Электролиз оксида алюминия в расплавленном криолите уравнение реакции

Содержание
  1. Алюминий. Химия алюминия и его соединений
  2. Алюминий
  3. Положение в периодической системе химических элементов
  4. Электронное строение алюминия и свойства
  5. Физические свойства
  6. Нахождение в природе
  7. Способы получения
  8. Качественные реакции
  9. Химические свойства
  10. Электролиз оксида алюминия
  11. Электролиз оксида алюминия
  12. Реакция взаимодействия этилена и водорода
  13. Реакция взаимодействия оксида олова (IV), гидроксида натрия и воды
  14. Реакция взаимодействия гидроксида галлия (III) и гидроксида натрия
  15. Выбрать язык
  16. Разделы
  17. ТОП 5 записей
  18. Популярные записи
  19. Элементы, реакции, вещества
  20. Предупреждение.
  21. Электролиз глиноземных расплавов
  22. Анодный эффект электролиза глиноземных расплавов
  23. Побочные процессы на катоде и в электролите
  24. Растворение алюминия в электролите
  25. Образование карбида алюминия
  26. Изменение состава электролита
  27. Похожие страницы:
  28. Leave a Comment
  29. 💥 Видео

Видео:Электролиз. 10 класс.Скачать

Электролиз. 10 класс.

Алюминий. Химия алюминия и его соединений

Электролиз оксида алюминия в расплавленном криолите уравнение реакции

Бинарные соединения алюминия

Алюминий

Положение в периодической системе химических элементов

Алюминий расположен в главной подгруппе III группы (или в 13 группе в современной форме ПСХЭ) и в третьем периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение алюминия и свойства

Электронная конфигурация алюминия в основном состоянии :

+13Al 1s 2 2s 2 2p 6 3s 2 3p 1 1s Электролиз оксида алюминия в расплавленном криолите уравнение реакции 2s Электролиз оксида алюминия в расплавленном криолите уравнение реакции 2p Электролиз оксида алюминия в расплавленном криолите уравнение реакции 3s Электролиз оксида алюминия в расплавленном криолите уравнение реакции 3p Электролиз оксида алюминия в расплавленном криолите уравнение реакции

Электронная конфигурация алюминия в возбужденном состоянии :

+13Al * 1s 2 2s 2 2p 6 3s 1 3p 2 1s Электролиз оксида алюминия в расплавленном криолите уравнение реакции 2s Электролиз оксида алюминия в расплавленном криолите уравнение реакции 2p Электролиз оксида алюминия в расплавленном криолите уравнение реакции 3s Электролиз оксида алюминия в расплавленном криолите уравнение реакции 3p Электролиз оксида алюминия в расплавленном криолите уравнение реакции

Алюминий проявляет парамагнитные свойства. Алюминий на воздухе быстро образует прочные оксидные плёнки, защищающие поверхность от дальнейшего взаимодействия, поэтому устойчив к коррозии.

Физические свойства

Алюминий – лёгкий металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Обладает высокой тепло- и электропроводностью.

Электролиз оксида алюминия в расплавленном криолите уравнение реакции

Температура плавления 660 о С, температура кипения 1450 о С, плотность алюминия 2,7 г/см 3 .

Алюминий — один из наиболее ценных цветных металлов для вторичной переработки. На протяжении последних лет, цена на лом алюминия в пунктах приема непреклонно растет. По ссылке можно узнать о том, как сдать лом алюминия.

Нахождение в природе

Алюминий — самый распространенный металл в природе, и 3-й по распространенности среди всех элементов (после кислорода и кремния). Содержание в земной коре — около 8%.

В природе алюминий встречается в виде соединений:

Электролиз оксида алюминия в расплавленном криолите уравнение реакции

Корунд Al2O3. Красный корунд называют рубином, синий корунд называют сапфиром.

Электролиз оксида алюминия в расплавленном криолите уравнение реакции

Способы получения

Алюминий образует прочную химическую связь с кислородом. Поэтому традиционные способы получения алюминия восстановлением из оксида протекают требуют больших затрат энергии. Для промышленного получения алюминия используют процесс Холла-Эру. Для понижения температуры плавления оксид алюминия растворяют в расплавленном криолите (при температуре 960-970 о С) Na3AlF6, а затем подвергают электролизу с углеродными электродами. При растворении в расплаве криолита оксид алюминия распадается на ионы:

На катоде происходит восстановление ионов алюминия:

Катод: Al 3+ +3e → Al 0

На аноде происходит окисление алюминат-ионов:

Суммарное уравнение электролиза расплава оксида алюминия:

Лабораторный способ получения алюминия заключается в восстановлении алюминия из безводного хлорида алюминия металлическим калием:

AlCl3 + 3K → Al + 3KCl

Качественные реакции

Качественная реакция на ионы алюминия — взаимодействие избытка солей алюминия с щелочами . При этом образуется белый аморфный осадок гидроксида алюминия.

Например , хлорид алюминия взаимодействует с гидроксидом натрия:

AlCl3 + 3NaOH → Al(OH)3 + 3NaCl

Электролиз оксида алюминия в расплавленном криолите уравнение реакции

При дальнейшем добавлении щелочи амфотерный гидроксид алюминия растворяется с образованием тетрагидроксоалюмината:Электролиз оксида алюминия в расплавленном криолите уравнение реакции

Обратите внимание , если мы поместим соль алюминия в избыток раствора щелочи, то белый осадок гидроксида алюминия не образуется, т.к. в избытке щелочи соединения алюминия сразу переходят в комплекс:

AlCl3 + 4NaOH = Na[Al(OH)4] + 3NaCl

Соли алюминия можно обнаружить с помощью водного раствора аммиака. При взаимодействии растворимых солей алюминия с водным раствором аммиака также в ыпадает полупрозрачный студенистый осадок гидроксида алюминия.

AlCl3 + 3NH3·H2O = Al(OH)3 ↓ + 3NH4Cl

Al 3+ + 3NH3·H2O = Al(OH)3 ↓ + 3NH4 +

Видеоопыт взаимодействия раствора хлорида алюминия с раствором аммиака можно посмотреть здесь.

Химические свойства

1. Алюминий – сильный восстановитель . Поэтому он реагирует со многими неметаллами .

1.1. Алюминий реагируют с галогенами с образованием галогенидов:

1.2. Алюминий реагирует с серой с образованием сульфидов:

1.3. Алюминий реагируют с фосфором . При этом образуются бинарные соединения — фосфиды:

Al + P → AlP

1.4. С азотом алюминий реагирует при нагревании до 1000 о С с образованием нитрида:

2Al + N2 → 2AlN

1.5. Алюминий реагирует с углеродом с образованием карбида алюминия:

1.6. Алюминий взаимодействует с кислородом с образованием оксида:

Видеоопыт взаимодействия алюминия с кислородом воздуха (горение алюминия на воздухе) можно посмотреть здесь.

2. Алюминий взаимодействует со сложными веществами:

2.1. Реагирует ли алюминий с водой? Ответ на этот вопрос вы без труда найдете, если покопаетесь немного в своей памяти. Наверняка хотя бы раз в жизни вы встречались с алюминиевыми кастрюлями или алюминиевыми столовыми приборами. Такой вопрос я любил задавать студентам на экзаменах. Что самое удивительное, ответы я получал разные — у кого-то алюминий таки реагировал с водой. И очень, очень многие сдавались после вопроса: «Может быть, алюминий реагирует с водой при нагревании?» При нагревании алюминий реагировал с водой уже у половины респондентов))

Тем не менее, несложно понять, что алюминий все-таки с водой в обычных условиях (да и при нагревании) не взаимодействует. И мы уже упоминали, почему: из-за образования оксидной пленки . А вот если алюминий очистить от оксидной пленки (например, амальгамировать), то он будет взаимодействовать с водой очень активно с образованием гидроксида алюминия и водорода:

2Al 0 + 6 H2 + O → 2 Al +3 ( OH)3 + 3 H2 0

Электролиз оксида алюминия в расплавленном криолите уравнение реакции

Амальгаму алюминия можно получить, выдержав кусочки алюминия в растворе хлорида ртути ( II ):

3HgCl2 + 2Al → 2AlCl3 + 3Hg

Электролиз оксида алюминия в расплавленном криолите уравнение реакции

Видеоопыт взаимодействия амальгамы алюминия с водой можно посмотреть здесь.

2.2. Алюминий взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой). При этом образуются соль и водород.

Например , алюминий бурно реагирует с соляной кислотой :

2Al + 6HCl = 2AlCl3 + 3H2

Электролиз оксида алюминия в расплавленном криолите уравнение реакции

2.3. При обычных условиях алюминий не реагирует с концентрированной серной кислотой из-за пассивации – образования плотной оксидной пленки. При нагревании реакция идет, образуются оксид серы (IV), сульфат алюминия и вода:

2.4. Алюминий не реагирует с концентрированной азотной кислотой также из-за пассивации.

С разбавленной азотной кислотой алюминий реагирует с образованием молекулярного азота:

При взаимодействии алюминия в виде порошка с очень разбавленной азотной кислотой может образоваться нитрат аммония:

2.5. Алюминий – амфотерный металл, поэтому он взаимодействует с щелочами . При взаимодействии алюминия с раствором щелочи образуется тетрагидроксоалюминат и водород:

2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2

Электролиз оксида алюминия в расплавленном криолите уравнение реакции

Видеоопыт взаимодействия алюминия со щелочью и водой можно посмотреть здесь.

Алюминий реагирует с расплавом щелочи с образованием алюмината и водорода:

2Al + 6NaOH → 2Na3AlO3 + 3H2

Эту же реакцию можно записать в другом виде (в ЕГЭ рекомендую записывать реакцию именно в таком виде):

2Al + 6NaOH → 2NaAlO2 + 3H2↑ + 2Na2O

2.6. Алюминий восстанавливает менее активные металлы из оксидов . Процесс восстановления металлов из оксидов называется алюмотермия .

Например , алюминий вытесняет медь из оксида меди (II). Реакция очень экзотермическая:

2Al + 3CuO → 3Cu + Al2O3

Электролиз оксида алюминия в расплавленном криолите уравнение реакции

Еще пример : алюминий восстанавливает железо из железной окалины, оксида железа (II, III):

Восстановительные свойства алюминия также проявляются при взаимодействии его с сильными окислителями: пероксидом натрия, нитратами и нитритами в щелочной среде, перманганатами, соединениями хрома (VI):

Видео:Электролиз: как понять и научиться писать реакции электролиза? | Химия ЕГЭ 2022 | УмскулСкачать

Электролиз: как понять и научиться писать реакции электролиза? | Химия ЕГЭ 2022 | Умскул

Электролиз оксида алюминия

Видео:Электролиз | ХИМИЯ ЕГЭ | Лия МенделееваСкачать

Электролиз | ХИМИЯ ЕГЭ | Лия Менделеева

Электролиз оксида алюминия

Уравнение реакции электролиз оксида алюминия:

Электролиз оксида алюминия.

В результате реакции образуются алюминий и кислород.

Реакция протекает при условии: в расплаве криолита Na3[AlF6], при температуре около 900 °C и при прохождении электрического тока через расплав.

Формула поиска по сайту: 2Al2O3 → 4Al + 3O2.

Реакция взаимодействия этилена и водорода

Реакция взаимодействия оксида олова (IV), гидроксида натрия и воды

Реакция взаимодействия гидроксида галлия (III) и гидроксида натрия

Выбрать язык

Разделы

ТОП 5 записей

Популярные записи

Элементы, реакции, вещества

Предупреждение.

Все химические реакции и вся информация на сайте предназначены для использования исключительно в учебных целях — только для решения письменных, учебных задач. Мы не несем ответственность за проведение вами химических реакций.

Химические реакции и информация на сайте
не предназначены для проведения химических и лабораторных опытов и работ.

Видео:Электрохимическая коррозия (алюминий — медь)Скачать

Электрохимическая коррозия (алюминий — медь)

Электролиз глиноземных расплавов

Электролиз оксида алюминия в расплавленном криолите уравнение реакцииДо настоящего времени нет единой точки зрения на то, какие ионы и в какой мере участвуют в переносе тока при электролитическом получении алюминия. Большинство советских ученых придерживают теории П. П. Федотьева, разработанной им еще в 1923—193 2 гг. Более поздние работы советских ученых (В. П. Машовца, Г. А. Абрамова и др.) уточнили ее. Согласно этой теории, расплавленный криолит, хорошо проводящий ток, диссоциирует на ионы:

Такой характер диссоциации криолита хорошо подтверждается строением его кристаллической решетки (рис. ,а), в ос нове которой лежит октаэдр с ионом алюминия в центре и шестью ионами фтора по углам. А так как принято считать, что жидкость вблизи точки плавления мало отличается по структуре от твердого тела, то при плавлении криолита в нем обязательно должны образоваться «осколки» его решетки, т. е. ионы АlH 3 6 — .

Рис. . Кристаллические решетки криолита (а) и корунда (б)

Глинозем, растворенный в расплавленном криолите, диссоциирует на ионы алюминия и кислородсодержащие ионы, причем П. П. Федотьев считал, что наиболее вероятной является схема

Некоторые исследователи не разделяют точку зрения П. П. Федотьева на характер диссоциации глинозема в электролите. Так, В. П. Машовец предполагал, что кислород находится в электролите в виде ионов AlO2 — , В. А. Пазухин считал, что это — ионы AlOF 4 5 — , существующие совместно с ионами O 2- . По В. М. Гуськову, А. И. Беляеву и др., глинозем в криолито-глино-земном расплаве образует наряду с другими ионами ионы O 2- и Аl 3+ .

По-видимому, механизм процесса электролиза следует представить в следующем виде. Криолит при расплавлении вблизи точки плавления будет состоять из ионов Na + и AlF 3 6 — так как

ионные связи в его кристаллической решетке между натрием и фтором слабее, чем между алюминием и фтором. Но это не исключает возможности дальнейшего разрушения кристаллической решетки на ионы Аl 3+ и F — .

Поскольку кристаллическая решетка глинозема состоит из ионов Al 3+ и О 2- (рис.,б), то при растворении в расплавленном криолите глинозем распадается на эти ионы. Но очень вероятно, что ион кислорода, имеющий малый размер и относительно большой заряд, соединится с другими ионами и образует какие-нибудь сложные кислородсодержащие ионы (АlO2 — или даже AlOF 4 5 — ).

Таким образом, расплавленный электролит алюминиевой ванны, по-видимому, состоит из ионов Al 3+ , Na + F — и О 2- , которые, находясь в непрерывном движении и взаимодействии, могут образовывать комплексные ионы AlF 3 6 — , АlO2 — . Возможно образование и других комплексов. Все эти ионы участвуют в переносе тока, хотя их доля в этом переносе не одинакова и определяется их концентрацией и подвижностью.

Разряжаться на электродах будут не все ионы, участвующие в переносе тока, а лишь те, которые обладают соответствующими величинами электродных потенциалов. На катоде при элект-олите криолито-глиноземных расплавов будет в первую чередь разряжаться ион Al 3+ , а на аноде ион О 2- .

Выделяющийся на аноде кислород взаимодействует с у где родом анода и образует смесь газов СО и СO2. Эти газы, выделяющиеся на поверхности анода, удаляются в атмосферу. При этом СО сгорает до СO2, образуя над коркой языки пламени.

Таким образом, процесс электролиза сводится к получению алюминия и расходованию глинозема.

Видео:Электролиз. Часть 2. Уравнения электролиза расплавов и растворов.Скачать

Электролиз. Часть 2. Уравнения электролиза расплавов и растворов.

Анодный эффект электролиза глиноземных расплавов

Глинозем вводят в ванну периодически, причем следят за тем, чтобы максимальное содержание его в электролите составляло не более 8%. По мере хода электролиза содержание глинозема в электролите постепенно снижается, и когда оно достигнет

1%, на нормально работающем электролизере наступает анодный эффект, внешне он проявляется следующим образом: напряжение на ванне (обычно равно 4,1— 4,5 В) начинает подниматься на несколько десятых долей вольта, а затем скачком возрастает до 20—40 В и на контрольном вольтметре вспыхивает лампочка. На поверхности анода, соприкасающейся с электролитом, возникают электрические дуги, сопровождающиеся характерным шумом. Электролит быстро разогревается, усиливается его испарение. Но достаточно растворить в. электролите новую порцию глинозема, как напряжение на ванне снижается, анодный эффект исчезает и восстанавливается нормальный ход электролиза.

При электролитическом получении алюминия анодный эффект играет большую роль. С одной стороны, он облегчает обслуживание в,анны, сигнализируя о времени загрузки в нее очередной порции глинозема, а также позволяет судить о том, нормально или ненормально работает ванна. Если ванна работает нормально, анодный эффект характеризуется резким скачком напряжения и возникает через одинаковые промежутки времени, соответствующие загружаемым в ванну порциям глинозема и рабочей силе тока. Если анодный эффект сильно запаздывает или возникает преждевременно и напряжение на ванне во время анодного эффекта поднимается незначительно или пульсирует («мигающая» или «тусклая» вспышка), ванна работает ненормально и нуждается в особо внимательном надзоре и обслуживании.

С другой стороны, возникновение анодных эффектов отрицательно сказывается на электролизе, вызывая повышенный расход электроэнергии фтористых солей и анодов, а также осложняет работу источников постоянного электрического тока.

Поэтому на алюминиевых заводах стараются иметь минимальное количество анодных эффектов, допуская их возникновение не более, чем один раз в сутки, на 2—4 мин. Передовые бригады ведут электролиз, допуская анодный эффект один раз в 3-5 сут.

Анодный эффект привлекает внимание многих исследователей и на природу его имеется много различных точек зрения. Капитальное исследование природы анодного эффекта было проведено в Московском институте цветных металлов и золота им. М. И. Калинина под руководством чл.кор. А. И. Беляева при участии Б. А. Кузьмина.

Результаты исследований позволили сделать заключение о том, что анодный эффект присущ не только электролизу крио-лито-глиноземных расплавов с угольными анодами (как предполагали многие зарубежные исследователи), но и характерен для электролитического процесса в расплавленных солях с любыми анодами. Анодный эффект возникает в том случае, если плотность тока на аноде становится выше критической.

Электролиз оксида алюминия в расплавленном криолите уравнение реакции

Рис. 2. Изменение критической, плотности тока в зависимости от содержа ния глинозема в криолито-глиноземных расплавах:

1 — по данным А. И. Беляева и Б. А. Кузьмина; 2 — по данным Карпа чева, Долгова и Кончинского

Величина критической плотности тока, а следовательно, и возникновение анодного эффекта зависит от природы расплавленной соли, количества окислов, растворенных в расплавленной соли, материала анода и температуры расплавленной соли. Так, например, критическая плотность тока для расплавленных хлористых солей выше, чем для фтористых солей. Особенно-сильно влияет на критическую плотность тока наличие в расплавленной соли растворенных окислов.

На рис. 2 приведена зависимость критической плотности тока в криолито-глиноземных расплавах от содержания Аl2O3. Как следует из этой зависимости, с увеличением содержания Аl2О3 в криолито-глиноземном расплаве повышается критическая плотность тока, а следовательно, уменьшается вероятность возникновения анодного эффекта. Так как алюминиевые ванны работают при анодной плотности тока от 0,7 до 1,2 А/см 2 , то в соответствии с графиком можно сделать вывод, что анодный эффект должен наступить при снижении содержания глинозема в электролите до

Основываясь на результатах исследовательских работ советских ученых, можно представить механизм анодного эффекта следующим образом: при значительном количестве глинозема в

электролите расплав хорошо смачивает поверхность анода и, следовательно, смывает образующиеся пузырьки газа. По мере уменьшения концентрации растворенного глинозема в электролите последний начинает все хуже и хуже смачивать электрод, а когда величина краевого угла смачивания превысит 90°, перестает смачивать электрод. В результате этого газ начинает задерживаться на поверхности анода, она быстро покрывается газовой пленкой, сопротивление на границе анод — электролит скачкообразно возрастает. Лишь в отдельных местах, где газовая пленка временно нарушается, возникают кратковременные электрические дуги. При введении в электролит новой порции глинозема электролит начинает опять смачивать анод, быстро удаляет с его поверхности газовую пленку и напряжение на ванне снижается.

Видео:Часть 3-1. Электролиз расплава. Решаем примеры уравнений (подробно).Скачать

Часть 3-1. Электролиз расплава. Решаем примеры уравнений (подробно).

Побочные процессы на катоде и в электролите

При электролитическом способе получения алюминия, кроме рассмотренных выше основных процессов, протекают некоторые побочные процессы, которые могут приводить к потере металла, повышению расхода электроэнергии, ухудшению качества металла, изменению состава электролита и т. д.; важнейшие из них: растворение алюминия, образование карбида алюминия, пропитывание футеровки ванны электролитом.

Видео:Электролиз | ХИМИЯ ЕГЭ | Лия МенделееваСкачать

Электролиз | ХИМИЯ ЕГЭ | Лия Менделеева

Растворение алюминия в электролите

Металлический алюминий растворяется в расплавленном электролите незначительно (порядка 0,1%). Однако, распространяясь по всему объему электролита, алюминий окисляется на его поверхности кислородом воздуха, а также реагирует с анодными газами, образуя Аl2O3 и вызывая тем самым растворение новых порций металла в электролите. Растворимость алюминия в электролите, а следовательно, окисление металла сильно возрастает с уменьшением межполюсного расстояния и с повышением температуры. В связи с этим стремятся вести процесс при возможно низкой температуре, но не уменьшая чрезмерно межполюсное расстояние.

Видео:Электролиз расплавов и растворов солей.Теория для задания 22 ЕГЭ по химииСкачать

Электролиз расплавов и растворов солей.Теория для задания 22 ЕГЭ по химии

Образование карбида алюминия

При перегревах ванны алюминий начинает реагировать с углеродом, попадающим в электролит, образуя карбид алюминия:

Благоприятные условия для образования карбида создаются в том случае, если из-под слоя алюминия обнажается угольная

подина или стенка ванны (вследствие расплавления боковой настыли). Тогда непосредственно на угольной поверхности разряжаются ионы алюминия, и атомы алюминия, взаимодействуя с углеродом, образуют карбид. Карбид алюминия тугоплавок, имеет большую плотность и малую электропроводность; он образуется на подине ванны под слоем алюминия, а также в массе электролита, создавая дополнительное сопротивление. Алюминий может реагировать с углеродом, проникая в поры и трещины угольной футеровки, при этом образуя ярко-желтые кристаллы карбида.

Видео:Электролиз растворов. 1 часть. 10 класс.Скачать

Электролиз растворов. 1 часть. 10 класс.

Изменение состава электролита

Находящийся в ванне электролит с течением времени меняет свой состав, причем не всегда одинаково. Наблюдения показывают, что в первые месяцы работы новой ванны ее электролит теряет значительное количество фтористого натрия и становится кислым. В старых ваннах, работающих больше года, наблюдается обратная картина — электролит теряет фтористый алюминий и делается щелочным.

Изучение процессов смачивания фтористыми солями углеродистых материалов, проведенное в Институте цветных металлов и золота им. М. И. Калинина А. И. Беляевым с сотр., показало, что фтористый натрий смачивает углеродистые материалы значительно лучше, чем криолит или фтористый алюминий.

Следовательно, фтористый натрий, который может появиться в электролите в результате некоторой диссоциации криолита, будет преимущественно впитываться в поры угольных катодов и блоков вновь пущенной ванны, нарушая тем самым криолито-вое отношение электролита. Исследования подовых блоков старых, вышедших из строя электролитных ванн подтверждают этот вывод. Плотность блоков за время работы ванны возрастает к моменту остановки ванны в полтора раза, причем продукт, поглощенный блоками, содержит 70—75% NaF; 5 —7% AlF3; до 20% Аl2O3, а также некоторое количество Аl4С3 и металлического натрия.

Избирательное поглощение угольной футеровкой фтористого натрия, значительное в первые месяцы работы ванны вследствие заполнения пор, постепенно уменьшается и через несколько месяцев полностью прекращается.

Потери фтористого алюминия из электролита возможны за счет некоторого улетучивания этого вещества, особенно во время анодных эффектов, так как упругость паров AlF3 при температуре процесса составляет около 1 кПа.

Наряду с испарением фтористого алюминия в электролите происходит взаимодействие криолита с примесями (SiO2, Na2O, Н2O), попадающими в ванну вместе с глиноземом и фтористыми солями. Na2O, остающаяся в глиноземе из-за недостаточной промывки гидрата, разлагает криолит по следующей реакции:

SiO 2 , попадая в ванну как примесь глинозема и криолита частично разлагается, загрязняя алюминий кремнием, а частич но взаимодействует с криолитом по реакции

образуя летучий четырехфтористый кремний и разрушая комплексы ионов фтора и алюминия (AlF 3 6 — и др.).

При нормальном обслуживании ванны в нее вводят только предварительно хорошо прогретые продукты. Поэтому пары воды могут попасть в расплавленный электролит только при наличии в глиноземе некоторого количества гидратов окиси алюминия. В этих случаях не исключена реакция

Все эти реакции приводят к избытку фтористого натрия в электролите.

Статья на тему Электролиз глиноземных расплавов

Похожие страницы:

Понравилась статья поделись ей

Leave a Comment

Для отправки комментария вам необходимо авторизоваться.

💥 Видео

Окислительно восстановительные реакции. Электролиз | Химия 11 класс #19 | ИнфоурокСкачать

Окислительно восстановительные реакции. Электролиз | Химия 11 класс #19 | Инфоурок

ЭлектролизСкачать

Электролиз

Электролиз. Часть 1. Процесс электролиза, основные закономерности.Скачать

Электролиз. Часть 1. Процесс электролиза, основные закономерности.

Оксид алюминияСкачать

Оксид алюминия

Химия 9 класс (Урок№25 - Алюминий. Свойства алюминия. Амфотерность оксида и гидроксида алюминия.)Скачать

Химия 9 класс (Урок№25 - Алюминий. Свойства алюминия. Амфотерность оксида и гидроксида алюминия.)

11 класс - Химия - ЭлектролизСкачать

11 класс - Химия - Электролиз

А21 ЦТ 2020. Металлы. Задачи по химииСкачать

А21 ЦТ 2020. Металлы. Задачи по химии

Электролиз расплавов и растворов. 10 класс.Скачать

Электролиз расплавов и растворов. 10 класс.

Электролиз расплава оксида алюминияСкачать

Электролиз расплава оксида алюминия

АлюминийСкачать

Алюминий

Галилео. Эксперимент. Растворяем алюминийСкачать

Галилео. Эксперимент. Растворяем алюминий
Поделиться или сохранить к себе: