Если числа x y и z являются решением системы уравнений

Р ешить задачу

Введите текст одной задачи по математике (без ошибок, сокращений и с сохранением всех знаков препинания, как в учебнике) и нажмите кнопку “Решить задачу” . Или выберите задачу из учебника.

Можно задать текст голосом по одному предложению, нажимая на

Если числа x y и z являются решением системы уравнений

Видео:МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэ

Р ешение

Ответ

  • Результат №1 (вода): 2000 /1001 мл
  • Результат №2 (препарат): 2 /1001 мл

В ариант решения (Универсальный)

Универсальный способ состоит в том, чтобы читать условие задачи, выделять все известные и неизвестные числовые величины, относящиеся к вычислениям, обозначать неизвестные значками x, y, z . (можно любыми другими, но традиционно используют такие). Составлять простые уравнения вида a=b+c, a=b-c, a=b⋅c или a=b:c там, где это возможно, но не пытаться составлять более сложные уравнения — пусть лучше будет много простых уравнений, чем мало сложных. Давайте внимательно читать условие задачи:

Фрагмент текста задачиВеличиныУравненияОбъяснение
Для приготовления раствора необходимо взять 1 литр препарата1 ←вел.1Величина №1 известна и равна 1 л.
и 1000 литров воды.1000 ←вел.2
x ←вел.3
y ←вел.4
x = 1 + 1000
y = 2 : x
Величина №2 известна и равна 1000 л.
Величина №3 пока неизвестна, обозначим её как «x».
Величина №4 пока неизвестна, обозначим её как «y». Величина №3 есть сумма величин №1 и №2. есть отношение величин №7 и №3.
Сколько потребуется литров воды для приготовления раствораz ←вода
v ←препарат
z = y1000
v = y1
Результат №1 (вода, мл) пока неизвестен, обозначим его как «z» ( это будет ответ ).
Результат №2 (препарат, мл) пока неизвестен, обозначим его как «v» ( это будет ответ ). Результат №1 (вода) есть произведение величин №4 и №2. есть произведение величин №4 и №1.
из 2 миллилитров препарата?2 ←вел.7Величина №5 известна и равна 2 мл.
  1. x = 1 + 1000
  2. y = 2 : x
  3. z = y ⋅ 1000
  4. v = y ⋅ 1
Уравнение 1Уравнение 2Уравнение 3Уравнение 4Комментарий
0 шагx = 1 + 1000y = 2 : xz = y ⋅ 1000v = y ⋅ 1Исходная система уравнений
1 шагx = 1001y = 2 : xz = y ⋅ 1000v = y
2 шагx = 1001y = 2 : 1001z = y ⋅ 1000v = yЗаменили x на 1001.
3 шагx = 1001y = 2 /1001z = y ⋅ 1000v = y
4 шагx = 1001y = 2 /1001z = 1000 ⋅ 2 /1001 млv = 2 /1001 мл Ур.3: Заменили y на 2 /1001. Ур.4: Заменили y на 2 /1001.
5 шагx = 1001y = 2 /1001z = 2000 /1001 млv = 2 /1001 млГотово!

Если Вы считаете, что задача решена роботом неправильно, то нажмите кнопку, чтобы разработчики смогли объяснить роботу правильное решение

Неверно

Сгенерировать уникальные задачи с ответами на основе текущей задачи.

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Если числа x y и z являются решением системы уравнений

Если $$(x_;x_;x_)$$ – решение системы уравнений

$$left<begin 2x_1+x_2-2x_3=9,\ 3x_1-2x_2+x_3=2, \ x_1+x_2-4x_3=11, endright.$$

то значение $$x_$$ равно:

Чтобы решить систему линейных уравнений, содержащую $$n$$ уравнений и $$n$$ переменных, методом Крамера, необходимо:

  1. найти определитель $$left | A right |$$ основной матрицы системы;
  2. найти определители $$left | A_ right | (i=overline)$$ , полученные в результате замены $$i$$ -го столбца определителя $$left | A right |$$ столбцом свободных членов системы;
  3. найти значения переменных уравнений системы по формулам: $$x_=frac <left | A_right |>$$ .
  1. Вычислим определители:

Значения других переменных находить не обязательно.

Если $$(x_;y_;z_)$$ – решение системы уравнений

то значение выражения $$x_+y_$$ равно:

Разделим второе уравнение системы на число $$2$$ и запишем ее в виде:

Вычитая из первого уравнения системы второе, получим $$2x+2y=2$$ , откуда $$x+y=1$$ .

Значения переменных $$x$$ и $$y$$ находить не обязательно.

Сумма модулей всех значений переменных, которые образуют решение системы линейных уравнений

$$left<begin 2x_1-2x_2+3x_3+x_4=7, \ x_1-3x_2+5x_3-2x_4=4 , \ x_1+5x_2-x_3+2x_4=-2, \ 5x_1+x_2+4x_3-5x_4=-7, endright. $$

Чтобы решить систему линейных уравнений методом Гаусса, необходимо:

  1. составить расширенную матрицу системы;
  2. с помощью элементарных преобразований привести ее к трапециевидному виду;
  3. на основе полученной матрицы составить и решить систему линейных уравнений.

Чтобы привести матрицу к треугольному (трапециевидному) виду, можно выполнять следующие элементарные преобразования этой матрицы:

  1. умножать и делить ее любою строку на отличное от нуля число;
  2. менять местами строки;
  3. складывать и вычитать строки;
  4. вычеркивать строки, все элементы в которых нули.
  1. Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к трапециевидному виду:

$$sim begin 1 & 5 &-1 &2 &-2 \ 0 & 8 &-6 &4 &-6 \ 0 &-12 & 5 & -3 &11 \ 0& -8 &3 &-5 &1 end$$ $$sim$$ $$ begin 1 & 5 &-1 &2 &-2 \ 0 & 4 &-3 &2 &-3 \ 0 &-12 & 5 & -3 &11 \ 0& 0 &3 &1 &5 endsim$$

$$sim begin 1 & 5 &-1 &2 &-2 \ 0 & 4 &-3 &2 &-3 \ 0 &0 &-4 & 3 &2 \ 0& 0 &3 &1 &5 endsim begin 1 & 5 &-1 &2 &-2 \ 0 & 4 &-3 &2 &-3 \ 0 &0 &4 & -3 &-2 \ 0& 0 &0 &1 &2 end$$ .

Любую систему линейных уравнений можно решить методом Гаусса.

Видео:Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

Системы линейных уравнений

Видео:Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Линейные уравнения с двумя переменными

У школьника имеется 200 рублей, чтобы пообедать в школе. Пирожное стоит 25 рублей, а чашка кофе 10 рублей. Сколько пирожных и чашек кофе можно накупить на 200 рублей?

Обозначим количество пирожных через x , а количество чашек кофе через y . Тогда стоимость пирожных будет обозначаться через выражение 25x , а стоимость чашек кофе через 10y .

25x — стоимость x пирожных
10y — стоимость y чашек кофе

Итоговая сумма должна равняться 200 рублей. Тогда получится уравнение с двумя переменными x и y

Сколько корней имеет данное уравнение?

Всё зависит от аппетита школьника. Если он купит 6 пирожных и 5 чашек кофе, то корнями уравнения будут числа 6 и 5.

Если числа x y и z являются решением системы уравнений

Говорят, что пара значений 6 и 5 являются корнями уравнения 25x + 10y = 200 . Записывается как (6; 5) , при этом первое число является значением переменной x , а второе — значением переменной y .

6 и 5 не единственные корни, которые обращают уравнение 25x + 10y = 200 в тождество. При желании на те же 200 рублей школьник может купить 4 пирожных и 10 чашек кофе:

Если числа x y и z являются решением системы уравнений

В этом случае корнями уравнения 25x + 10y = 200 является пара значений (4; 10) .

Более того, школьник может вообще не покупать кофе, а купить пирожные на все 200 рублей. Тогда корнями уравнения 25x + 10y = 200 будут значения 8 и 0

Если числа x y и z являются решением системы уравнений

Или наоборот, не покупать пирожные, а купить кофе на все 200 рублей. Тогда корнями уравнения 25x + 10y = 200 будут значения 0 и 20

Если числа x y и z являются решением системы уравнений

Попробуем перечислить все возможные корни уравнения 25x + 10y = 200 . Условимся, что значения x и y принадлежат множеству целых чисел. И пусть эти значения будут бóльшими или равными нулю:

Так будет удобно и самому школьнику. Пирожные удобнее покупать целыми, чем к примеру несколько целых пирожных и половину пирожного. Кофе также удобнее брать целыми чашками, чем к примеру несколько целых чашек и половину чашки.

Заметим, что при нечетном x невозможно достичь равенства ни при каком y . Тогда значениями x будут следующие числа 0, 2, 4, 6, 8. А зная x можно без труда определить y

Если числа x y и z являются решением системы уравнений

Таким образом, мы получили следующие пары значений (0; 20), (2; 15), (4; 10), (6; 5), (8; 0). Эти пары являются решениями или корнями уравнения 25x + 10y = 200 . Они обращают данное уравнение в тождество.

Уравнение вида ax + by = c называют линейным уравнением с двумя переменными. Решением или корнями этого уравнения называют пару значений ( x; y ), которая обращает его в тождество.

Отметим также, что если линейное уравнение с двумя переменными записано в виде ax + b y = c , то говорят, что оно записано в каноническом (нормальном) виде.

Некоторые линейные уравнения с двумя переменными могут быть приведены к каноническому виду.

Например, уравнение 2(16x + 3y − 4) = 2(12 + 8xy) можно привести к виду ax + by = c . Раскроем скобки в обеих частях этого уравнения, получим 32x + 6y − 8 = 24 + 16x − 2y . Слагаемые, содержащие неизвестные сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой. Тогда получим 32x − 16x + 6y + 2y = 24 + 8 . Приведём подобные слагаемые в обеих частях, получим уравнение 16x + 8y = 32. Это уравнение приведено к виду ax + by = c и является каноническим.

Рассмотренное ранее уравнение 25x + 10y = 200 также является линейным уравнением с двумя переменными в каноническом виде . В этом уравнении параметры a , b и c равны значениям 25, 10 и 200 соответственно.

На самом деле уравнение ax + by = c имеет бесчисленное множество решений. Решая уравнение 25x + 10y = 200, мы искали его корни только на множестве целых чисел. В результате получили несколько пар значений, которые обращали данное уравнение в тождество. Но на множестве рациональных чисел уравнение 25x + 10y = 200 будет иметь бесчисленное множество решений.

Для получения новых пар значений, нужно взять произвольное значение для x , затем выразить y . К примеру, возьмем для переменной x значение 7. Тогда получим уравнение с одной переменной 25 × 7 + 10y = 200 в котором можно выразить y

Если числа x y и z являются решением системы уравнений

Пусть x = 15 . Тогда уравнение 25x + 10y = 200 примет вид 25 × 15 + 10y = 200. Отсюда находим, что y = −17,5

Если числа x y и z являются решением системы уравнений

Пусть x = −3 . Тогда уравнение 25x + 10y = 200 примет вид 25 × (−3) + 10y = 200. Отсюда находим, что y = 27,5

Если числа x y и z являются решением системы уравнений

Видео:Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Система двух линейных уравнений с двумя переменными

Для уравнения ax + by = c можно сколько угодно раз брать произвольные значение для x и находить значения для y . Отдельно взятое такое уравнение будет иметь бесчисленное множество решений.

Но бывает и так, что переменные x и y связаны не одним, а двумя уравнениями. В этом случае они образуют так называемую систему линейных уравнений с двумя переменными. Такая система уравнений может иметь одну пару значений (или по-другому: «одно решение»).

Может случиться и так, что система вовсе не имеет решений. Бесчисленное множество решений система линейных уравнений может иметь в редких и в исключительных случаях.

Два линейных уравнения образуют систему тогда, когда значения x и y входят в каждое из этих уравнений.

Вернемся к самому первому уравнению 25x + 10y = 200 . Одной из пар значений для этого уравнения была пара (6; 5) . Это случай, когда на 200 рублей можно можно было купить 6 пирожных и 5 чашек кофе.

Составим задачу так, чтобы пара (6; 5) стала единственным решением для уравнения 25x + 10y = 200 . Для этого составим ещё одно уравнение, которое связывало бы те же x пирожных и y чашечек кофе.

Поставим текст задачи следующим образом:

«Школьник купил на 200 рублей несколько пирожных и несколько чашек кофе. Пирожное стоит 25 рублей, а чашка кофе 10 рублей. Сколько пирожных и чашек кофе купил школьник, если известно что количество пирожных на одну единицу больше количества чашек кофе?»

Первое уравнение у нас уже есть. Это уравнение 25x + 10y = 200 . Теперь составим уравнение к условию «количество пирожных на одну единицу больше количества чашек кофе» .

Количество пирожных это x , а количество чашек кофе это y . Можно записать эту фразу с помощью уравнения x − y = 1. Это уравнение будет означать, что разница между пирожными и кофе составляет 1.

Либо второе уравнение можно записать как x = y + 1 . Это уравнение означает, что количество пирожных на единицу больше, чем количество чашек кофе. Поэтому для получения равенства, к количеству чашек кофе прибавлена единица. Это легко можно понять, если воспользоваться моделью весов, которые мы рассматривали при изучении простейших задач:

Если числа x y и z являются решением системы уравнений

Получили два уравнения: 25x + 10y = 200 и x = y + 1. Поскольку значения x и y , а именно 6 и 5 входят в каждое из этих уравнений , то вместе они образуют систему. Запишем эту систему. Если уравнения образуют систему, то они обрамляются знаком системы. Знак системы это фигурная скобка:

Если числа x y и z являются решением системы уравнений

Давайте решим данную систему. Это позволит увидеть, как мы придём к значениям 6 и 5. Существует много методов решения таких систем. Рассмотрим наиболее популярные из них.

Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Метод подстановки

Название этого метода говорит само за себя. Суть его заключается в том, чтобы одно уравнение подставить в другое, предварительно выразив одну из переменных.

В нашей системе ничего выражать не нужно. Во втором уравнении x = y + 1 переменная x уже выражена. Эта переменная равна выражению y + 1 . Тогда можно подставить это выражение в первое уравнение вместо переменной x

Если числа x y и z являются решением системы уравнений

После подстановки выражения y + 1 в первое уравнение вместо x , получим уравнение 25(y + 1) + 10y = 200 . Это линейное уравнение с одной переменной. Такое уравнение решить довольно просто:

Если числа x y и z являются решением системы уравнений

Мы нашли значение переменной y . Теперь подставим это значение в одно из уравнений и найдём значение x . Для этого удобно использовать второе уравнение x = y + 1 . В него и подставим значение y

Если числа x y и z являются решением системы уравнений

Значит пара (6; 5) является решением системы уравнений, как мы и задумывали. Выполняем проверку и убеждаемся, что пара (6; 5) удовлетворяет системе:

Если числа x y и z являются решением системы уравнений

Пример 2. Решить методом подстановки следующую систему уравнений:

Если числа x y и z являются решением системы уравнений

Подставим первое уравнение x = 2 + y во второе уравнение 3x − 2y = 9 . В первом уравнении переменная x равна выражению 2 + y . Это выражение и подставим во второе уравнение вместо x

Если числа x y и z являются решением системы уравнений

Теперь найдём значение x . Для этого подставим значение y в первое уравнение x = 2 + y

Если числа x y и z являются решением системы уравнений

Значит решением системы Если числа x y и z являются решением системы уравненийявляется пара значение (5; 3)

Пример 3. Решить методом подстановки следующую систему уравнений:

Если числа x y и z являются решением системы уравнений

Здесь в отличие от предыдущих примеров, одна из переменных не выражена явно.

Чтобы подставить одно уравнение в другое, сначала нужно выразить одну из переменных.

Выражать желательно ту переменную, которая имеет коэффициент единицу. Коэффициент единицу имеет переменная x , которая содержится в первом уравнении x + 2y = 11 . Эту переменную и выразим.

После выражения переменной x , наша система примет следующий вид:

Если числа x y и z являются решением системы уравнений

Теперь подставим первое уравнение во второе и найдем значение y

Если числа x y и z являются решением системы уравнений

Подставим y в первое уравнение и найдём x

Если числа x y и z являются решением системы уравнений

Значит решением системы Если числа x y и z являются решением системы уравненийявляется пара значений (3; 4)

Конечно, выражать можно и переменную y . Корни от этого не изменятся. Но если выразить y, получится не очень-то и простое уравнение, на решение которого уйдет больше времени. Выглядеть это будет следующим образом:

Если числа x y и z являются решением системы уравнений

Видим, что в данном примере выражать x намного удобнее, чем выражать y .

Пример 4. Решить методом подстановки следующую систему уравнений:

Если числа x y и z являются решением системы уравнений

Выразим в первом уравнении x . Тогда система примет вид:

Если числа x y и z являются решением системы уравнений

Подставим первое уравнение во второе и найдём y

Если числа x y и z являются решением системы уравнений

Подставим y в первое уравнение и найдём x . Можно воспользоваться изначальным уравнением 7x + 9y = 8 , либо воспользоваться уравнением Если числа x y и z являются решением системы уравнений, в котором выражена переменная x . Этим уравнением и воспользуемся, поскольку это удобно:

Если числа x y и z являются решением системы уравнений

Значит решением системы Если числа x y и z являются решением системы уравненийявляется пара значений (5; −3)

Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Метод сложения

Метод сложения заключается в том, чтобы почленно сложить уравнения, входящие в систему. Это сложение приводит к тому, что образуется новое уравнение с одной переменной. А решить такое уравнение довольно просто.

Решим следующую систему уравнений:

Если числа x y и z являются решением системы уравнений

Сложим левую часть первого уравнения с левой частью второго уравнения. А правую часть первого уравнения с правой частью второго уравнения. Получим следующее равенство:

Если числа x y и z являются решением системы уравнений

Приведем подобные слагаемые:

Если числа x y и z являются решением системы уравнений

В результате получили простейшее уравнение 3x = 27 корень которого равен 9. Зная значение x можно найти значение y . Подставим значение x во второе уравнение x − y = 3 . Получим 9 − y = 3 . Отсюда y = 6 .

Значит решением системы Если числа x y и z являются решением системы уравненийявляется пара значений (9; 6)

Пример 2. Решить следующую систему уравнений методом сложения:

Если числа x y и z являются решением системы уравнений

Сложим левую часть первого уравнения с левой частью второго уравнения. А правую часть первого уравнения с правой частью второго уравнения. В получившемся равенстве приведем подобные слагаемые:

Если числа x y и z являются решением системы уравнений

В результате получили простейшее уравнение 5 x = 20, корень которого равен 4. Зная значение x можно найти значение y . Подставим значение x в первое уравнение 2 x + y = 11 . Получим 8 + y = 11 . Отсюда y = 3 .

Значит решением системы Если числа x y и z являются решением системы уравненийявляется пара значений (4;3)

Процесс сложения подробно не расписывают. Его нужно выполнять в уме. При сложении оба уравнения должны быть приведены к каноническому виду. То есть к виду ax + by = c .

Из рассмотренных примеров видно, что основная цель сложения уравнений это избавление от одной из переменных. Но не всегда удаётся сразу решить систему уравнений методом сложения. Чаще всего систему предварительно приводят к виду, при котором можно сложить уравнения, входящие в эту систему.

Например, систему Если числа x y и z являются решением системы уравненийможно сразу решить методом сложения. При сложении обоих уравнений, слагаемые y и −y исчезнут, поскольку их сумма равна нулю. В результате образуется простейшее уравнение 11x = 22 , корень которого равен 2. Затем можно будет определить y равный 5.

А систему уравнений Если числа x y и z являются решением системы уравненийметодом сложения сразу решить нельзя, поскольку это не приведёт к исчезновению одной из переменных. Сложение приведет к тому, что образуется уравнение 8x + y = 28 , имеющее бесчисленное множество решений.

Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному. Это правило справедливо и для системы линейных уравнений с двумя переменными. Одно из уравнений (или оба уравнения) можно умножить на какое-нибудь число. В результате получится равносильная система, корни которой будут совпадать с предыдущей.

Вернемся к самой первой системе Если числа x y и z являются решением системы уравнений, которая описывала сколько пирожных и чашек кофе купил школьник. Решением этой системы являлась пара значений (6; 5) .

Умножим оба уравнения, входящие в эту систему на какие-нибудь числа. Скажем первое уравнение умножим на 2, а второе на 3

Если числа x y и z являются решением системы уравнений

В результате получили систему Если числа x y и z являются решением системы уравнений
Решением этой системы по-прежнему является пара значений (6; 5)

Если числа x y и z являются решением системы уравнений

Это значит, что уравнения входящие в систему можно привести к виду, пригодному для применения метода сложения.

Вернемся к системе Если числа x y и z являются решением системы уравнений, которую мы не смогли решить методом сложения.

Умножим первое уравнение на 6, а второе на −2

Если числа x y и z являются решением системы уравнений

Тогда получим следующую систему:

Если числа x y и z являются решением системы уравнений

Сложим уравнения, входящие в эту систему. Сложение компонентов 12x и −12x даст в результате 0, сложение 18y и 4y даст 22y , а сложение 108 и −20 даст 88. Тогда получится уравнение 22y = 88 , отсюда y = 4 .

Если первое время тяжело складывать уравнения в уме, то можно записывать как складывается левая часть первого уравнения с левой частью второго уравнения, а правая часть первого уравнения с правой частью второго уравнения:

Если числа x y и z являются решением системы уравнений

Зная, что значение переменной y равно 4, можно найти значение x. Подставим y в одно из уравнений, например в первое уравнение 2x + 3y = 18 . Тогда получим уравнение с одной переменной 2x + 12 = 18 . Перенесем 12 в правую часть, изменив знак, получим 2x = 6 , отсюда x = 3 .

Пример 4. Решить следующую систему уравнений методом сложения:

Если числа x y и z являются решением системы уравнений

Умножим второе уравнение на −1. Тогда система примет следующий вид:

Если числа x y и z являются решением системы уравнений

Сложим оба уравнения. Сложение компонентов x и −x даст в результате 0, сложение 5y и 3y даст 8y , а сложение 7 и 1 даст 8. В результате получится уравнение 8y = 8 , корень которого равен 1. Зная, что значение y равно 1, можно найти значение x .

Подставим y в первое уравнение, получим x + 5 = 7 , отсюда x = 2

Пример 5. Решить следующую систему уравнений методом сложения:

Если числа x y и z являются решением системы уравнений

Желательно, чтобы слагаемые содержащие одинаковые переменные, располагались друг под другом. Поэтому во втором уравнении слагаемые 5y и −2x поменяем местами. В результате система примет вид:

Если числа x y и z являются решением системы уравнений

Умножим второе уравнение на 3. Тогда система примет вид:

Если числа x y и z являются решением системы уравнений

Теперь сложим оба уравнения. В результате сложения получим уравнение 8y = 16 , корень которого равен 2.

Подставим y в первое уравнение, получим 6x − 14 = 40 . Перенесем слагаемое −14 в правую часть, изменив знак, получим 6x = 54 . Отсюда x = 9.

Пример 6. Решить следующую систему уравнений методом сложения:

Если числа x y и z являются решением системы уравнений

Избавимся от дробей. Умножим первое уравнение на 36, а второе на 12

Если числа x y и z являются решением системы уравнений

В получившейся системе Если числа x y и z являются решением системы уравненийпервое уравнение можно умножить на −5, а второе на 8

Если числа x y и z являются решением системы уравнений

Сложим уравнения в получившейся системе. Тогда получим простейшее уравнение −13y = −156 . Отсюда y = 12 . Подставим y в первое уравнение и найдем x

Если числа x y и z являются решением системы уравнений

Пример 7. Решить следующую систему уравнений методом сложения:

Если числа x y и z являются решением системы уравнений

Приведем оба уравнения к нормальному виду. Здесь удобно применить правило пропорции в обоих уравнениях. Если в первом уравнении правую часть представить как Если числа x y и z являются решением системы уравнений, а правую часть второго уравнения как Если числа x y и z являются решением системы уравнений, то система примет вид:

Если числа x y и z являются решением системы уравнений

У нас получилась пропорция. Перемножим её крайние и средние члены. Тогда система примет вид:

Если числа x y и z являются решением системы уравнений

Первое уравнение умножим на −3, а во втором раскроем скобки:

Если числа x y и z являются решением системы уравнений

Теперь сложим оба уравнения. В результате сложения этих уравнений, мы получим равенство, в обеих частях которого будет ноль:

Если числа x y и z являются решением системы уравнений

Получается, что система Если числа x y и z являются решением системы уравненийимеет бесчисленное множество решений.

Но мы не можем просто так взять с неба произвольные значения для x и y . Мы можем указать одно из значений, а другое определится в зависимости от значения, указанного нами. Например, пусть x = 2 . Подставим это значение в систему:

Если числа x y и z являются решением системы уравнений

В результате решения одного из уравнений, определится значение для y , которое будет удовлетворять обоим уравнениям:

Если числа x y и z являются решением системы уравнений

Получившаяся пара значений (2; −2) будет удовлетворять системе:

Если числа x y и z являются решением системы уравнений

Найдём еще одну пару значений. Пусть x = 4. Подставим это значение в систему:

Если числа x y и z являются решением системы уравнений

На глаз можно определить, что значение y равно нулю. Тогда получим пару значений (4; 0), которая удовлетворяет нашей системе:

Если числа x y и z являются решением системы уравнений

Пример 8. Решить следующую систему уравнений методом сложения:

Если числа x y и z являются решением системы уравнений

Умножим первое уравнение на 6, а второе на 12

Если числа x y и z являются решением системы уравнений

Перепишем то, что осталось:

Если числа x y и z являются решением системы уравнений

Раскроем скобки в обоих уравнениях и приведём подобные слагаемые:

Если числа x y и z являются решением системы уравнений

Первое уравнение умножим на −1. Тогда система примет вид:

Если числа x y и z являются решением системы уравнений

Теперь сложим оба уравнения. В результате сложения образуется уравнение 6b = 48 , корень которого равен 8. Подставим b в первое уравнение и найдём a

Если числа x y и z являются решением системы уравнений

Видео:Система с тремя переменнымиСкачать

Система с тремя переменными

Система линейных уравнений с тремя переменными

В линейное уравнение с тремя переменными входит три переменные с коэффициентами, а также свободный член. В каноническом виде его можно записать следующим образом:

Данное уравнение имеет бесчисленное множество решений. Придавая двум переменным различные значения, можно найти третье значение. Решением в этом случае является тройка значений (x; y; z) которая обращает уравнение в тождество.

Если переменные x, y, z связаны между собой тремя уравнениями, то образуется система трех линейных уравнений с тремя переменными. Для решения такой системы можно применять те же методы, которые применяются к линейным уравнениям с двумя переменными: метод подстановки и метод сложения.

Пример 1. Решить следующую систему уравнений методом подстановки:

Если числа x y и z являются решением системы уравнений

Выразим в третьем уравнении x . Тогда система примет вид:

Если числа x y и z являются решением системы уравнений

Теперь выполним подстановку. Переменная x равна выражению 3 − 2y − 2z . Подставим это выражение в первое и второе уравнение:

Если числа x y и z являются решением системы уравнений

Раскроем скобки в обоих уравнениях и приведём подобные слагаемые:

Если числа x y и z являются решением системы уравнений

Мы пришли к системе линейных уравнений с двумя переменными. В данном случае удобно применить метод сложения. В результате переменная y исчезнет, и мы сможем найти значение переменной z

Если числа x y и z являются решением системы уравнений

Теперь найдём значение y . Для этого удобно воспользоваться уравнением −y + z = 4. Подставим в него значение z

Если числа x y и z являются решением системы уравнений

Теперь найдём значение x . Для этого удобно воспользоваться уравнением x = 3 − 2y − 2z . Подставим в него значения y и z

Если числа x y и z являются решением системы уравнений

Таким образом, тройка значений (3; −2; 2) является решением нашей системы. Проверкой убеждаемся, что эти значения удовлетворяют системе:

Если числа x y и z являются решением системы уравнений

Пример 2. Решить систему методом сложения

Если числа x y и z являются решением системы уравнений

Сложим первое уравнение со вторым, умноженным на −2.

Если второе уравнение умножить на −2, то оно примет вид −6x + 6y − 4z = −4 . Теперь сложим его с первым уравнением:

Если числа x y и z являются решением системы уравнений

Видим, что в результате элементарных преобразований, определилось значение переменной x . Оно равно единице.

Вернемся к главной системе. Сложим второе уравнение с третьим, умноженным на −1. Если третье уравнение умножить на −1, то оно примет вид −4x + 5y − 2z = −1 . Теперь сложим его со вторым уравнением:

Если числа x y и z являются решением системы уравнений

Получили уравнение x − 2y = −1 . Подставим в него значение x , которое мы находили ранее. Тогда мы сможем определить значение y

Если числа x y и z являются решением системы уравнений

Теперь нам известны значения x и y . Это позволяет определить значение z . Воспользуемся одним из уравнений, входящим в систему:

Если числа x y и z являются решением системы уравнений

Таким образом, тройка значений (1; 1; 1) является решением нашей системы. Проверкой убеждаемся, что эти значения удовлетворяют системе:

Если числа x y и z являются решением системы уравнений

Видео:Решение систем уравнений. Методом подстановки. Выразить YСкачать

Решение систем уравнений. Методом подстановки. Выразить Y

Задачи на составление систем линейных уравнений

Задача на составление систем уравнений решается путем ввода нескольких переменных. Далее составляются уравнения на основании условий задачи. Из составленных уравнений образуют систему и решают её. Решив систему, необходимо выполнить проверку на то, удовлетворяет ли её решение условиям задачи.

Задача 1. Из города в колхоз выехала машина «Волга». Обратно она возвращалась по другой дороге, которая была на 5 км короче первой. Всего в оба конца машина проехала 35 км. Сколько километров составляет длина каждой дороги?

Решение

Пусть x — длина первой дороги, y — длина второй. Если в оба конца машина проехала 35 км, то первое уравнение можно записать как x + y = 35. Это уравнение описывает сумму длин обеих дорог.

Сказано, что обратно машина возвращалась по дороге которая была короче первой на 5 км. Тогда второе уравнение можно записать как xy = 5. Это уравнение показывает, что разница между длинами дорог составляет 5 км.

Либо второе уравнение можно записать как x = y + 5 . Этим уравнением и воспользуемся.

Поскольку переменные x и y в обоих уравнениях обозначают одно и то же число, то мы можем образовать из них систему:

Если числа x y и z являются решением системы уравнений

Решим эту систему каким-нибудь из изученных ранее методов. В данном случае удобно воспользоваться методом подстановки, поскольку во втором уравнении переменная x уже выражена.

Подставим второе уравнение в первое и найдём y

Если числа x y и z являются решением системы уравнений

Подставим найденное значение y в во второе уравнение x = y + 5 и найдём x

Если числа x y и z являются решением системы уравнений

Длина первой дороги была обозначена через переменную x . Теперь мы нашли её значение. Переменная x равна 20. Значит длина первой дороги составляет 20 км.

А длина второй дороги была обозначена через y . Значение этой переменной равно 15. Значит длина второй дороги составляет 15 км.

Выполним проверку. Для начала убедимся, что система решена правильно:

Если числа x y и z являются решением системы уравнений

Теперь проверим удовлетворяет ли решение (20; 15) условиям задачи.

Было сказано, что всего в оба конца машина проехала 35 км. Складываем длины обеих дорог и убеждаемся, что решение (20; 15) удовлетворяет данному условию: 20 км + 15 км = 35 км

Следующее условие: обратно машина возвращалась по другой дороге, которая была на 5 км короче первой . Видим, что решение (20; 15) удовлетворяет и этому условию, поскольку 15 км короче, чем 20 км на 5 км: 20 км − 15 км = 5 км

При составлении системы важно, чтобы переменные обозначали одни и те же числа во всех уравнениях, входящих в эту систему.

Так наша система Если числа x y и z являются решением системы уравненийсодержит два уравнения. Эти уравнения в свою очередь содержат переменные x и y , которые обозначают одни и те же числа в обоих уравнениях, а именно длины дорог, равных 20 км и 15 км.

Задача 2. На платформу были погружены дубовые и сосновые шпалы, всего 300 шпал. Известно, что все дубовые шпалы весили на 1 т меньше, чем все сосновые. Определить, сколько было дубовых и сосновых шпал отдельно, если каждая дубовая шпала весила 46 кг, а каждая сосновая 28 кг.

Решение

Пусть x дубовых и y сосновых шпал было погружено на платформу. Если всего шпал было 300, то первое уравнение можно записать как x + y = 300 .

Все дубовые шпалы весили 46x кг, а сосновые весили 28y кг. Поскольку дубовые шпалы весили на 1 т меньше, чем сосновые, то второе уравнение можно записать, как 28y − 46x = 1000 . Это уравнение показывает, что разница масс между дубовыми и сосновыми шпалами, составляет 1000 кг.

В результате получаем два уравнения, которые образуют систему

Если числа x y и z являются решением системы уравнений

Решим данную систему. Выразим в первом уравнении x . Тогда система примет вид:

Если числа x y и z являются решением системы уравнений

Подставим первое уравнение во второе и найдём y

Если числа x y и z являются решением системы уравнений

Подставим y в уравнение x = 300 − y и узнаем чему равно x

Если числа x y и z являются решением системы уравнений

Значит на платформу было погружено 100 дубовых и 200 сосновых шпал.

Проверим удовлетворяет ли решение (100; 200) условиям задачи. Для начала убедимся, что система решена правильно:

Если числа x y и z являются решением системы уравнений

Было сказано, что всего было 300 шпал. Складываем количество дубовых и сосновых шпал и убеждаемся, что решение (100; 200) удовлетворяет данному условию: 100 + 200 = 300.

