Электролиз водного раствора сульфата алюминия уравнение

Видео:Получение сульфата алюминия (3 способа)Скачать

Получение сульфата алюминия (3 способа)

Решение химических задач
на закон Фарадея в курсе
средней школы

Среди великого множества разнообразных химических задач, как показывает практика преподавания в школе, наибольшие затруднения вызывают задачи, для решения которых помимо прочных химических знаний требуется неплохо владеть материалом курса физики. И хотя далеко не в каждой средней школе уделяется внимание решению хотя бы простейших задач с использованием знаний двух курсов – химии и физики, задачи такого типа иногда встречаются на вступительных экзаменах в вузах, где химия является профилирующей дисциплиной. А потому, не разобрав задачи такого типа на уроках, учитель может неумышленно лишить своего ученика шанса на поступление в вуз на химическую специальность.
Эта авторская разработка содержит свыше двадцати задач, так или иначе связанных с темой «Электролиз». Для решения задач данного типа необходимо не только хорошо знать тему «Электролиз» школьного курса химии, но и знать закон Фарадея, который изучается в школьном курсе физики.
Возможно, эта подборка задач не будет интересна абсолютно всем ученикам в классе или всем доступна. Тем не менее задачи данного типа рекомендуется разобрать с группой заинтересованных учащихся на кружковом или факультативном занятии. Можно с уверенностью отметить, что задачи такого типа усложненные и по крайней мере не являются типовыми для школьного курса химии (речь идет о средней общеобразовательной школе), а потому задачи данного типа можно смело включать в варианты школьной или районной химической олимпиады для 10-х или 11-х классов.
Наличие подробного решения для каждой задачи делает разработку ценным подспорьем, особенно для начинающих учителей. Разобрав несколько задач с учащимися на факультативном занятии или занятии кружка, творчески работающий учитель непременно задаст несколько однотипных задач на дом и воспользуется данной разработкой в процессе проверки домашних заданий, что позволит существенно сэкономить бесценное учительское время.

Химические реакции, протекающие под действием электрического тока на электродах, помещенных в раствор или расплав электролита, называют электролизом. Рассмотрим пример.

В стаканчике при температуре около 700 °С находится расплав хлорида натрия NaCl, в него погружены электроды. До пропускания через расплав электрического тока ионы Na + и Cl – движутся хаотически, однако при наложении электрического тока движение этих частиц становится упорядоченным: ионы Na + устремляются к отрицательно заряженному электроду, а ионы Cl – – к положительно заряженному электроду.

Электролиз водного раствора сульфата алюминия уравнение

Ион – заряженный атом или группа атомов, обладающая зарядом.

Катион – положительно заряженный ион.

Анион – отрицательно заряженный ион.

Катод – отрицательно заряженный электрод (к нему движутся положительно заряженные ионы – катионы).

Анод – положительно заряженный электрод (к нему движутся отрицательно заряженные ионы – анионы).

Электролиз водного раствора сульфата алюминия уравнениеЭлектролиз расплава хлорида натрия на платиновых электродах

Электролиз водного раствора сульфата алюминия уравнение

Электролиз водного раствора сульфата алюминия уравнение

Электролиз водного раствора сульфата алюминия уравнение Электролиз водного раствора хлорида натрия на угольных электродах

Электролиз водного раствора сульфата алюминия уравнение

Электролиз водного раствора сульфата алюминия уравнение

или в молекулярной форме:

Электролиз водного раствора сульфата алюминия уравнение

Электролиз водного раствора сульфата алюминия уравнение Электролиз водного раствора хлорида меди(II) на угольных электродах

Электролиз водного раствора сульфата алюминия уравнение

Электролиз водного раствора сульфата алюминия уравнение

В электрохимическом ряду активности металлов медь расположена правее водорода, поэтому медь и будет восстанавливаться на катоде, а на аноде будет окисляться хлор.

Электролиз водного раствора сульфата алюминия уравнение Электролиз водного раствора сульфата натрия на платиновых электродах

Электролиз водного раствора сульфата алюминия уравнение

Электролиз водного раствора сульфата алюминия уравнение

Аналогично происходит электролиз водного раствора нитрата калия (платиновые электроды).

Электролиз водного раствора сульфата алюминия уравнение Электролиз водного раствора сульфата цинка на графитовых электродах

Электролиз водного раствора сульфата алюминия уравнение

Электролиз водного раствора сульфата алюминия уравнение

Электролиз водного раствора сульфата алюминия уравнение Электролиз водного раствора нитрата железа(III) на платиновых электродах

Электролиз водного раствора сульфата алюминия уравнение

Электролиз водного раствора сульфата алюминия уравнение

Электролиз водного раствора сульфата алюминия уравнение Электролиз водного раствора нитрата серебра на платиновых электродах

Электролиз водного раствора сульфата алюминия уравнение

Электролиз водного раствора сульфата алюминия уравнение

Электролиз водного раствора сульфата алюминия уравнение Электролиз водного раствора сульфата алюминия на платиновых электродах

Электролиз водного раствора сульфата алюминия уравнение

Электролиз водного раствора сульфата алюминия уравнение

Электролиз водного раствора сульфата алюминия уравнениеЭлектролиз водного раствора сульфата меди на медных электродах – электрохимическое рафинирование

Электролиз водного раствора сульфата алюминия уравнение

Концентрация CuSO4 в растворе остается постоянной, процесс сводится к переносу материала анода на катод. В этом и заключается сущность процесса электрохимического рафинирования (получение чистого металла).

