависимой переменной называют значением функции.
Тогда функциональную зависимость обозначают .
Значения, которые принимает аргумент, образуют область определения функции. Все значения, которые принимает зависимая переменная, образуют область значений функции.
Способы задания функции
Описательный, табличный, с помощью формулы, графический.
График функции
Графиком функции называют геометрическую фигуру, состоящую из всех тех и только тех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты — соответствующим значениям функции.
Линейная функция, её график и свойства
- Функцию, которую можно задать формулой вида , где и — некоторые числа, — независимая переменная, называют линейной.
- Графиком линейной функции является прямая.
- Линейную функцию, заданную формулой , где , называют прямой пропорциональностью.
Системы линейных уравнений с двумя переменными
Уравнение с двумя переменными
Пару значений переменных, обращающую уравнение с двумя переменными в верное равенство, называют решением уравнения с двумя переменными.
Решить уравнение с двумя переменными — значит найти все его решения или показать, что оно не имеет решений.
Графиком уравнения с двумя переменными называют геометрическую фигуру, состоящую из всех тех и только тех точек координатной плоскости, координаты которых (пары чисел) являются решениями данного уравнения.
Если некоторая фигура является графиком уравнения, то выполняются два условия:
- все решения уравнения являются координатами точек, принадлежащих графику;
- координаты любой точки, принадлежащей графику, — это пара чисел, являющаяся решением данного уравнения.
Графический метод решения системы двух линейных уравнений с двумя переменными
Графический метод решения системы уравнений заключается в следующем:
- построить в одной координатной плоскости графики уравнений, входящих в систему;
- найти координаты всех точек пересечения построенных графиков;
- полученные пары чисел и будут искомыми решениями.
Если графиками уравнений, входящих в систему линейных уравнении, являются прямые, то количество решений этой системы зависит от взаимного расположения двух прямых на плоскости:
- если прямые пересекаются, то система имеет единственное решение.
- если прямые совпадают, то система имеет бесконечно много решении.
- если прямые параллельны, то система решений не имеет.
Решение системы двух линейных уравнений с двумя переменными методом подстановки
Чтобы решить систему линейных уравнений методом подстановки, следует:
- выразить из любого уравнения системы одну переменную через другую;
- подставить в уравнение системы вместо этой переменной выражение, полученное на первом шаге;
- решить уравнение с одной переменной, полученное на втором шаге;
- подставить найденное значение переменной в выражение, полученное на первом шаге;
- вычислить значение второй переменной;
- записать ответ.
Решение систем линейных уравнений методом сложения
Чтобы решить систему линейных уравнений методом сложения, следует:
- подобрать такие множители для уравнений, чтобы после преобразований коэффициенты при одной из переменной стали противоположными числами
- сложить почленно левые и правые части уравнений, полученных на первом шаге
- решить уравнение с одной переменной, полученной на втором шаге
- подставить найденное на третьем шаге значение переменной в любое из уравнений исходной системы;
- вычислить значение второй переменной;
- записать ответ.
Видео:Системы уравнений. Способ уравнивания коэффициентов - 1Скачать
Презентация по математике по теме: «Решение уравнений» (6 класс)
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Рабочие листы и материалы для учителей и воспитателей
Более 300 дидактических материалов для школьного и домашнего обучения
Описание презентации по отдельным слайдам:
Решение уравнений
6 класс
УМК: А.Г. Мерзляк и др.
ВСПОМНИМ
1. Уравнением называют равенство, содержащее букву, значение которой надо найти.
2. Корнем уравнения называют то значение неизвестного, при котором это уравнение обращается в верное числовое равенство.
3. Решить уравнение это значит найти все его корни или убедиться, что это уравнение не имеет ни одного корня.
Свойства уравнений
1). Если к обеим частям данного уравнения прибавить (или вычесть) одно и то же число, то получим уравнение, имеющее те же корни, что и данное.
2). Если обе части уравнения умножить (или разделить) на одно и то же отличное от нуля число, то получим уравнение, имеющее те же корни, что и данное.
3). Если какое-нибудь слагаемое перенести из одной части уравнения в другую, изменив при этом знак на противоположный, то получим уравнение, имеющее те же корни, что и данное.
Алгоритм решения уравнений
1).сначала уравнение упрости (раскрой скобки)
2).перенеси слагаемые с буквой в левую часть уравнения, без буквы – в правую часть
3).приведи подобные слагаемые
4).раздели левую и правую части уравнения на множитель перед буквой
Например (образец решения)
8 – 5х = 13 – 3х
Решение
-5х + 3х = — 8 + 13
-2х = 5
х = 5 : (-2) = -2,5
Ответ: -2,5
2(х+3)-5 = 4 -(х-9)
2х + 6 – 5 = 4 – х + 9
2х + х = -6 +5 +4 +9
3х = 12
х = 12 : 3 = 4
Ответ: 4
Решите самостоятельно
а) 3х-1=х+1
2х = 2
х = 1
Ответ: 1
б) 3а+1=3а-1
0а = -2
Ответ: решений нет
в) х+4=7х+9
-6х = 5
х = — 5/6
Ответ: -5/6
г) в-9=в-9
0в = 0
Ответ:
в-любое число
1. Примеры решения уравнений
Образец решения уравнения
5х — 3 = 2х +6
Решение: 5х — 2х = +3 + 6
3·х = 9
х = 9 : 3
х = 3
Ответ: 3
Решаем уравнения:
1). 5 – 6х = -5х + 1
2). 5 – 3х = -7х – 9
3). -7 – 4х = -10х — 6
4). 5х – 3 = 12
5). -х + 9 = 16
Решите самостоятельно
1). 2х = 18 — х
2). 9х + 4 = 48 – 2х
3). 7х + 3 = 30 – 2х
4). 7 – 2х = 3х — 18
5). 0,4х + 3,8 = 2,6 – 0,8х
Проверим ответы:
1). 6
2). 4
3). 3
4). 5
5). -1
2. Примеры решения уравнений
Образец решения уравнения
4(х + 5) = 12
Решение: 4х + 20 = 12
4х = — 20 + 12
4х = — 8
х = -8 : 4 = -2
Ответ: -2
Решим уравнения:
1). – (14 -21х) = 56
2). 7(х + 7) = 10х
3). 3(х +8) = — 3х
4). (45 — у) + 8 = 28
5). 5(х — 5) = — 8х + 1
Решите самостоятельно
1). 3(х — 2) = х + 2
2). (7х +1) – (9х + 4) = 5
3). 5 – 2(х — 1) = 4 – х
4). 14х – 14 = 7(2х — 3) +7
5). 3,4 + 2у = 7(у – 2,3)
Проверим ответы:
1). 4
2). — 4
3). 3
4). Любое число
5). 3,9
3. Примеры решения уравнений
Образец решения уравнения:
3(2х — 4) -2(х+3)= -2 +8х
6х – 12 -2х – 6 = -2 + 8х
6х — 2х – 8х = +12+6 – 2
— 4х = 16
х = 16 : (-4) = — 4
Ответ: -4
Решим уравнения:
1). (7х +1) – (9х +3) = 5
2). 3(6х-1) = 2(9х+1) — 10
3). 4(5х+2)=10(2х-3)+15
4). 2(7х — 7) = 7(2х-3) + 7
5). 3(х+6) = х +2(х+9)
Решите самостоятельно
1). (8х + 3) – (10х + 6) = 9
2). 2(7х — 7) = 7(2х — 3) + 7
3). 5(х — 12) = 6(х — 10) — х
4).7(4х — 1) = 6 – 2(3 – 14х)
5).5,6 – 3(2 – 0,4х) = 0,4(4х — 1)
Проверим ответы:
1). -6
2). Любое число
3). Любое число
4). – ½ = — 0,5
5). 0
4. Примеры решения уравнений
Образец решения уравнения
Решение:
3·(х — 8) = 7·(х + 2)
3х – 24 = 7х + 14
3х – 7х = + 24 + 14
— 4х = 38
х = 38 : (- 4) = …
Решим уравнения:
1).
5. Примеры решения уравнений
Образец решения уравнения
│х — 24│ = 22
+(х — 24)=22 -(х — 24)=22
х – 24 =22 -х +24 =22
х = +24 +22 -х= -24 +22
х = 46 -х = — 2; х=2
Ответ: 2; 46
Решим уравнения:
1). │2х — 1│ = 3
2). │5х + 1│= 2
3). │5х + 1│= — 4
4). │21х + 2│ = 23
5). │10х — 1│ = 0
Решите самостоятельно
1). │х — 4│ = 2
2). │х + 4│ = 9
3). │х — 3│ = 12
4). │3х — 2│ = 4
5). │2х + 2│ = — 1
Проверим ответы:
1). 2 и 6
2). -13 и 5
3). -9 и 15
4). -2/3 и 2
5). Нет решения
Желаю УСПЕХОВ
в изучении
МАТЕМАТИКИ!
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
- Сейчас обучается 694 человека из 75 регионов
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
- Сейчас обучается 867 человек из 78 регионов
Курс повышения квалификации
Педагогическая деятельность в контексте профессионального стандарта педагога и ФГОС
- Сейчас обучается 52 человека из 24 регионов
«Профессиональный имидж педагога: стереотипы и методы их преодоления»
Свидетельство и скидка на обучение каждому участнику
«Мотивация здорового образа жизни. Организация секций»
Свидетельство и скидка на обучение каждому участнику
- Для всех учеников 1-11 классов
и дошкольников - Интересные задания
по 16 предметам
Видео:Решение уравнений. Как переносить слагаемые из одной части уравнения в другую. Математика 6 классСкачать
Дистанционные курсы для педагогов
Самые массовые международные дистанционные
Школьные Инфоконкурсы 2022
33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
5 839 505 материалов в базе
Материал подходит для УМК
«Математика», Мерзляк А.Г., Полонский В.Б., Якир М.С.
§ 41. Решение уравнений
Ищем педагогов в команду «Инфоурок»
Другие материалы
- 13.04.2022
- 49
- 0
- 13.04.2022
- 531
- 263
- 13.04.2022
- 39
- 0
- 13.04.2022
- 44
- 1
- 13.04.2022
- 44
- 0
- 13.04.2022
- 83
- 0
- 13.04.2022
- 60
- 4
- 13.04.2022
- 33
- 1
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Добавить в избранное
- 13.04.2022 312
- PPTX 713.5 кбайт
- 118 скачиваний
- Оцените материал:
Настоящий материал опубликован пользователем Арзамасцева Наталья Андреевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Автор материала
- На сайте: 5 лет и 5 месяцев
- Подписчики: 0
- Всего просмотров: 7514
- Всего материалов: 18
Московский институт профессиональной
переподготовки и повышения
квалификации педагогов
Видео:Равносильные уравнения. Рациональные уравнения - 8 класс алгебраСкачать
Дистанционные курсы
для педагогов
663 курса от 690 рублей
Выбрать курс со скидкой
Выдаём документы
установленного образца!
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
Минпросвещения рекомендует школьникам сдавать телефоны перед входом в школу
Время чтения: 1 минута
В Госдуме предложили унифицировать школьные программы
Время чтения: 1 минута
С 1 сентября в российских школах будут исполнять гимн России
Время чтения: 1 минута
Российские школьники начнут изучать историю с первого класса
Время чтения: 1 минута
«Единая Россия» внесла в Госдуму проект о снятии излишней нагрузки с учителей
Время чтения: 2 минуты
В Брянской области часть школ переводят на дистанционное обучение
Время чтения: 0 минут
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
🎬 Видео
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Равносильные уравненияСкачать
Виды уравнений. Свойства уравнений. Перенос слагаемых из одной части уравнения в другую. Алгебра 7.Скачать
Уравнения. Убираем ненужное.Скачать
Подготовка к ЕГЭ #41. Равносильные уравнения. Совокупность уравненийСкачать
Как решить уравнение x^3+1=2cbrt(2x−1)?Скачать
Равносильные преобразования в уравнениях. ПравилаСкачать
Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
МЕРЗЛЯК-6. РЕШЕНИЕ УРАВНЕНИЙ. ПАРАГРАФ-41Скачать
УРАВНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ. §24 Алгебра 7 классСкачать
Решение уравнений - MirUrokov.ru - Видеоурок по математикеСкачать
Решение иррациональных уравнений методом возведения обеих частей в степень. ГВЭ11 + ЕГЭ 2021 #56Скачать
Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать
Уравнения с двумя переменными - 7 класс алгебраСкачать
РАВНОСИЛЬНЫЕ УРАВНЕНИЯ И ИХ СВОЙСТВА. Видеоурок | АЛГЕБРА 7 классСкачать