Следующее условие: все дубовые шпалы весили на 1 т меньше, чем все сосновые . Видим, что решение (100; 200) удовлетворяет и этому условию, поскольку 46 × 100 кг дубовых шпал легче, чем 28 × 200 кг сосновых шпал: 5600 кг − 4600 кг = 1000 кг.

Задача 3. Взяли три куска сплава меди с никелем в отношениях 2 : 1 , 3 : 1 и 5 : 1 по массе. Из них сплавлен кусок массой 12 кг с отношением содержания меди и никеля 4 : 1 . Найдите массу каждого исходного куска, если масса первого из них вдвое больше массы второго.

Решение

Пусть x — масса первого куска, y — масса второго куска, z — масса третьего куска. Если из этих кусков сплавлен кусок массой 12 кг, то первое уравнение можно записать как x + y + z = 12 .

Масса первого куска вдвое больше массы второго куска. Тогда второе уравнение можно записать как x = 2y .

Полученных двух уравнений недостаточно для решения данной задачи. Если второе уравнение подставить в первое, то мы получим уравнение 2y + y + z = 12 , откуда 3y + z = 12 . Это уравнение имеет бесчисленное множество решений.

Составим ещё одно уравнение. Пусть это уравнение будет описывать количество меди, взятого с каждого сплава и сколько меди оказалось в получившемся сплаве.

Если первый сплав имеет массу x , а медь и никель находится нём в отношении 2 : 1 , то можно записать, что в новом сплаве содержится Если числа x y и z являются решением системы уравнениймеди от первого куска.

Если второй сплав имеет массу y , а медь и никель находится в нём в отношении 3 : 1 , то можно записать, что в новом сплаве содержится Если числа x y и z являются решением системы уравнениймеди от второго куска.

Если третий сплав имеет массу z , а медь и никель находится в отношении 5 : 1 , то можно записать, что в новом сплаве содержится Если числа x y и z являются решением системы уравнениймеди от третьего куска.

Полученный сплав имеет имеет массу 12 кг, а медь и никель находится в нём в отношении 4 : 1 . Тогда можно записать, что в полученном сплаве содержится Если числа x y и z являются решением системы уравнениймеди.

Сложим Если числа x y и z являются решением системы уравнений, Если числа x y и z являются решением системы уравнений, Если числа x y и z являются решением системы уравненийи приравняем эту сумму к 9,6. Это и будет нашим третьим уравнением:

Если числа x y и z являются решением системы уравнений

Попробуем решить данную систему.

Для начала упростим третье уравнение. Подставим в него второе уравнение и посмотрим, что из этого выйдет:

Если числа x y и z являются решением системы уравнений

Теперь в главной системе вместо уравнения Если числа x y и z являются решением системы уравненийзапишем уравнение, которое мы сейчас получили, а именно уравнение 25y + 10z = 115,2

Если числа x y и z являются решением системы уравнений

Подставим второе уравнение в первое:

Если числа x y и z являются решением системы уравнений

Умножим первое уравнение на −10 . Тогда система примет вид:

Если числа x y и z являются решением системы уравнений

Сложим оба уравнения. Тогда получим простейшее уравнение −5y = −4,8 откуда найдём y равный 0,96 . Значит масса второго сплава составляет 0,96 кг .

Теперь найдём x . Для этого удобно воспользоваться уравнением x = 2y. Значение y уже известно. Осталось только подставить его:

Если числа x y и z являются решением системы уравнений

Значит масса первого сплава составляет 1,92 кг .

Теперь найдём z . Для этого удобно воспользоваться уравнением x + y + z = 12 . Значения x и y уже известны. Подставим их куда нужно:

Если числа x y и z являются решением системы уравнений

Значит масса третьего сплава составляет 9,12 кг.

📸 Видео

Ирина Пономарева — Орбитальная механика: время и его измерение, системы координатСкачать

Ирина Пономарева — Орбитальная механика: время и его измерение, системы координат

Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

Решение системы трех уравнений по формулам КрамераСкачать

Решение системы трех уравнений по формулам Крамера

Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.Скачать

Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.

Решение систем уравнений второй степени. Алгебра, 9 классСкачать

Решение систем уравнений второй степени. Алгебра, 9 класс

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

Решение систем уравнений второго порядка. 8 класс.Скачать

Решение систем уравнений второго порядка. 8 класс.

Алгебра 7 класс (Урок№47 - Равносильность уравнений и систем уравнений.)Скачать

Алгебра 7 класс (Урок№47 - Равносильность уравнений и систем уравнений.)

Как умножать сложные числа? Лайфхак👌 #shortsСкачать

Как умножать сложные числа? Лайфхак👌 #shorts

Решение системы уравнений методом Крамера 2x2Скачать

Решение системы уравнений методом Крамера 2x2

Решение систем уравнений методом сложенияСкачать

Решение систем уравнений методом сложения
Поделиться или сохранить к себе: