Одним из способов получения металлов является электролиз. Активные металлы встречаются в природе только в виде химических соединений. Как выделить из этих соединений в свободном состоянии?
Растворы и расплавы электролитов проводят электрический ток. Однако при пропускании тока через раствор электролита могут происходить химические реакции. Рассмотрим, что будет происходить, если в раствор или расплав электролита поместить две металлические пластинки, каждая из которых соединена с одним из полюсов источника тока. Эти пластинки называются электродами. Электрический ток представляет собой движущийся поток электронов. В результате того, что электроны в цепи движутся от одного электрода к другому, на одном из электродов возникает избыток электронов. Электроны имеют отрицательный заряд, поэтому этот электрод заряжается отрицательно. Его называют катодом. На другом электроде создается недостаток электронов, и он заряжается положительно. Этот электрод называют анодом. Электролит в растворе или расплаве диссоциирует на положительно заряженные ионы — катионы и отрицательно заряженные ионы — анионы. Катионы притягиваются к отрицательно заряженному электроду — катоду. Анионы притягиваются к положительно заряженному электроду — аноду. На поверхности электродов может происходить взаимодействие между ионами и электронами.
Электролизом называются процессы, происходящие при пропускании через растворы или расплавы электролитов электрического тока.
Процессы, происходящие при электролизе растворов и расплавов электролитов, достаточно сильно отличаются. Рассмотрим подробно оба этих случая.
В качестве примера рассмотрим электролиз расплава хлорида натрия. В расплаве хлорид натрия диссоциирует на ионы Na +
и Cl — : NaCl = Na + + Cl —
Катионы натрия перемещаются к поверхности отрицательно заряженного электрода — катода. На поверхности катода имеется избыток электронов. Поэтому происходит передача электронов от поверхности электрода к ионам натрия. При этом ионы Na + превращаются в атомы натрия, то есть происходит восстановление катионов Na + . Уравнение процесса:
Хлорид-ионы Cl — перемещаются к поверхности положительно заряженного электрода — анода. На поверхности анода создан недостаток электронов и происходит передача электронов от анионов Cl — к поверхности электрода. При этом отрицательно заряженные ионы Cl — превращаются в атомы хлора, которые сразу же соединяются в молекулы хлора С l 2 :
2С l — -2е — = Cl 2
Хлорид-ионы теряют электроны, то есть происходит их окисление.
Запишем вместе уравнения процессов, происходящих на катоде и аноде
2 С l — -2 е — = Cl2
В процессе восстановления катионов натрия участвует один электрон, а в процессе окисления ионов хлора — 2 электрона. Однако должен соблюдаться закон сохранения электрического заряда, то есть общий заряд всех частиц в растворе должен быть постоянным Следовательно, число электронов, участвующих в восстановлении катионов натрия, должно быть равно числу электронов, участвующих в окислении хлорид-ионов Поэтому первое уравнение умножим на 2:
2С l — -2е — = Cl 2 1
Сложим вместе оба уравнения и получим общее уравнение реакции.
2 Na + + 2С l — = 2 Na + Cl 2 (ионное уравнение реакции), или
2 NaCl = 2 Na + Cl 2 (молекулярное уравнение реакции)
Итак, на рассмотренном примере мы видим, что электролиз является окислительно-восстановительной реакцией. На катоде происходит восстановление положительно заряженных ионов — катионов, на аноде окисление отрицательно заряженных ионов – анионов. Запомнить, какой процесс где происходит, можно с помощью «правила Т»:
каТод — каТион – воссТановление.
Пример 2. Электролиз расплава гидроксида натрия.
Гидроксида натрия в растворе диссоциирует на катионы и гидроксид-ионы .
Катод (-) Na + + OH — à Анод (+)
На поверхности катода происходит восстановление катионов натрия, при этом образуются атомы натрия:
катод (-) Na + +e à Na
На поверхности анода окисляются гидрокисд-ионы, при этом выделяется кислород и образуются молекулы воды:
анод (+) 4 OH — – 4 e à 2 H 2 O + O 2
Запишем вместе уравнения процессов, происходящих на катоде и аноде:
катод (-) Na + + e à Na
анод (+) 4 OH — – 4 e à 2 H 2 O + O 2
Число электронов, участвующих в реакции восстановления катионов натрия и в реакции окисления гидроксид-ионов, должно быть одинаковым. Поэтому умножим первое уравнение на 4:
катод (-) Na + + e à Na 4
анод (+) 4 OH — – 4 e à 2 H 2 O + O 2 1
Сложим вместе оба уравнения и получим уравнение реакции электролиза:
4 NaOH à 4 Na + 2 H 2 O + O 2
Пример 3. Рассмотрим электролиз расплава Al 2 O 3
При помощи этой реакции получают алюминий из боксита – природного соединения, в котором содержится много оксида алюминия. Температура плавления оксида алюминия очень высокая (более 2000º С), поэтому к нему добавляют специальные добавки, понижающие температуру плавления до 800-900º С. В расплаве оксид алюминия диссоциирует на ионы Al 3+ и O 2- . H а катоде восстанавливаются катионы Al 3+ , превращаясь в атомы алюминия:
На аноде окисляются анионы O 2- , превращаясь в атомы кислорода. Атомы кислорода сразу же соединяются в молекулы О2:
2 O 2- – 4 e à O 2
Число электронов, участвующих в процессах восстановления катионов алюминия и окисления ионов кислорода, должно быть равно, поэтому умножим первое уравнение на 4, а второе на 3:
Al 3+ +3 e à Al 0 4
2 O 2- – 4 e à O 2 3
Сложим оба уравнения и получим общее уравнение электролиза:
4 Al 3+ + 6 O 2- à 4 Al 0 +3 O 2 0 (ионное уравнение реакции)
В случае пропускания электрического тока через водный раствор электролита дело осложняется тем, что в растворе присутствуют молекулы воды, которые также могут взаимодействовать с электронами. Вспомним, что в молекуле воды атомы водорода и кислорода связаны полярной ковалентной связью. Электроотрицательность кислорода больше, чем электроотрицательность водорода, поэтому общие электронные пары смещены к атому кислорода. На атоме кислорода возникает частичный отрицательный заряд, его обозначают δ-, а на атомах водорода -частичный положительный заряд, его обозначают δ+.
Благодаря такому смещению зарядов молекула воды имеет положительный и отрицательный «полюса». Поэтому молекулы воды могут положительно заряженным полюсом притягиваться к отрицательно заряженному электроду — катоду, а отрицательным полюсом — к положительно заряженному электроду — аноду. На катоде может происходить восстановление молекул воды, при этом выделяется водород:
На аноде может происходить окисление молекул воды с выделением кислорода:
Поэтому на катоде могут восстанавливаться либо катионы электролита, либо молекулы воды. Эти два процесса как бы конкурируют между собой. Какой процесс в действительности происходит на катоде, зависит от природы металла. Будут ли на катоде восстанавливаться катионы металла или молекулы воды, зависит от положения металла в ряду напряжений металлов.
Li K Na Ca Mg Al ¦¦ Zn Fe Ni Sn Pb (H2) ¦¦ Cu Hg Ag Au
Если металл находится в ряду напряжений правее водорода, на катоде восстанавливаются катионы металла и выделяется свободный металл. Если металл находится в ряду напряжений левее алюминия, на катоде восстанавливаются молекулы воды и выделяется водород. Наконец, в случае катионов металлов от цинка до свинца может происходить либо выделение металла, либо выделение водорода, а иногда одновременно выделяются и водород, и металл. Вообще это довольно сложный случай, многое зависит от условий реакции: концентрации раствора, сипы электрического тока и других.
На аноде также может происходить один из двух процессов — либо окисление анионов электролита, либо окисление молекул воды. Какой именно процесс будет протекать на самом деле, зависит от природы аниона. При электролизе солей бескислородных кислот или самих кислот на аноде окисляются анионы. Единственным исключением является фторид-ион F — . В случае кислородсодержащих кислот на аноде окисляются молекулы воды и выделяется кислород.
Пример 1. Давайте рассмотрим электролиз водного раствора хлорида натрия.
В водного растворе хлорида натрия будут находиться катионы натрия Na + , анионы хлора Cl — и молекулы воды.
2 NaCl à 2 Na + + 2 Cl —
2Н2О à 2 H + + 2 OH —
катод (-) 2 Na + ; 2 H + ; 2Н + + 2е à Н 0 2
анод (+) 2 Cl — ; 2 OH — ; 2 Cl — – 2е à 2 Cl 0
Химическая активность анионов в ряду уменьшается.
Пример 2. А если в состав соли входит SO 4 2- ? Рассмотрим электролиз раствора сульфата никеля ( II ). Сульфата никеля ( II ) диссоциирует на ионы Ni 2+ и SO 4 2- :
Катионы никеля находятся между ионами металлов Al 3+ и Pb 2+ , занимающих в ряду напряжения среднее положение, процесс восстановления на катоде происходит по обеим схемам:
катод (-) Ni 2+ ; H + ; Ni 2+ + 2е à Ni 0
Анионы кислородсодержащих кислот не окисляются на аноде ( ряд активности анионов), происходит окисление молекул воды:
анод (+) SO4 2- ; OH — ; 2H2O – 4 е à O2 + 4H +
Запишем вместе уравнения процессов, происходящих на катоде и аноде:
катод (-) Ni 2+ ; H + ; Ni 2+ + 2е à Ni 0
анод (+) SO4 2- ; OH — ; 2H2O – 4 е à O2 + 4H +
В процессах восстановления участвуют 4 электрона и в процессе окисления тоже участвуют 4 электрона. Сложим вместе эти уравнения и получим общее уравнение реакции:
Ni 2+ +2 H 2 О + 2 H 2 О à Ni 0 + H 2 + 2ОН — + O 2 + 4 H +
В правой части уравнения находятся одновременно ионы Н + и OH — , которые соединяются с образованием молекул воды:
Н + + OH — à H 2 О
Поэтому в правой части уравнения вместо 4 ионов Н + и 2 ионов OH — запишем 2 молекулы воды и 2 иона Н + :
Ni 2+ +2 H 2 О + 2 H 2 О à Ni 0 + H 2 +2 H 2 О + O 2 + 2 H +
Сократим по две молекулы воды в обеих частях уравнения:
Ni 2+ +2 H 2 О à Ni 0 + H 2 + O 2 + 2 H +
Это краткое ионное уравнение. Чтобы получить полное ионное уравнение, нужно добавить в обе части по сульфат-иону SO 4 2- , образовавшиеся при диссоциации сульфата никеля ( II ) и не участвовавшие в реакции:
Таким образом, у нас при электролизе раствора сульфата никеля ( II ) на катоде выделяется водород и никель, а на аноде – кислород.
Пример 3. Написать уравнения процессов, происходящих при электролизе водного раствора сульфата натрия с инертным анодом.
Стандартный электродный потенциал системы Na + + e = Na 0 значительно отрицательнее потенциала водного электрода в нейтральной водной среде (-0,41 В).Поэтому на катоде будет происходить электрохимическое восстановление воды, сопровождающееся выделением водорода
2Н2О à 2 H + + 2 OH —
а ионы Na + , приходящие к катоду, будут накапливаться в прилегающей к нему части раствора (катодное пространство).
На аноде будет происходить электрохимическое окисление воды, приводящее к выделению кислорода
2 H 2 O – 4е à O 2 + 4 H +
поскольку отвечающий этой системе стандартный электродный потенциал (1,23 В) значительно ниже, чем стандартный электродный потенциал (2,01 В), характеризующий систему
Ионы SO 4 2- , движущиеся при электролизе к аноду, будут накапливаться в анодном пространстве.
Умножая уравнение катодного процесса на два, и складывая его с уравнением анодного процесса, получаем суммарное уравнение процесса электролиза:
6 H 2 O = 2 H 2 + 4 OH — + O 2 + 4 H +
Приняв во внимание, что одновременно происходит накопление ионов в катодном пространстве и ионов в анодном пространстве, суммарное уравнение процесса можно записать в следующей форме:
Таким образом, одновременно с выделением водорода и кислорода образуется гидроксид натрия (в катодном пространстве) и серная кислота (в анодном пространстве).
Пример 4. Электролиз раствора сульфата меди ( II ) CuSO 4 .
Катод (-) 2+ + SO4 2- à анод (+)
катод (-) Cu 2+ + 2e à Cu 0 2
анод (+) 2H2O – 4 е à O2 + 4H + 1
В растворе остаются ионы Н + и SO 4 2- , т. к. накапливается серная кислота.
Пример 5. Электролиз раствора хлорида меди ( II ) CuCl 2 .
Катод (-) 2+ + 2Cl — à анод (+)
катод (-) Cu 2+ + 2e à Cu 0
анод (+) 2Cl — – 2e à Cl 0 2
В обоих уравнениях участвуют по два электрона.
Cu 2+ + 2e à Cu 0 1
2Cl — -– 2e à Cl2 1
Cu 2+ + 2 Cl — à Cu 0 + Cl 2 (ионное уравнение)
CuCl 2 à Cu + Cl 2 (молекулярное уравнение)
Пример 6. Электролиз раствора нитрата серебра AgNO 3 .
Катод (-) + + NO3 — à Анод (+)
катод (-) Ag + + e à Ag 0
Ag + + e à Ag 0 4
4 Ag + + 2 H 2 O à 4 Ag 0 + 4 H + + O 2 (ионное уравнение)
4 Ag + + 2 H 2 O à 4 Ag 0 + 4 H + + O 2 + 4 NO 3 — (полное ионное уравнение)
4 AgNO 3 + 2 H 2 O à 4 Ag 0 + 4 HNO 3 + O 2 (молекулярное уравнение)
Пример 7. Электролиз раствора соляной кислоты HCl .
Катод (-) H + + Cl — à анод (+)
катод (-) 2 H + + 2 e à H 2
анод (+) 2 Cl — – 2 e à Cl 2
2 H + + 2 Cl — à H 2 + Cl 2 (ионное уравнение)
2 HCl à H 2 + Cl 2 (молекулярное уравнение)
Пример 8. Электролиз раствора серной кислоты H 2 SO 4 .
Катод (-) + + SO4 2- à анод (+)
катод (-) 2H+ + 2e à H2
Пример 9. Электролиз раствора гидроксида калия KOH .
Катод (-) K + + OH — à анод (+)
Катионы калия не будут восстанавливаться на катоде, так как калий находится в ряду напряжения металлов левее алюминия, вместо этого будет происходить восстановление молекул воды:
катод (-) 2H2O + 2e à H2 +2OH — 2
анод (+) 4OH — — 4e à 2H2O +O2 1
Пример 10. Электролиз раствора нитрата калия KNO 3 .
катод (-) 2H2O + 2e à H2 + 2OH- 2
анод (+) 2H2O – 4 е à O2 + 4H+ 1
При пропускании электрического тока через растворы кислородосодержащих кислот, щелочей и солей кислородсодержащих кислот с металлами, находящимися в ряду напряжения металлов, левее алюминия, практически происходит электролиз воды. При этом на катоде выделяется водород, а на аноде кислород.
Выводы. При определении продуктов электролиза водных растворов электролитов можно в простейших случаях руководствоваться следующими соображениями:
1. Ионы металлов с малой алгебраической величиной стандартного потенциала – от Li + до Al 3+ включительно – обладают весьма слабой тенденцией к обратному присоединению электронов, уступая в этом отношении ионам H + (см. Ряд активности катионов). При электролизе водных растворов соединений, содержащих эти катионы, функцию окислителя на катоде выполняют ионы H + , восстанавливаясь при этом по схеме:
2 H 2 O + 2 е à H 2 + 2OH —
2. Катионы металлов с положительными значениями стандартных потенциалов ( Cu 2+ , Ag + , Hg 2+ и др.) обладают большой тенденцией к присоединению электронов по сравнению с ионами. При электролизе водных растворов их солей функцию окислителя на катоде выделяют эти катионы, восстанавливаясь при этом до металла по схеме, например:
Cu 2+ +2 e à Cu 0
3. При электролизе водных растворов солей металлов Zn , Fe , Cd , Ni и др., занимающих в ряду напряжения среднее положение между перечисленными группами, процесс восстановления на катоде происходит по обеим схемам. Масса, выделившегося металла не соответствует в этих случаях количеству протекшего электрического тока, часть которого расходуется на образование водорода.
4. В водных растворах электролитов функцию восстановителей по отношению к аноду-окислитею могут одноатомные анионы ( Cl — , Br — , J — ), кислородосодержащие анионы ( NO 3 — , SO 4 2- , PO 4 3- и другие), а также гидроксильные ионы воды. Более сильными восстановительными свойствами из них обладают галогенид ионы, за исключением F . Ионы OH занимают промежуточное положение между ними и многоатомными анионами. Поэтому при электролизе водных растворов HCl , HBr , HJ или их солеей на аноде происходит окисление галогенид-ионов по схеме:
2 X — -2 e à X 2 0
При электролизе водных растворов сульфатов, нитратов, фосфатов и т.п. функцию восстановителя выполняют ионы , окисляясь при этом по схеме:
4 HOH – 4 e à 2 H 2 O + O 2 + 4 H +
З а дача 1. При электролизе раствора сульфата меди на катоде выделилось 48 г меди. Найдите объем газа, выделившегося на аноде, и массу серной кислоты, образовавшейся в растворе.
Сульфат меди в растворе диссоциирует ни ионы Си 2+ и S 04 2 ‘.
Запишем уравнения процессов, происходящих на катоде и аноде. На катоде восстанавливаются катионы Си , на аноде происходит электролиз воды:
2H20-4e- = 4H + + 02 |1
Общее уравнение электролиза:
2Cu2+ + 2H2O = 2Cu + 4H+ + O2 (краткоеионное уравнение)
Добавим в обе части уравнения по 2 сульфат-иона, которые образуются при диссоциации сульфата меди, получим полное ионное уравнение:
2Си2+ + 2S042″ + 2Н20 = 2Cu + 4Н+ + 2SO4 2′ + О2
Перепишем уравнение в молекулярном виде:
2CuSO4 + 2H2O = 2Cu + 2H2SO4 + О2
Газ, выделяющийся на аноде — кислород. В растворе образуется серная кислота.
Молярная масса меди равна 64 г/моль, вычислим количество вещества меди:
По уравнению реакции при выделении на катоде 2 моль меди ла аноде выделяется 1 моль кислорода. На катоде выделилось 0,75 моль меди, пусть на аноде выделилось х моль кислорода. Составим пропорцию:
На аноде выделилось 0,375 моль кислорода,
Вычислим объем выделившегося кислорода:
V(O2) = v(O2)«VM = 0,375 моль«22,4 л/моль = 8,4 л
По уравнению реакции при выделении на катоде 2 моль меди в растворе образуется 2 моль серной кислоты, значит, если на катоде выделилось 0,75 моль меди, то в растворе образовалось 0,75 моль серной кислоты, v(H2SO4) = 0,75 моль. Вычислим молярную массу серной кислоты:
M(H2SO4) = 2-1+32+16-4 = 98 г/моль.
Вычислим массу серной кислоты:
m(H2S04) = v(H2S04>M(H2S04) = = 0,75 моль«98 г/моль = 73,5 г.
Ответ: на аноде выделилось 8,4 л кислорода; в растворе образовалось 73,5 г серной кислоты
Задача 2. Найдите объем газов, выделившихся на катоде и аноде, при электролизе водного раствора, содержащего 111,75 г хлорида калия. Какое вещество образовалось в растворе? Найдите его массу.
Хлорид калия в растворе диссоциирует на ионы К+ и Сl:
Ионы калия не восстанавливаются на катоде, вместо этого происходит восстановление молекул воды. На аноде окисляются хлорид-ионы и выделяется хлор:
2Н2О + 2е’ = Н2 + 20Н- |1
Общее уравнение электролиза:
2СГl+ 2Н2О = Н2 + 2ОН» + С12 (краткое ионное уравнение) В растворе присутствуют также ионы К+, образовавшиеся при диссоциации хлорида калия и не участвующие в реакции:
2К+ + 2Сl + 2Н20 = Н2 + 2К+ + 2ОН’ + С12
Перепишем уравнение в молекулярном виде:
2КС1 + 2Н2О = Н2 + С12 + 2КОН
На катоде выделяется водород, на аноде хлор, в растворе образуется гидроксид калия.
В растворе содержалось 111,75 г хлорида калия.
Вычислим молярную массу хлорида калия:
М(КС1) = 39+35,5 = 74,5 г/моль
Вычислим количество вещества хлорида калия:
По уравнению реакции при электролизе 2 моль хлорида калия выделяется 1 моль хлора. Пусть при электролизе 1,5 моль хлорида калия выделяется х моль хлора. Составим пропорцию:
2/1=1,5/x , x=1,5 /2=0,75 моль
Выделится 0,75 моль хлора, v(C!2) = 0,75 моль. По уравнению реакции при выделении 1 моль хлора на аноде на катоде выделяется 1 моль водорода. Следовательно, если на аноде выделится 0,75 моль хлора, то на катоде выделится 0,75 моль водорода, v(H2) = 0,75 моль.
Вычислим объем хлора, выделившегося на аноде:
V(C12) = v(Cl2)-VM = 0,75 моль«22,4 л/моль = 16,8 л.
Объем водорода равен объему хлора:
По уравнению реакции при электролизе 2 моль хлорида калия образуется 2 моль гидроксида калия, значит, при электролизе 0,75 моль хлорида калия образуется 0,75 моль гидроксида калия. Вычислим молярную массу гидроксида калия:
М(КОН) = 39+16+1 — 56 г/моль.
Вычислим массу гидроксида калия:
m(KOH) = v(KOH>M(KOH) = 0,75 моль-56 г/моль = 42 г.
Ответ: на катоде выделилось 16,8 л водорода, на аноде выделилось 16,8 л хлора, в растворе образовалось 42 г гидроксида калия.
Задача 3. При электролизе раствора 19 г хлорида двухвалентного металла на аноде выделилось 8,96 л хлора. Определите, хлорид какого металла подвергли электролизу. Вычислите объем водорода, выделившегося на катоде.
Обозначим неизвестный металл М, формула его хлорида МС12. На аноде окисляются хлорид-ионы и выделяется хлор. В условии сказано, что на катоде выделяется водород, следовательно, происходит восстановление молекул воды:
2Н20 + 2е- = Н2 + 2ОH |1
Общее уравнение электролиза:
2Сl + 2Н2О = Н2 + 2ОН» + С12 (краткое ионное уравнение)
В растворе присутствуют также ионы М2+, которые при реакции не изменяются. Запишем полное ионное уравнение реакции:
2СГ + М2+ + 2Н2О = Н2 + М2+ + 2ОН- + С12
Перепишем уравнение реакции в молекулярном виде:
МС12 + 2Н2О — Н2 + М(ОН)2 + С12
Найдем количество вещества выделившегося на аноде хлора:
По уравнению реакции при электролизе 1 моль хлорида неизвестного металла выделяется 1 моль хлора. Если выделилось 0,4 моль хлора, то электролизу подвергли 0,4 моль хлорида металла. Вычислим молярную массу хлорида металла:
Молярная масса хлорида неизвестного металла 95 г/моль. На два атома хлора приходится 35,5»2 = 71 г/моль. Следовательно, молярная масса металла равна 95-71 = 24 г/моль. Этой молярной массе соответствует магний.
По уравнению реакции на 1 моль выделившегося на аноде хлора приходится 1 моль выделившегося на катоде водорода. В нашем случае на аноде выделилось 0,4 моль хлора, значит, на катоде выделилось 0,4 моль водорода. Вычислим объем водорода:
V(H2) = v(H2>VM = 0,4 моль«22,4 л/моль = 8,96 л.
Ответ: электролизу подвергли раствор хлорида магния; на катоде выделилось 8,96 л водорода.
*3адача 4. При электролизе 200 г раствора сульфата калия с концентрацией 15% на аноде выделилось 14,56 л кислорода. Вычислите концентрацию раствора по окончании электролиза.
В растворе сульфата калия и на катоде, и на аноде реагируют молекулы воды:
2Н20 + 2е’ = Н2 + 20Н- |2
2Н2О — 4е’ = 4Н+ + О2 ! 1
Сложим вместе оба уравнения:
6Н2О = 2Н2 + 4ОН» + 4Н+ + О2, или
6Н2О = 2Н2 + 4Н2О + О2, или
Фактически при электролизе раствора сульфата калия происходит электролиз воды.
Концентрация растворенного вещества в растворе определяется по формуле:
С=m(растворенного вещества) 100% / m(раствора)
Чтобы найти концентрацию раствора сульфата калия по окончании электролиза, необходимо знать массу сульфата калия и массу раствора. Масса сульфата калия при реакции не изменяется. Вычислим массу сульфата калия в исходном растворе. Обозначим концентрацию исходного раствора Сь
m(K2S04) = C2 (K2S04 ) m(pacтвора) = 0,15 200 г = 30 г.
Масса раствора во время электролиза изменяется, так как часть воды превращается в водород и кислород. Вычислим количество вещества выделившегося кислорода:
(O 2 )=V(O2 ) / Vм =14,56л / 22,4л/моль=0,65моль
По уравнению реакции из 2 моль воды образуется 1 моль кислорода. Пусть 0,65 моль кислорода выделяется при разложении х моль воды. Составим пропорцию:
Разложилось 1,3 моль воды, v(H2O) = 1,3 моль.
Вычислим молярную массу воды:
М(Н2О) =1-2+16=18 г/моль.
Вычислим массу разложившейся воды:
m(H2O) = v(H2O>M(H2O) = 1,3 моль* 18 г/моль = 23,4 г.
Масса раствора сульфата калия уменьшилась на 23,4 г и стала равна 200-23,4 = 176,6 г. Вычислим теперь концентрацию раствора сульфата калия по окончании электролиза:
С2 (K2 SO4 )=m(K2 SO4 ) 100% / m(раствора)=30г 100% / 176,6г=17%
Ответ: концентрация раствора по окончании электролиза равна 17%.
*3адача 5. 188,3 г смеси хлоридов натрия и калия растворили в воде и пропустили через полученный раствор электрический ток. При электролизе на катоде выделилось 33,6 л водорода. Вычислите состав смеси в процентах по массе.
После растворения смеси хлоридов калия и натрия в воде в растворе содержатся ионы К+, Na+ и Сl-. Ни ионы калия, ни ионы натрия не восстанавливаются на катоде, восстанавливаются молекулы воды. На аноде окисляются хлорид-ионы и выделяется хлор:
2Н2О + 2е’ = Н2 + 2ОН» ] 1
Общее уравнение электролиза:
2СГ + 2Н2О = Н2 + 2ОН» + С12 (краткое ионное уравнение)
Полные ионные уравнения реакций электролиза хлорида натрия и хлорида калия.
2К+ + 2Cl + 2Н20 = Н2 + 2К+ + 2ОН + С12
2Na+ + 2С1 + 2Н20 = Н2 + 2Na+ + 20Н + С12
Перепишем уравнения в молекулярном виде:
2КС1 + 2Н20 = Н2 + С12 + 2КОН
2NaCl + 2Н2О = Н2 + С12 + 2NaOH
Обозначим количество вещества хлорида калия, содержащегося в смеси, х моль, а количество вещества хлорида натрия у моль. По уравнению реакции при электролизе 2 моль хлорида натрия или калия выделяется 1 моль водорода. Поэтому при электролизе х моль хлорида калия образуется х/2 или 0,5х моль водорода, а при электролизе у моль хлорида натрия 0,5у моль водорода. Найдем количество вещества водорода, выделившегося при электролизе смеси:
Составим уравнение: 0,5х + 0,5у =1,5
Вычислим молярные массы хлоридов калия и натрия:
М(КС1) = 39+35,5 = 74,5 г/моль
M(NaCl) = 23+35,5 = 58,5 г/моль
Масса х моль хлорида калия равна:
m(KCl) = v(KCl)-M(KCl) = х моль-74,5 г/моль = 74,5х г.
Масса у моль хлорида натрия равна:
m(KCl) = v(KCl)-M(KCl) = у моль-74,5 г/моль = 58,5у г.
Масса смеси равна 188,3 г, составим второе уравнение:
74,5х + 58,5у= 188,3
Итак, решаем систему из двух уравнений с двумя неизвестными:
Из первого уравнения выразим х:
Подставим это значение х во второе уравнение, получим:
74,5-(3-у) + 58,5у= 188,3
223,5-74,5у + 58,5у= 188,3
Найдем теперь значение х:
В смеси содержится 0,8 моль хлорида калия и 2,2 моль хлорида натрия.
Вычислим массу хлорида калия и хлорида натрия:
m(KCl) = v(KCl) M(KCl) = 0,8 моль«74,5 г/моль = 59,6 г.
m(KCl) = v(KCl) M(KCl) = 2,2 моль-74,5 г/моль = 128,7 г.
Вычислим массовую долю хлорида калия в смеси:
w(KCl)=m(KCl) 100% / m(смеси)=59,6г 100% / 188,3г=31,65%
Вычислим массовую долю хлорида натрия:
w(NaCl) = 100% — w(KCl) = 68,35%
Ответ: в смеси содержится 31,65% хлорида калия и 68,35% хлорида натрия.
Видео:Электролиз. 10 класс.Скачать
Составьте уравнения процессов, протекающих при электролизе водных растворов хлороводородной кислоты и гидроксида бария (электроды инертные).
Видео:Электролиз растворов. 1 часть. 10 класс.Скачать
Ваш ответ
Видео:Все об электролизе и задании 20 за 20 минут | Химия ЕГЭ 2023 | УмскулСкачать
решение вопроса
Видео:Решаем задачку на разложениеСкачать
Похожие вопросы
- Все категории
- экономические 43,299
- гуманитарные 33,622
- юридические 17,900
- школьный раздел 607,247
- разное 16,834
Популярное на сайте:
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
Видео:Этот Металл ВЕДЕТ СЕБЯ ОЧЕНЬ СТРАННО!Скачать
1.4.9. Электролиз расплавов и растворов (солей, щелочей, кислот).
Что такое электролиз? Для более простого понимания ответа на этот вопрос давайте представим себе любой источник постоянного тока. У каждого источника постоянного тока всегда можно найти положительный и отрицательный полюс:
Подсоединим к нему две химически стойких электропроводящих пластины, которые назовем электродами. Пластину, присоединенную к положительному полюсу назовем анодом, а к отрицательному катодом:
Далее, представьте, что у вас есть возможность опустить эти два электрода в расплав хлорида натрия:
Хлорид натрия является электролитом, при его расплавлении происходит диссоциация на катионы натрия и хлорид-ионы:
Очевидно, что заряженные отрицательно анионы хлора направятся к положительно заряженному электроду – аноду, а положительно заряженные катионы Na + направятся к отрицательно заряженному электроду – катоду. В результате этого и катионы Na + и анионы Cl − разрядятся, то есть станут нейтральными атомами. Разрядка происходит посредством приобретения электронов в случае ионов Na + и потери электронов в случае ионов Cl − . То есть на катоде протекает процесс:
Поскольку каждый атом хлора имеет по неспаренному электрону, одиночное существование их невыгодно и атомы хлора объединяются в молекулу из двух атомов хлора:
Таким образом, суммарно, процесс, протекающий на аноде, правильнее записать так:
То есть мы имеем:
Катод: Na + + 1e − = Na 0
Анод: 2Cl − − 2e − = Cl2
Подведем электронный баланс:
Na + + 1e − = Na 0 |∙2
2Cl − − 2e − = Cl2 |∙1 + + 2e − + 2Cl − − 2e − = 2Na 0 + Cl2
Сократим два электрона аналогично тому, как это делается в алгебре получим ионное уравнение электролиза:
2Na + + 2Cl − = 2Na 0 + Cl2
далее, объединив ионы Na + и Cl − получим, уравнение электролиза расплава хлорида натрия:
Рассмотренный выше случай является с теоретической точки зрения наиболее простым, поскольку в расплаве хлорида натрия из положительно заряженных ионов были только ионы натрия, а из отрицательных – только анионы хлора.
Другими словами, ни у катионов Na + , ни у анионов Cl − не было «конкурентов» за катод и анод.
А, что будет, например, если вместо расплава хлорида натрия ток пропустить через его водный раствор? Диссоциация хлорида натрия наблюдается и в этом случае, но становится невозможным образование металлического натрия в водном растворе. Ведь мы знаем, что натрий – представитель щелочных металлов – крайне активный металл, реагирующий с водой очень бурно. Если натрий не способен восстановиться в таких условиях, что же тогда будет восстанавливаться на катоде?
Давайте вспомним строение молекулы воды. Она представляет собой диполь, то есть у нее есть отрицательный и положительный полюсы:
Именно благодаря этому свойству, она способна «облеплять» как поверхность катода, так и поверхность анода:
При этом могут происходить процессы:
Таким образом, получается, что если мы рассмотрим раствор любого электролита, то мы увидим, что катионы и анионы, образующиеся при диссоциации электролита, конкурируют с молекулами воды за восстановление на катоде и окисление на аноде.
Так какие же процессы будут происходить на катоде и на аноде? Разрядка ионов, образовавшихся при диссоциации электролита или окисление/восстановление молекул воды? Или, возможно, будут происходить все указанные процессы одновременно?
В зависимости от типа электролита при электролизе его водного раствора возможны самые разные ситуации. Например, катионы щелочных, щелочноземельных металлов, алюминия и магния просто не способны восстановиться в водной среде, так как при их восстановлении должны были бы получаться соответственно щелочные, щелочноземельные металлы, алюминий или магний т.е. металлы, реагирующие с водой.
В таком случае является возможным только восстановление молекул воды на катоде.
Запомнить то, какой процесс будет протекать на катоде при электролизе раствора какого-либо электролита можно, следуя следующим принципам:
1) Если электролит состоит из катиона металла, который в свободном состоянии в обычных условиях реагирует с водой, на катоде идет процесс:
Это касается металлов, находящихся в начале ряда активности по Al включительно.
2) Если электролит состоит из катиона металла, который в свободном виде не реагирует с водой, но реагирует с кислотами неокислителями, идут сразу два процесса, как восстановления катионов металла, так и молекул воды:
К таким металлам относятся металлы, находящиеся между Al и Н в ряду активности.
3) Если электролит состоит из катионов водорода (кислота) или катионов металлов, не реагирующих с кислотами неокислителями — восстанавливаются только катионы электролита:
2Н + + 2е − = Н2 – в случае кислоты
Me n + + ne = Me 0 – в случае соли
На аноде тем временем ситуация следующая:
1) Если электролит содержит анионы бескислородных кислотных остатков (кроме F − ), то на аноде идет процесс их окисления, молекулы воды не окисляются. Например:
Фторид-ионы не окисляются на аноде поскольку фтор не способен образоваться в водном растворе (реагирует с водой)
2) Если в состав электролита входят гидроксид-ионы (щелочи) они окисляются вместо молекул воды:
3) В случае того, если электролит содержит кислородсодержащий кислотный остаток (кроме остатков органических кислот) или фторид-ион (F − ) на аноде идет процесс окисления молекул воды:
4) В случае кислотного остатка карбоновой кислоты на аноде идет процесс:
2RCOO − − 2e − = R-R + 2CO2
Давайте потренируемся записывать уравнения электролиза для различных ситуаций:
Пример №1
Напишите уравнения процессов протекающих на катоде и аноде при электролизе расплава хлорида цинка, а также общее уравнение электролиза.
При расплавлении хлорида цинка происходит его диссоциация:
Далее следует обратить внимание на то, что электролизу подвергается именно расплав хлорида цинка, а не водный раствор. Другими словами, без вариантов, на катоде может происходить только восстановление катионов цинка, а на аноде окисление хлорид-ионов т.к. отсутствуют молекулы воды:
Катод: Zn 2+ + 2e − = Zn 0 |∙1
Анод: 2Cl − − 2e − = Cl2 |∙1
Пример №2
Напишите уравнения процессов протекающих на катоде и аноде при электролизе водного раствора хлорида цинка, а также общее уравнение электролиза.
Так как в данном случае, электролизу подвергается водный раствор, то в электролизе, теоретически, могут принимать участие молекулы воды. Так как цинк расположен в ряду активности между Al и Н то это значит, что на катоде будет происходить как восстановление катионов цинка, так и молекул воды.
Zn 2+ + 2e − = Zn 0
Хлорид-ион является кислотным остатком бескислородной кислоты HCl, поэтому в конкуренции за окисление на аноде хлорид-ионы «выигрывают» у молекул воды:
В данном конкретном случае нельзя записать суммарное уравнение электролиза, поскольку неизвестно соотношение между выделяющимися на катоде водородом и цинком.
Пример №3
Напишите уравнения процессов протекающих на катоде и аноде при электролизе водного раствора нитрата меди, а также общее уравнение электролиза.
Нитрат меди в растворе находится в продиссоциированном состоянии:
Медь находится в ряду активности правее водорода, то есть на катоде восстанавливаться будут катионы меди:
Cu 2+ + 2e − = Cu 0
Нитрат-ион NO3 − — кислородсодержащий кислотный остаток, это значит, что в окислении на аноде нитрат ионы «проигрывают» в конкуренции молекулам воды:
Катод: Cu 2+ + 2e − = Cu 0 |∙2
2Cu 2+ + 2H2O = 2Cu 0 + O2 + 4H +
Полученное в результате сложения уравнение является ионным уравнением электролиза. Чтобы получить полное молекулярное уравнение электролиза нужно добавить по 4 нитрат иона в левую и правую часть полученного ионного уравнения в качестве противоионов. Тогда мы получим:
Пример №4
Напишите уравнения процессов, протекающих на катоде и аноде при электролизе водного раствора ацетата калия, а также общее уравнение электролиза.
Решение:
Ацетат калия в водном растворе диссоциирует на катионы калия и ацетат-ионы:
Калий является щелочным металлом, т.е. находится в ряду электрохимическом ряду напряжений в самом начале. Это значит, что его катионы не способны разряжаться на катоде. Вместо них восстанавливаться будут молекулы воды:
Как уже было сказано выше, кислотные остатки карбоновых кислот «выигрывают» в конкуренции за окисление у молекул воды на аноде:
Таким образом, подведя электронный баланс и сложив два уравнения полуреакций на катоде и аноде получаем:
Катод: 2H2O + 2e − = 2OH − + H2 |∙1
Мы получили полное уравнение электролиза в ионном виде. Добавив по два иона калия в левую и правую часть уравнения и сложив с противоионами мы получаем полное уравнение электролиза в молекулярном виде:
Пример №5
Напишите уравнения процессов, протекающих на катоде и аноде при электролизе водного раствора серной кислоты, а также общее уравнение электролиза.
Серная кислота диссоциирует на катионы водорода и сульфат-ионы:
На катоде будет происходить восстановление катионов водорода H + , а на аноде окисление молекул воды, поскольку сульфат-ионы являются кислородсодержащими кислотными остатками:
Катод: 2Н + + 2e − = H2 |∙2
Сократив ионы водорода в левой и правой и левой части уравнения получим уравнение электролиза водного раствора серной кислоты:
Как можно видеть, электролиз водного раствора серной кислоты сводится к электролизу воды.
Пример №6
Напишите уравнения процессов, протекающих на катоде и аноде при электролизе водного раствора гидроксида натрия, а также общее уравнение электролиза.
Диссоциация гидроксида натрия:
На катоде будут восстанавливаться только молекулы воды, так как натрий – высокоактивный металл, на аноде только гидроксид-ионы:
Катод: 2H2O + 2e − = 2OH − + H2 |∙2
Сократим две молекулы воды слева и справа и 4 гидроксид-иона и приходим к тому, что, как и в случае серной кислоты электролиз водного раствора гидроксида натрия сводится к электролизу воды:
🔍 Видео
РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по ХимииСкачать
Электролиз. Разбор задания №34 — ХИМИЯ | SKILLVERSEСкачать
ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ ХИМИЯ 8 класс // Подготовка к ЕГЭ по Химии - INTENSIVСкачать
ДВИ МГУ 1990 Химия. Задание 6Скачать
Онлайн урок. 10-11 класс. Электролиз в заданиях ЕГЭ по химииСкачать
ЕГЭ. Химия. Задача 34. Электролиз. Часть 2.Скачать
Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать
Окислительно восстановительные реакции. Электролиз | Химия 11 класс #19 | ИнфоурокСкачать
№31 Задача 34 Удача улыбнылась в резервный день на ЕГЭ по химииСкачать
Разбор 34 задачи на протоны | ЕГЭ по химииСкачать
Сложная 34 задача: электролиз, растворимость, типы солей, атомарность, электроны | ЕГЭ по химии 2023Скачать
Реакции между растворами электролитов / Реакции ионного обменаСкачать
Задача №34 на уравновешивание весов с растворами | ЕГЭ по химии 2024Скачать
ЕГЭ. Задача 34. Электролиз. Вариант 11. Наука для тебя.Скачать
Как писать уравнения электролиза? | Химия ЕГЭ 2022 | УмскулСкачать