При составлении схем электролиза той или иной соли нужно помнить, что:

– катионы металлов, имеющие больший стандартный электродный потенциал (СЭП), чем у водорода (от меди до золота включительно), при электролизе практически полностью восстанавливаются на катоде;

– катионы металлов с небольшими значениями СЭП (от лития до алюминия включительно) не восстанавливаются на катоде, а вместо них восстанавливаются молекулы воды до водорода;

– катионы металлов, у которых значения СЭП меньше, чем у водорода, но больше, чем у алюминия (от алюминия до водорода), при электролизе на катоде восстанавливаются одновременно с водой;

– если водный раствор содержит смесь катионов различных металлов, например Ag + , Cu 2+ , Fe 2+ , то в этой смеси первым восстановится серебро, затем медь и последним – железо;

– на нерастворимом аноде в процессе электролиза происходит окисление анионов или молекул воды, причем анионы S 2– , I – , Br – , Cl – окисляются легко;

– если в растворе находятся анионы кислородсодержащих кислот Электролиз водного раствора сульфата алюминия уравнение, Электролиз водного раствора сульфата алюминия уравнение, Электролиз водного раствора сульфата алюминия уравнение, Электролиз водного раствора сульфата алюминия уравнение, то на аноде окисляются молекулы воды до кислорода;

– если анод растворим, то при электролизе он сам подвергается окислению, т. е. посылает электроны во внешнюю цепь: при отдаче электронов смещается равновесие между электродом и раствором и анод растворяется.

Если из всего ряда электродных процессов выделить только те, которые отвечают общему уравнению

то получим ряд напряжений металлов. В этот ряд всегда помещают также водород, что позволяет видеть, какие металлы способны вытеснять водород из водных растворов кислот, а какие нет (табл.).

Ряд напряжений металлов

Уравнение
электродного
процесса
Стандартный
электродный
потенциал при
25 °С, В
Уравнение
электродного
процесса
Стандартный
электродный
потенциал
при 25 °С, В
Li + + 1e = Li 0–3,045Co 2+ + 2e = Co 0–0,277
Rb + + 1e = Rb 0–2,925Ni 2+ + 2e = Ni 0–0,250
K + + 1e = K 0–2,925Sn 2+ + 2e = Sn 0–0,136
Cs + + 1e = Cs 0–2,923Pb 2+ + 2e = Pb 0–0,126
Ca 2+ + 2e = Ca 0–2,866Fe 3+ + 3e = Fe 0–0,036
Na + + 1e = Na 0–2,7142H + + 2e = H20
Mg 2+ + 2e = Mg 0–2,363Bi 3+ + 3e = Bi 00,215
Al 3+ + 3e = Al 0–1,662Cu 2+ + 2e = Cu 00,337
Ti 2+ + 2e = Ti 0–1,628Cu + +1e = Cu 00,521
Mn 2+ + 2e = Mn 0–1,180Hg2 2+ + 2e = 2Hg 00,788
Cr 2+ + 2e = Cr 0–0,913Ag + + 1e = Ag 00,799
Zn 2+ + 2e = Zn 0–0,763Hg 2+ + 2e = Hg 00,854
Cr 3+ + 3e = Cr 0–0,744Pt 2+ + 2e = Pt 01,2
Fe 2+ + 2e = Fe 0–0,440Au 3+ + 3e = Au 01,498
Cd 2+ + 2e = Cd 0–0,403Au + + 1e = Au 01,691

В более простом виде ряд напряжений металлов можно представить так:

Электролиз водного раствора сульфата алюминия уравнение

Для решения большинства задач на электролиз требуется знание закона Фарадея, формульное выражение которого приведено ниже:

где m – масса выделившегося на электроде вещества, F – число Фарадея, равное 96 485 А•с/моль, или 26,8 А•ч/моль , М – молярная масса элемента, восстанавливающегося в процессе электролиза, t – время проведения процесса электролиза (в секундах), I – сила тока (в амперах), z – число электронов, участвующих в процессе.

1. Какая масса никеля выделится в процессе электролиза раствора нитрата никеля в течение 1 ч при силе тока 20 А?

2. При какой силе тока необходимо проводить процесс электролиза раствора нитрата серебра, чтобы в течение 10 ч получить 0,005 кг чистого металла?

3. Какая масса меди выделится при электролизе расплава хлорида меди(II) в течение 2 ч при силе тока 50 А?

4. В течение какого времени нужно проводить процесс электролиза водного раствора сульфата цинка при силе тока 120 А, чтобы при этом получить 3,5 г цинка?

5. Какая масса железа выделится в процессе электролиза раствора сульфата железа(III) при силе тока 200 А в течение 2 ч?

6. При какой силе тока необходимо проводить процесс электролиза раствора нитрата меди(II), чтобы в течение 15 ч получить 200 г чистого металла?

7. В течение какого времени необходимо проводить процесс электролиза расплава хлорида железа(II) при силе тока 30 А, чтобы при этом получить 20 г чистого железа?

8. При какой силе тока необходимо проводить процесс электролиза раствора нитрата ртути(II), чтобы в течение 1,5 ч получить 0,5 кг чистого металла?

9. При какой силе тока необходимо проводить процесс электролиза расплава хлорида натрия, чтобы в течение 1,5 ч получить 100 г чистого металла?

10. Расплав хлорида калия подвергли электролизу в течение 2 ч при силе тока 5 А. Полученный металл прореагировал с водой массой 2 кг. Какой концентрации раствор щелочи получился при этом?

11. Сколько граммов 30%-го раствора соляной кислоты потребуется для полного взаимодействия с железом, полученным при электролизе раствора сульфата железа(III) в течение 0,5 ч при силе тока
10 А?

12. В процессе электролиза расплава хлорида алюминия, проводимого в течение 245 мин при силе тока 15 А, получили чистый алюминий. Сколько граммов железа можно получить алюминотермическим методом при взаимодействии данной массы алюминия с оксидом железа(III)?

13. Сколько миллилитров 12%-го раствора КОН плотностью 1,111 г/мл потребуется для взаимодействия с алюминием (с образованием тетрагидроксиалюмината калия), полученным электролизом раствора сульфата алюминия в течение 300 мин при силе тока 25 А?

14. Сколько миллилитров 20%-го раствора серной кислоты плотностью 1,139 г/мл потребуется для взаимодействия с цинком, полученным электролизом раствора сульфата цинка в течение 100 мин при силе тока 55 А?

15. Какой объем оксида азота(IV) (н.у.) получится при взаимодействии избытка горячей концентрированной азотной кислоты с хромом, полученным электролизом раствора сульфата хрома(III) в течение 100 мин при силе тока 75 А?

16. Какой объем оксида азота(II) (н.у.) получится при взаимодействии избытка раствора азотной кислоты с медью, полученной электролизом расплава хлорида меди(II) в течение 50 мин при силе тока 10,5 А?

17. В течение какого времени необходимо проводить электролиз расплава хлорида железа(II) при силе тока 30 А, чтобы получить железо, необходимое для полного взаимодействия со 100 г 30%-го раствора соляной кислоты?

18. В течение какого времени необходимо проводить электролиз раствора нитрата никеля при силе тока 15 А, чтобы получить никель, необходимый для полного взаимодействия с 200 г 35%-го раствора серной кислоты при нагревании?

19. Расплав хлорида натрия подвергли электролизу при силе тока 20 А в течение 30 мин, а расплав хлорида калия подвергли электролизу в течение 80 мин при силе тока 18 А. Оба металла растворили в 1 кг воды. Найдите концентрацию щелочей в полученном растворе.

20. Магний, полученный электролизом расплава хлорида магния в течение 200 мин при силе тока
10 А, растворили в 1,5 л 25%-го раствора серной кислоты плотностью 1,178 г/мл. Найдите концентрацию сульфата магния в полученном растворе.

21. Цинк, полученный электролизом раствора сульфата цинка в течение 100 мин при силе тока

17 А, растворили в 1 л 10%-го раствора серной кислоты плотностью 1,066 г/мл. Найдите концентрацию сульфата цинка в полученном растворе.

22. Железо, полученное электролизом расплава хлорида железа(III) в течение 70 мин при силе тока 11 А, превратили в порошок и погрузили в 300 г 18%-го раствора сульфата меди(II). Найдите массу меди, выпавшей в осадок.

23. Магний, полученный электролизом расплава хлорида магния в течение 90 мин при силе тока
17 А, погрузили в раствор соляной кислоты, взятый в избытке. Найдите объем и количество выделившегося водорода (н.у.).

24. Раствор сульфата алюминия подвергли электролизу в течение 1 ч при силе тока 20 А. Сколько граммов 15%-го раствора соляной кислоты потребуется для полного взаимодействия с полученным алюминием?

25. Сколько литров кислорода и воздуха (н.у.) потребуется для полного сжигания магния, полученного электролизом расплава хлорида магния в течение 35 мин при силе тока 22 А?

Ответы и решения см. в следующих номерах

Видео:Электролиз. Часть 7. Электролиз с растворимым анодомСкачать

Электролиз. Часть 7. Электролиз с растворимым анодом

Правила составления окислительно-восстановительных реакций

Видео:Электролиз. 10 класс.Скачать

Электролиз. 10 класс.

Электролиз растворов электролитов с инертными электродами

Напомним, что на катоде протекают процессы восстановления, на аноде — процессы окисления.

Процессы, протекающие на катоде:

В растворе имеются несколько видов положительно заряженных частиц, способных восстанавливаться на катоде:

1) Катионы металла восстанавливаются до простого вещества, если металл находится в ряду напряжений правее алюминия (не включая сам Al). Например:
Zn 2+ +2e → Zn 0 .

2) В случае раствора соли или щелочи: катионы водорода восстанавливаются до простого вещества, если металл находится в ряду напряжений металлов до H2:
2H2O + 2e → H2 0 + 2OH – .
Например, в случае электролиза растворов NaNO3 или KOH.

3) В случае электролиза раствора кислоты: катионы водорода восстанавливаются до простого вещества:
2H + +2e → H2.
Например, в случае электролиза раствора H2SO4.

Процессы, протекающие на аноде:

На аноде легко окисляются кислотные остатки не содержащие кислород. Например, галогенид-ионы (кроме F – ), сульфид-анионы, гидроксид-анионы и молекулы воды:

1) Галогенид-анионы окисляются до простых веществ:
2Cl – – 2e → Cl2.

2) В случае электролиза раствора щелочи в гидроксид-анионах кислород окисляется до простого вещества. Водород уже имеет степень окисления +1 и не может быть окислен дальше. Также будет выделение воды — почему? Потому что больше ничего написать и не получится: 1) H + написать не можем, так как OH – и H + не могут стоять по разные стороны одного уравнения; 2) H2 написать также не можем, так как это был бы процесс восстановления водорода (2H + +2e → H2), а на аноде протекают только процессы окисления.
4OH – – 4e → O2 + 2H2O.

3) Если в растворе есть анионы фтора или любые кислородсодержащие анионы, то окислению будет подвергаться вода с подкислением прианодного пространства согласно следующему уравнению:
2H2O – 4e → O2 + 4H + .
Такая реакция идет в случае электролиза растворов кислородсодержащих солей или кислородсодержащих кислот. В случае электролиза раствора щелочи окисляться будут гидроксид-анионы согласно правилу 2) выше.

4) В случае электролиза раствора соли органической кислоты на аноде всегда происходит выделение CO2 и удвоение остатка углеродной цепи:
2R-COO – – 2e → R-R + 2CO2.

Видео:ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ ХИМИЯ 8 класс // Подготовка к ЕГЭ по Химии - INTENSIVСкачать

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ ХИМИЯ 8 класс // Подготовка к ЕГЭ по Химии - INTENSIV

Примеры:

1. Раствор NaCl

Расписываем диссоциацию на ионы:
NaCl → Na + + Cl –

Металл Na стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу выше, на катоде восстанавливается водород. Хлорид-анионы будут окисляться на аноде до простого вещества:

К: 2Na + (в растворе)
2H2O + 2e → H2 0 + 2OH –
А: 2Cl – – 2e → Cl2

Коэффициент 2 перед Na + появился из-за наличия аналогичного коэффициента перед хлорид-ионами, так как в соли NaCl их соотношение 1:1.

Проверяем, что количество принимаемых и отдаваемых электронов одинаковое, и суммируем левые и правые части катодных и анодных процессов:

2Na + + 2Cl – + 2H2O → H2 0 + 2Na + + 2OH – + Cl2. Соединяем катионы и анионы:
2NaCl + 2H2O → H2 0 + 2NaOH + Cl2.

2. Раствор Na2SO4

Расписываем диссоциацию на ионы:
Na2SO4 → 2Na + + SO4 2–

Натрий стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу выше, на катоде восстанавливается только водород. Сульфат-анионы содержат кислород, поэтому окисляться не будут, также оставаясь в растворе. Согласно правилу выше, в этом случае окисляются молекулы воды:

К: 2H2O + 2e → H2 0 + 2OH –
А: 2H2O – 4e → O2 0 + 4H + .

Уравниваем число принимаемых и отдаваемых электронов на катоде и аноде. Для этого необходимо умножить все коэффициенты катодного процесса на 2:
К: 4H2O + 4e → 2H2 0 + 4OH –
А: 2H2O – 4e → O2 0 + 4H + .

Складываем левые и правые части катодных и анодных процессов:
6H2O → 2H2 0 + 4OH – + 4H + + O2 0 .

4OH- и 4H+ соединяем в 4 молекулы H2O:
6H2O → 2H2 0 + 4H2O + O2 0 .

Сокращаем молекулы воды, находящиеся по обе стороны уравнения, т.е. вычитаем из каждой части уравнения 4H2O и получаем итоговое уравнение гидролиза:
2H2O → 2H2 0 + O2 0 .

Таким образом, гидролиз растворов кислородсодержащих солей активных металлов (до Al включительно) сводится к гидролизу воды, так как ни катионы металлов, ни анионы кислотных остатков не принимают участие в окислительно-восстановительных процессах, протекающих на электродах.

3. Раствор CuCl2

Расписываем диссоциацию на ионы:
CuCl2 → Cu 2+ + 2Cl –

Медь находится в ряду напряжений металлов после водорода, следовательно, только она будет восстанавливаться на катоде. На аноде будут окисляться только хлорид-анионы.

К: Cu 2+ + 2e → Cu 0
A: 2Cl – – 2e → Cl2

Записываем суммарное уравнение:
CuCl2 → Cu 0 + Cl2.

4. Раствор CuSO4

Расписываем диссоциацию на ионы:
CuSO4 → Cu 2+ + SO4 2–

Медь находится в ряду напряжений металлов после водорода, следовательно, только она будет восстанавливаться на катоде. На аноде будут окисляться молекулы воды, так как кислородсодержащие кислотные остатки в растворах на аноде не окисляются.

К: Cu 2+ + 2e → Cu 0
A: SO4 2– (в растворе)
2H2O – 4e → O2 + 4H + .

Уравниваем количество электронов на катоде и аноде. Для это умножим все коэффициенты катодного уравнения на 2. Количество сульфат-ионов также необходимо удвоить, так как в сульфате меди соотношение Cu 2+ и SO4 2– 1:1.

К: 2Cu 2+ + 4e → 2Cu 0
A: 2SO4 2– (в растворе)
2H2O – 4e → O2 + 4H + .

Записываем суммарное уравнение:
2Cu 2+ + 2SO4 2– + 2H2O → 2Cu 0 + O2 + 4H + + 2SO4 2– .

Соединив катионы и анионы, получаем итоговое уравнение электролиза:
2CuSO4 + 2H2O → 2Cu 0 + O2 + 2H2SO4.

5. Раствор NiCl2

Расписываем диссоциацию на ионы:
NiCl2 → Ni 2+ + 2Cl –

Никель находится в ряду напряжений металлов после алюминия и до водорода, следовательно, на катоде будут восстанавливаться и металл, и водород. На аноде будут окисляться только хлорид-анионы.

К: Ni 2+ + 2e → Ni 0
2H2O + 2e → H2 0 + 2OH –
A: 2Cl – – 2e → Cl2

Уравниваем количество электронов, принимаемых и отдаваемых на катоде и аноде. Для этого умножаем все коэффициенты анодного уравнения на 2:

К: Ni 2+ + 2e → Ni 0
2H2O + 2e → H2 0 + 2OH –
Ni 2+ (в растворе)
A: 4Cl – – 4e → 2Cl2

Замечаем, что согласно формуле NiCl2, соотношение атомов никеля и хлора 1:2, следовательно, в раствор необходимо добавить Ni 2+ для получения общего количества 2NiCl2. Также это необходимо сделать, так как в растворе должны присутствовать противоионы для гидроксид-анионов.

Складываем левые и правые части катодных и анодных процессов:
Ni 2+ + Ni 2+ + 4Cl – + 2H2O → Ni 0 + H2 0 + 2OH – + Ni 2+ + 2Cl2.

Соединяем катионы и анионы для получения итогового уравнения электролиза:
2NiCl2 + 2H2O → Ni 0 + H2 0 + Ni(OH)2 + 2Cl2.

6. Раствор NiSO4

Расписываем диссоциацию на ионы:
NiSO4 → Ni 2+ + SO4 2–

Никель находится в ряду напряжений металлов после алюминия и до водорода, следовательно, на катоде будут восстанавливаться и металл, и водород. На аноде будут окисляться молекулы воды, так как кислородсодержащие кислотные остатки в растворах на аноде не окисляются.

К: Ni 2+ + 2e → Ni 0
2H2O + 2e → H2 0 + 2OH –
A: SO4 2– (в растворе)
2H2O – 4e → O2 + 4H + .

Проверяем, что количество принятых и отданных электронов совпадает. Также замечаем, что в растворе есть гидроксид-ионы, но в записи электродных процессов для них нет противоионов. Следовательно, нужно добавить в раствор Ni 2+ . Так как удвоилось количество ионов никеля, необходимо удвоить и количество сульфат-ионов:

К: Ni 2+ + 2e → Ni 0
2H2O + 2e → H2 0 + 2OH –
Ni 2+ (в растворе)
A: 2SO4 2– (в растворе)
2H2O – 4e → O2 + 4H + .

Складываем левые и правые части катодных и анодных процессов:
Ni 2+ + Ni 2+ + 2SO4 2– + 2H2O + 2H2O → Ni 0 + Ni 2+ + 2OH – + H2 0 + O2 0 + 2SO4 2– + 4H + .

Соединяем катионы и анионы и записываем итоговое уравнение электролиза:
2NiSO4 + 4H2O → Ni 0 + Ni(OH)2 + H2 0 + O2 0 + 2H2SO4.

В других источниках литературы также говорится об альтернативном протекании электролиза кислородсодержащих солей металлов средней активности. Разница состоит в том, что после сложения левых и правых частей процессов электролиза необходимо соединить H + и OH – с образованием двух молекул воды. Оставшиеся 2H + расходуются на образование серной кислоты. В этом случае не нужно прибавлять дополнительные ионы никеля и сульфат-ионы:

Ni 2+ + SO4 2– + 2H2O + 2H2O → Ni 0 + 2OH – + H2 0 + O2 0 + SO4 2– + 4H + .

Ni 2+ + SO4 2– + 4H2O → Ni 0 + H2 0 + O2 0 + SO4 2– + 2H + + 2H2O.

NiSO4 + 2H2O → Ni 0 + H2 0 + O2 0 + H2SO4.

7. Раствор CH3COONa

Расписываем диссоциацию на ионы:
CH3COONa → CH3COO – + Na +

Натрий стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу выше, на катоде восстанавливается только водород. На аноде будет происходит окисление ацетат-ионов с образованием углекислого газа и удвоением остатка углеродной цепи:

К: 2Na + (в растворе)
2H2O + 2e → H2 0 + 2OH –
А: 2CH3COO – – 2e → CH3-CH3 + CO2

Так как количества электронов в процессах окисления и восстановления совпадают, составляем суммарное уравнение:
2Na + + 2CH3COO – + 2H2O → 2Na + + 2OH – + H2 0 + CH3-CH3 + CO2

Соединяем катионы и анионы:
2CH3COONa + 2H2O → 2NaOH + H2 0 + CH3-CH3 + CO2.

8. Раствор H2SO4

Расписываем диссоциацию на ионы:
H2SO4 → 2H + + SO4 2–

Из катионов в растворе присутствуют только катионы H+, они и будут восстанавливаться до простого вещества. На аноде будет протекать окисление воды, так как кислород содержащие кислотные остатки в растворах на аноде не окисляются.

К: 2H + +2e → H2
A: 2H2O – 4e → O2 + 4H +

Уравниваем число электронов. Для этого удваиваем каждый коэффициент в уравнении катодного процесса:

К: 4H + +4e → 2H2
A: 2H2O – 4e → O2 + 4H +

Суммируем левые и правые части уравнений:
4H + + 2H2O → 2H2 + O2 + 4H +

Катионы H + находятся в обеих частях реакции, следовательно, их нужно сократить. Получаем, что в случае растворов кислот, электролизу подвергаются только молекулы H2O:
2H2O → 2H2 + O2.

9. Раствор NaOH

Расписываем диссоциацию на ионы:
NaOH → Na + + OH –

Натрий стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу, на катоде восстанавливается только водород. На аноде будут окисляться гидроксид-анионы с образованием кислорода и воды:

К: Na+ (в растворе)
2H2O + 2e → H2 0 + 2OH –
А: 4OH – – 4e → O2 + 2H2O

Уравниваем число электронов, принимаемых и отдаваемых на электродах:

К: Na + (в растворе)
4H2O + 4e → 2H2 0 + 4OH –
А: 4OH – – 4e → O2 + 2H2O

Суммируем левые и правые части процессов:
4H2O + 4OH – → 2H2 0 + 4OH – + O2 0 + 2H2O

Сокращая 2H2O и ионы OH – , получаем итоговое уравнение электролиза:
2H2O → 2H2 + O2.

Вывод:
При электролизе растворов 1) кислородсодержащих кислот;
2) щелочей;
3) солей активных металлов и кислородсодержащих кислот
на электродах протекает электролиз воды:
2H2O → 2H2 + O2.

Видео:Все об электролизе и задании 20 за 20 минут | Химия ЕГЭ 2023 | УмскулСкачать

Все об электролизе и задании 20 за 20 минут | Химия ЕГЭ 2023 | Умскул

Электролиз

Видео:Электролиз раствора сульфата меди(II)Скачать

Электролиз раствора сульфата меди(II)

Электролиз

Химические реакции, сопровождающиеся переносом электронов (окислительно-восстановительные реакции) делятся на два типа: реакции, протекающие самопроизвольно и реакции, протекающие при прохождении тока через раствор или расплав электролита.

Раствор или расплав электролита помещают в специальную емкость — электролитическую ванну .

Электрический ток — это упорядоченное движение заряженных частиц — ионов, электронов и др. под действием внешнего электрического поля. Электрическое поле в растворе или расплаве электролита создают электроды .

Электроды — это, как правило, стержни из материала, проводящего электрический ток. Их помещают в раствор или расплав электролита, и подключают к электрической цепи с источником питания.

При этом отрицательно заряженный электрод катод — притягивает положительно заряженные ионы — катионы . Положительно заряженный электрод ( анод ) притягивает отрицательно заряженные частицы ( анионы ). Катод выступает в качестве восстановителя, а анод — в качестве окислителя.

Электролиз водного раствора сульфата алюминия уравнение

Различают электролиз с активными и инертными электродами. Активные (растворимые) электроды подвергаются химическим превращениям в процессе электролиза. Обычно их изготавливают из меди, никеля и других металлов. Инертные (нерастворимые) электроды химическим превращениям не подвергаются. Их изготавливают из неактивных металлов, например, платины , или графита .

Видео:Часть 3-2. Электролиз водных растворов. Примеры решений уравнений (подробно).Скачать

Часть 3-2. Электролиз водных растворов. Примеры решений уравнений (подробно).

Электролиз растворов

Различают электролиз раствора или расплава химического вещества. В растворе присутствует дополнительное химическое вещество — вода, которая может принимать участие в окислительно-восстановительных реакциях.

Катодные процессы

В растворе солей катод притягивает катионы металлов. Катионы металлов могут выступать в качестве окислителей. Окислительные способности ионов металлов различаются. Для оценки окислительно-восстановительных способностей металлов применяют электро-химический ряд напряжений :

Электролиз водного раствора сульфата алюминия уравнение

Каждый металл характеризуется значением электрохимического потен-циала. Чем меньше потенциал , тем больше восстановительные свойства металла и тем меньше окислительные свойства соответствующего иона этого металла. Разным ионам соответствуют разные значения этого потенциала. Электрохимический потенциал — относительная величина. Электрохимический потенциал водорода принят равным нулю.

Также около катода находятся молекулы воды Н2О. В составе воды есть окислитель — ион H + .

При электролизе растворов солей на катоде наблюдаются следующие закономерности:

1. Если металл в соли — активный ( до Al 3+ включительно в ряду напряжений ), то вместо металла на катоде восстанавливается (разряжается) водород , т.к. потенциал водорода намного больше. Протекает процесс восстановления молекулярного водорода из воды, при этом образуются ионы OH — , среда возле катода — щелочная:

2H2O +2ē → H2 + 2OH —

Например , при электролизе раствора хлорида натрия на катоде будет вос-станавливаться только водород из воды.

2. Если металл в соли – средней активности (между Al 3+ и Н + ) , то на катоде восстанавливается (разряжается) и металл , и водород , так как потенциал таких металлов сравним с потенциалом водорода:

Me n+ + nē → Me 0

2 H + 2O +2ē → H2 0 + 2OH —

Например , при электролизе раствора сульфата железа (II) на катоде будет восстанавливаться (разряжаться) и железо, и водород:

Fe 2+ + 2ē → Fe 0

2 H + 2O +2ē → H2 0 + 2OH —

3. Если металл в соли — неактивный (после водорода в ряду стандартных электрохимических металлов) , то ион такого металла является более сильным окислителем, чем ион водорода, и на катоде восстанавливается только металл:

Me n+ + nē → Me 0

Например, при электролизе раствора сульфата меди (II) на катоде будет восстанавливаться медь:

Cu 2+ + 2ē → Cu 0

4. Если на катод попадают катионы водорода H + , то они и восстанавливаются до молекулярного водорода:

2H + + 2ē → H2 0

Анодные процессы

Положительно заряженный анод притягивает анионы и молекулы воды. Анод – окислитель. В качестве восстановителей выступаю либо анионы кислотных остаток, либо молекулы воды (за счет кислорода в степени окисления -2: H 2 O -2 ).

При электролизе растворов солей на аноде наблюдаются следующие закономерности:

1. Если на анод попадает бескислородный кислотный остаток , то он окисляется до свободного состояния (до степени окисления 0):

неМе n- – nē = неМе 0

Например : при электролизе раствора хлорида натрия на аноде окисляют-ся хлорид-ионы:

2Cl — – 2ē = Cl2 0

Действительно, если вспомнить Периодический закон: при увеличении электроотрицательности неметалла его восстановительные свойства уменьшаются. А кислород – второй по величине электроотрицательности элемент. Таким образом, проще окислить практически любой неметалл, а не кислород. Правда, есть одно исключение . Наверное, вы уже догадались. Конечно же, это фтор. Ведь электроотрицательность фтора больше, чем у кислорода. Таким образом, при электролизе растворов фторидов окисляться будут именно молекулы воды, а не фторид-ионы :

2H2 O -2 – 4ē → O2 0 + 4H +

2. Если на анод попадает кислородсодержащий кислотный остаток, либо фторид-ион , то окислению подвергается вода с выделением молекулярно-го кислорода:

2H2 O -2 – 4ē → O2 0 + 4H +

3. Если на анод попадает гидроксид-ион, то он окисляется и происходит выделение молекулярного кислорода:

4 O -2 H – – 4ē → O2 0 + 2H2O

4. При электролизе растворов солей карбоновых кислот окислению под-вергается атом углерода карбоксильной группы, выделяется углекислый газ и соответствующий алкан.

Например , при электролизе растворов ацетатов выделяется углекислый газ и этан:

2 CH3 C +3 OO – –2ē → 2 C +4 O2+ CH3-CH3

Суммарные процессы электролиза

Рассмотрим электролиз растворов различных солей.

Например , электролиз раствора сульфата меди. На катоде восстанавливаются ионы меди:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются молекулы воды:

Анод (+): 2H2 O -2 – 4ē → O2 + 4H +

Сульфат-ионы в процессе не участвуют. Мы их запишем в итоговом уравнении с ионами водорода в виде серной кислоты:

2 Cu 2+ SO4 + 2H2 O -2 → 2 Cu 0 + 2H2SO4 + O2 0

Электролиз раствора хлорида натрия выглядит так:

На катоде восстанавливается водород:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются хлорид-ионы:

Анод (+): 2 Cl – – 2ē → Cl2 0

Ионы натрия в процессе электролиза не участвуют. Мы записываем их с гидроксид-анионами в суммарном уравнении электролиза раствора хлорида натрия :

2 H + 2O +2Na Cl – → H2 0 + 2NaOH + Cl2 0

Следующий пример : электролиз водного раствора карбоната калия.

На катоде восстанавливается водород из воды:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются молекулы воды до молекулярного кислорода:

Анод (+): 2H2 O -2 – 4ē → O2 0 + 4H +

Таким образом, при электролизе раствора карбоната калия ионы калия и карбонат-ионы в процессе не участвуют. Происходит электролиз воды:

2 H2 + O -2 → 2 H2 0 + O2 0

Еще один пример : электролиз водного раствора хлорида меди (II).

На катоде восстанавливается медь:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются хлорид-ионы до молекулярного хлора:

Анод (+): 2 Cl – – 2ē → Cl2 0

Таким образом, при электролизе раствора карбоната калия происходит электролиз воды:

Cu 2+ Cl2 – → Cu 0 + Cl2 0

Еще несколько примеров: электролиз раствора гидроксида натрия.

На катоде восстанавливается водород из воды:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются гидроксид-ионы до молекулярного кислорода:

Анод (+): 4 O -2 H – – 4ē → O2 0 + 2H2O

Таким образом, при электролизе раствора гидроксида натрия происходит разложение воды, катионы натрия в процессе не участвуют:

2 H2 + O -2 → 2 H2 0 + O2 0

Видео:ЭлектролизСкачать

Электролиз

Электролиз расплавов

При электролизе расплава на аноде окисляются анионы кислотных остатков, а на катоде восстанавливаются катионы металлов. Молекул воды в системе нет.

Например: электролиз расплава хлорида натрия. На катоде восстанавли-ваются катионы натрия:

Катод (–): Na + + ē → Na 0

На аноде окисляются анионы хлора:

Анод (+): 2 Cl – – 2ē → Cl2 0

Суммарное уравнение электролиза расплава хлорида натрия:

2 Na + Cl → 2 Na 0 + Cl2 0

Электролиз водного раствора сульфата алюминия уравнение

Еще один пример: электролиз расплава гидроксида натрия. На катоде восстанавливаются катионы натрия:

Катод (–): Na + + ē → Na 0

На аноде окисляются гидроксид-ионы:

Анод (+): 4 OH – – 4ē → O2 0 + 2H2O

Суммарное уравнение электролиза расплава гидроксида натрия:

4 Na + OH → 4 Na 0 + O2 0 + 2H2O

Многие металлы получают в промышленности электролизом расплавов.

Например , алюминий получают электролизом раствора оксида алюминия в расплаве криолита. Криолит – Na3[AlF6] плавится при более низкой температуре (1100 о С), чем оксид алюминия (2050 о С). А оксид алюминия отлично растворяется в расплавленном криолите.

В растворе криолите оксид алюминия диссоциирует на ионы:

На катоде восстанавливаются катионы алюминия:

Катод (–): Al 3+ + 3ē → Al 0

На аноде окисляются алюминат-ионы:

Анод (+): 4Al O 3 3 – – 12ē → 2Al2O3 + 3 O2 0

Общее уравнение электролиза раствора оксида алюминия в расплаве криолита:

2 Al 2 О 3 = 4 Al 0 + 3 О 2 0

Электролиз водного раствора сульфата алюминия уравнение

В промышленности при электролизе оксида алюминия в качестве электродов используют графитовые стержни. При этом электроды частично окисляются (сгорают) в выделяющемся кислороде:

C 0 + О2 0 = C +4 O2 -2

Видео:Гидролиз солей. 9 класс.Скачать

Гидролиз солей. 9 класс.

Электролиз с растворимыми электродами

Если материал электродов выполнен из того же металла, который присут-ствует в растворе в виде соли, или из более активного металла, то на аноде разряжаются не молекулы воды или анионы, а окисляются частицы самого металла в составе электрода.

Например , рассмотрим электролиз раствора сульфата меди (II) с медными электродами.

На катоде разряжаются ионы меди из раствора:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются частицы меди из электрода :

Анод (+): Cu 0 – 2ē → Cu 2+

🔍 Видео

Электролиз. Часть 1. Процесс электролиза, основные закономерности.Скачать

Электролиз. Часть 1. Процесс электролиза, основные закономерности.

Электролиз растворов. 2 часть. 10 класс.Скачать

Электролиз растворов. 2 часть. 10 класс.

Опыты по химии. Электролиз раствора сульфата натрияСкачать

Опыты по химии. Электролиз раствора сульфата натрия

Решение упражнений по теме Алюминий и его соединенияСкачать

Решение упражнений по теме Алюминий и его соединения

Онлайн урок. 10-11 класс. Электролиз в заданиях ЕГЭ по химииСкачать

Онлайн урок. 10-11  класс. Электролиз в заданиях ЕГЭ по химии

Опыты по химии. Электролиз раствора хлорида медиСкачать

Опыты по химии. Электролиз раствора хлорида меди

РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по ХимииСкачать

РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по Химии

Электролиз, часть 3. Примеры электролиза водных растворов солейСкачать

Электролиз, часть 3. Примеры электролиза водных растворов солей

уравнения электролизаСкачать

уравнения электролиза

7. ЭлектролизСкачать

7. Электролиз

Электролиз раствора сульфата натрия | ЕГЭ по химииСкачать

Электролиз раствора сульфата натрия | ЕГЭ по химии
Поделиться или сохранить к себе: