Электролиз гидроксида алюминия уравнение реакции

Алюминий. Химия алюминия и его соединений

Электролиз гидроксида алюминия уравнение реакции

Бинарные соединения алюминия

Алюминий

Положение в периодической системе химических элементов

Алюминий расположен в главной подгруппе III группы (или в 13 группе в современной форме ПСХЭ) и в третьем периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение алюминия и свойства

Электронная конфигурация алюминия в основном состоянии :

+13Al 1s 2 2s 2 2p 6 3s 2 3p 1 1s Электролиз гидроксида алюминия уравнение реакции 2s Электролиз гидроксида алюминия уравнение реакции 2p Электролиз гидроксида алюминия уравнение реакции 3s Электролиз гидроксида алюминия уравнение реакции 3p Электролиз гидроксида алюминия уравнение реакции

Электронная конфигурация алюминия в возбужденном состоянии :

+13Al * 1s 2 2s 2 2p 6 3s 1 3p 2 1s Электролиз гидроксида алюминия уравнение реакции 2s Электролиз гидроксида алюминия уравнение реакции 2p Электролиз гидроксида алюминия уравнение реакции 3s Электролиз гидроксида алюминия уравнение реакции 3p Электролиз гидроксида алюминия уравнение реакции

Алюминий проявляет парамагнитные свойства. Алюминий на воздухе быстро образует прочные оксидные плёнки, защищающие поверхность от дальнейшего взаимодействия, поэтому устойчив к коррозии.

Физические свойства

Алюминий – лёгкий металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Обладает высокой тепло- и электропроводностью.

Электролиз гидроксида алюминия уравнение реакции

Температура плавления 660 о С, температура кипения 1450 о С, плотность алюминия 2,7 г/см 3 .

Алюминий — один из наиболее ценных цветных металлов для вторичной переработки. На протяжении последних лет, цена на лом алюминия в пунктах приема непреклонно растет. По ссылке можно узнать о том, как сдать лом алюминия.

Нахождение в природе

Алюминий — самый распространенный металл в природе, и 3-й по распространенности среди всех элементов (после кислорода и кремния). Содержание в земной коре — около 8%.

В природе алюминий встречается в виде соединений:

Электролиз гидроксида алюминия уравнение реакции

Корунд Al2O3. Красный корунд называют рубином, синий корунд называют сапфиром.

Электролиз гидроксида алюминия уравнение реакции

Способы получения

Алюминий образует прочную химическую связь с кислородом. Поэтому традиционные способы получения алюминия восстановлением из оксида протекают требуют больших затрат энергии. Для промышленного получения алюминия используют процесс Холла-Эру. Для понижения температуры плавления оксид алюминия растворяют в расплавленном криолите (при температуре 960-970 о С) Na3AlF6, а затем подвергают электролизу с углеродными электродами. При растворении в расплаве криолита оксид алюминия распадается на ионы:

На катоде происходит восстановление ионов алюминия:

Катод: Al 3+ +3e → Al 0

На аноде происходит окисление алюминат-ионов:

Суммарное уравнение электролиза расплава оксида алюминия:

Лабораторный способ получения алюминия заключается в восстановлении алюминия из безводного хлорида алюминия металлическим калием:

AlCl3 + 3K → Al + 3KCl

Качественные реакции

Качественная реакция на ионы алюминия — взаимодействие избытка солей алюминия с щелочами . При этом образуется белый аморфный осадок гидроксида алюминия.

Например , хлорид алюминия взаимодействует с гидроксидом натрия:

AlCl3 + 3NaOH → Al(OH)3 + 3NaCl

Электролиз гидроксида алюминия уравнение реакции

При дальнейшем добавлении щелочи амфотерный гидроксид алюминия растворяется с образованием тетрагидроксоалюмината:Электролиз гидроксида алюминия уравнение реакции

Обратите внимание , если мы поместим соль алюминия в избыток раствора щелочи, то белый осадок гидроксида алюминия не образуется, т.к. в избытке щелочи соединения алюминия сразу переходят в комплекс:

AlCl3 + 4NaOH = Na[Al(OH)4] + 3NaCl

Соли алюминия можно обнаружить с помощью водного раствора аммиака. При взаимодействии растворимых солей алюминия с водным раствором аммиака также в ыпадает полупрозрачный студенистый осадок гидроксида алюминия.

AlCl3 + 3NH3·H2O = Al(OH)3 ↓ + 3NH4Cl

Al 3+ + 3NH3·H2O = Al(OH)3 ↓ + 3NH4 +

Видеоопыт взаимодействия раствора хлорида алюминия с раствором аммиака можно посмотреть здесь.

Химические свойства

1. Алюминий – сильный восстановитель . Поэтому он реагирует со многими неметаллами .

1.1. Алюминий реагируют с галогенами с образованием галогенидов:

1.2. Алюминий реагирует с серой с образованием сульфидов:

1.3. Алюминий реагируют с фосфором . При этом образуются бинарные соединения — фосфиды:

Al + P → AlP

1.4. С азотом алюминий реагирует при нагревании до 1000 о С с образованием нитрида:

2Al + N2 → 2AlN

1.5. Алюминий реагирует с углеродом с образованием карбида алюминия:

1.6. Алюминий взаимодействует с кислородом с образованием оксида:

Видеоопыт взаимодействия алюминия с кислородом воздуха (горение алюминия на воздухе) можно посмотреть здесь.

2. Алюминий взаимодействует со сложными веществами:

2.1. Реагирует ли алюминий с водой? Ответ на этот вопрос вы без труда найдете, если покопаетесь немного в своей памяти. Наверняка хотя бы раз в жизни вы встречались с алюминиевыми кастрюлями или алюминиевыми столовыми приборами. Такой вопрос я любил задавать студентам на экзаменах. Что самое удивительное, ответы я получал разные — у кого-то алюминий таки реагировал с водой. И очень, очень многие сдавались после вопроса: «Может быть, алюминий реагирует с водой при нагревании?» При нагревании алюминий реагировал с водой уже у половины респондентов))

Тем не менее, несложно понять, что алюминий все-таки с водой в обычных условиях (да и при нагревании) не взаимодействует. И мы уже упоминали, почему: из-за образования оксидной пленки . А вот если алюминий очистить от оксидной пленки (например, амальгамировать), то он будет взаимодействовать с водой очень активно с образованием гидроксида алюминия и водорода:

2Al 0 + 6 H2 + O → 2 Al +3 ( OH)3 + 3 H2 0

Электролиз гидроксида алюминия уравнение реакции

Амальгаму алюминия можно получить, выдержав кусочки алюминия в растворе хлорида ртути ( II ):

3HgCl2 + 2Al → 2AlCl3 + 3Hg

Электролиз гидроксида алюминия уравнение реакции

Видеоопыт взаимодействия амальгамы алюминия с водой можно посмотреть здесь.

2.2. Алюминий взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой). При этом образуются соль и водород.

Например , алюминий бурно реагирует с соляной кислотой :

2Al + 6HCl = 2AlCl3 + 3H2

Электролиз гидроксида алюминия уравнение реакции

2.3. При обычных условиях алюминий не реагирует с концентрированной серной кислотой из-за пассивации – образования плотной оксидной пленки. При нагревании реакция идет, образуются оксид серы (IV), сульфат алюминия и вода:

2.4. Алюминий не реагирует с концентрированной азотной кислотой также из-за пассивации.

С разбавленной азотной кислотой алюминий реагирует с образованием молекулярного азота:

При взаимодействии алюминия в виде порошка с очень разбавленной азотной кислотой может образоваться нитрат аммония:

2.5. Алюминий – амфотерный металл, поэтому он взаимодействует с щелочами . При взаимодействии алюминия с раствором щелочи образуется тетрагидроксоалюминат и водород:

2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2

Электролиз гидроксида алюминия уравнение реакции

Видеоопыт взаимодействия алюминия со щелочью и водой можно посмотреть здесь.

Алюминий реагирует с расплавом щелочи с образованием алюмината и водорода:

2Al + 6NaOH → 2Na3AlO3 + 3H2

Эту же реакцию можно записать в другом виде (в ЕГЭ рекомендую записывать реакцию именно в таком виде):

2Al + 6NaOH → 2NaAlO2 + 3H2↑ + 2Na2O

2.6. Алюминий восстанавливает менее активные металлы из оксидов . Процесс восстановления металлов из оксидов называется алюмотермия .

Например , алюминий вытесняет медь из оксида меди (II). Реакция очень экзотермическая:

2Al + 3CuO → 3Cu + Al2O3

Электролиз гидроксида алюминия уравнение реакции

Еще пример : алюминий восстанавливает железо из железной окалины, оксида железа (II, III):

Восстановительные свойства алюминия также проявляются при взаимодействии его с сильными окислителями: пероксидом натрия, нитратами и нитритами в щелочной среде, перманганатами, соединениями хрома (VI):

Видео:Все об электролизе и задании 20 за 20 минут | Химия ЕГЭ 2023 | УмскулСкачать

Все об электролизе и задании 20 за 20 минут | Химия ЕГЭ 2023 | Умскул

Правила составления окислительно-восстановительных реакций

Видео:РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по ХимииСкачать

РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по Химии

Электролиз растворов электролитов с инертными электродами

Напомним, что на катоде протекают процессы восстановления, на аноде — процессы окисления.

Процессы, протекающие на катоде:

В растворе имеются несколько видов положительно заряженных частиц, способных восстанавливаться на катоде:

1) Катионы металла восстанавливаются до простого вещества, если металл находится в ряду напряжений правее алюминия (не включая сам Al). Например:
Zn 2+ +2e → Zn 0 .

2) В случае раствора соли или щелочи: катионы водорода восстанавливаются до простого вещества, если металл находится в ряду напряжений металлов до H2:
2H2O + 2e → H2 0 + 2OH – .
Например, в случае электролиза растворов NaNO3 или KOH.

3) В случае электролиза раствора кислоты: катионы водорода восстанавливаются до простого вещества:
2H + +2e → H2.
Например, в случае электролиза раствора H2SO4.

Процессы, протекающие на аноде:

На аноде легко окисляются кислотные остатки не содержащие кислород. Например, галогенид-ионы (кроме F – ), сульфид-анионы, гидроксид-анионы и молекулы воды:

1) Галогенид-анионы окисляются до простых веществ:
2Cl – – 2e → Cl2.

2) В случае электролиза раствора щелочи в гидроксид-анионах кислород окисляется до простого вещества. Водород уже имеет степень окисления +1 и не может быть окислен дальше. Также будет выделение воды — почему? Потому что больше ничего написать и не получится: 1) H + написать не можем, так как OH – и H + не могут стоять по разные стороны одного уравнения; 2) H2 написать также не можем, так как это был бы процесс восстановления водорода (2H + +2e → H2), а на аноде протекают только процессы окисления.
4OH – – 4e → O2 + 2H2O.

3) Если в растворе есть анионы фтора или любые кислородсодержащие анионы, то окислению будет подвергаться вода с подкислением прианодного пространства согласно следующему уравнению:
2H2O – 4e → O2 + 4H + .
Такая реакция идет в случае электролиза растворов кислородсодержащих солей или кислородсодержащих кислот. В случае электролиза раствора щелочи окисляться будут гидроксид-анионы согласно правилу 2) выше.

4) В случае электролиза раствора соли органической кислоты на аноде всегда происходит выделение CO2 и удвоение остатка углеродной цепи:
2R-COO – – 2e → R-R + 2CO2.

Видео:Электролиз. 10 класс.Скачать

Электролиз. 10 класс.

Примеры:

1. Раствор NaCl

Расписываем диссоциацию на ионы:
NaCl → Na + + Cl –

Металл Na стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу выше, на катоде восстанавливается водород. Хлорид-анионы будут окисляться на аноде до простого вещества:

К: 2Na + (в растворе)
2H2O + 2e → H2 0 + 2OH –
А: 2Cl – – 2e → Cl2

Коэффициент 2 перед Na + появился из-за наличия аналогичного коэффициента перед хлорид-ионами, так как в соли NaCl их соотношение 1:1.

Проверяем, что количество принимаемых и отдаваемых электронов одинаковое, и суммируем левые и правые части катодных и анодных процессов:

2Na + + 2Cl – + 2H2O → H2 0 + 2Na + + 2OH – + Cl2. Соединяем катионы и анионы:
2NaCl + 2H2O → H2 0 + 2NaOH + Cl2.

2. Раствор Na2SO4

Расписываем диссоциацию на ионы:
Na2SO4 → 2Na + + SO4 2–

Натрий стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу выше, на катоде восстанавливается только водород. Сульфат-анионы содержат кислород, поэтому окисляться не будут, также оставаясь в растворе. Согласно правилу выше, в этом случае окисляются молекулы воды:

К: 2H2O + 2e → H2 0 + 2OH –
А: 2H2O – 4e → O2 0 + 4H + .

Уравниваем число принимаемых и отдаваемых электронов на катоде и аноде. Для этого необходимо умножить все коэффициенты катодного процесса на 2:
К: 4H2O + 4e → 2H2 0 + 4OH –
А: 2H2O – 4e → O2 0 + 4H + .

Складываем левые и правые части катодных и анодных процессов:
6H2O → 2H2 0 + 4OH – + 4H + + O2 0 .

4OH- и 4H+ соединяем в 4 молекулы H2O:
6H2O → 2H2 0 + 4H2O + O2 0 .

Сокращаем молекулы воды, находящиеся по обе стороны уравнения, т.е. вычитаем из каждой части уравнения 4H2O и получаем итоговое уравнение гидролиза:
2H2O → 2H2 0 + O2 0 .

Таким образом, гидролиз растворов кислородсодержащих солей активных металлов (до Al включительно) сводится к гидролизу воды, так как ни катионы металлов, ни анионы кислотных остатков не принимают участие в окислительно-восстановительных процессах, протекающих на электродах.

3. Раствор CuCl2

Расписываем диссоциацию на ионы:
CuCl2 → Cu 2+ + 2Cl –

Медь находится в ряду напряжений металлов после водорода, следовательно, только она будет восстанавливаться на катоде. На аноде будут окисляться только хлорид-анионы.

К: Cu 2+ + 2e → Cu 0
A: 2Cl – – 2e → Cl2

Записываем суммарное уравнение:
CuCl2 → Cu 0 + Cl2.

4. Раствор CuSO4

Расписываем диссоциацию на ионы:
CuSO4 → Cu 2+ + SO4 2–

Медь находится в ряду напряжений металлов после водорода, следовательно, только она будет восстанавливаться на катоде. На аноде будут окисляться молекулы воды, так как кислородсодержащие кислотные остатки в растворах на аноде не окисляются.

К: Cu 2+ + 2e → Cu 0
A: SO4 2– (в растворе)
2H2O – 4e → O2 + 4H + .

Уравниваем количество электронов на катоде и аноде. Для это умножим все коэффициенты катодного уравнения на 2. Количество сульфат-ионов также необходимо удвоить, так как в сульфате меди соотношение Cu 2+ и SO4 2– 1:1.

К: 2Cu 2+ + 4e → 2Cu 0
A: 2SO4 2– (в растворе)
2H2O – 4e → O2 + 4H + .

Записываем суммарное уравнение:
2Cu 2+ + 2SO4 2– + 2H2O → 2Cu 0 + O2 + 4H + + 2SO4 2– .

Соединив катионы и анионы, получаем итоговое уравнение электролиза:
2CuSO4 + 2H2O → 2Cu 0 + O2 + 2H2SO4.

5. Раствор NiCl2

Расписываем диссоциацию на ионы:
NiCl2 → Ni 2+ + 2Cl –

Никель находится в ряду напряжений металлов после алюминия и до водорода, следовательно, на катоде будут восстанавливаться и металл, и водород. На аноде будут окисляться только хлорид-анионы.

К: Ni 2+ + 2e → Ni 0
2H2O + 2e → H2 0 + 2OH –
A: 2Cl – – 2e → Cl2

Уравниваем количество электронов, принимаемых и отдаваемых на катоде и аноде. Для этого умножаем все коэффициенты анодного уравнения на 2:

К: Ni 2+ + 2e → Ni 0
2H2O + 2e → H2 0 + 2OH –
Ni 2+ (в растворе)
A: 4Cl – – 4e → 2Cl2

Замечаем, что согласно формуле NiCl2, соотношение атомов никеля и хлора 1:2, следовательно, в раствор необходимо добавить Ni 2+ для получения общего количества 2NiCl2. Также это необходимо сделать, так как в растворе должны присутствовать противоионы для гидроксид-анионов.

Складываем левые и правые части катодных и анодных процессов:
Ni 2+ + Ni 2+ + 4Cl – + 2H2O → Ni 0 + H2 0 + 2OH – + Ni 2+ + 2Cl2.

Соединяем катионы и анионы для получения итогового уравнения электролиза:
2NiCl2 + 2H2O → Ni 0 + H2 0 + Ni(OH)2 + 2Cl2.

6. Раствор NiSO4

Расписываем диссоциацию на ионы:
NiSO4 → Ni 2+ + SO4 2–

Никель находится в ряду напряжений металлов после алюминия и до водорода, следовательно, на катоде будут восстанавливаться и металл, и водород. На аноде будут окисляться молекулы воды, так как кислородсодержащие кислотные остатки в растворах на аноде не окисляются.

К: Ni 2+ + 2e → Ni 0
2H2O + 2e → H2 0 + 2OH –
A: SO4 2– (в растворе)
2H2O – 4e → O2 + 4H + .

Проверяем, что количество принятых и отданных электронов совпадает. Также замечаем, что в растворе есть гидроксид-ионы, но в записи электродных процессов для них нет противоионов. Следовательно, нужно добавить в раствор Ni 2+ . Так как удвоилось количество ионов никеля, необходимо удвоить и количество сульфат-ионов:

К: Ni 2+ + 2e → Ni 0
2H2O + 2e → H2 0 + 2OH –
Ni 2+ (в растворе)
A: 2SO4 2– (в растворе)
2H2O – 4e → O2 + 4H + .

Складываем левые и правые части катодных и анодных процессов:
Ni 2+ + Ni 2+ + 2SO4 2– + 2H2O + 2H2O → Ni 0 + Ni 2+ + 2OH – + H2 0 + O2 0 + 2SO4 2– + 4H + .

Соединяем катионы и анионы и записываем итоговое уравнение электролиза:
2NiSO4 + 4H2O → Ni 0 + Ni(OH)2 + H2 0 + O2 0 + 2H2SO4.

В других источниках литературы также говорится об альтернативном протекании электролиза кислородсодержащих солей металлов средней активности. Разница состоит в том, что после сложения левых и правых частей процессов электролиза необходимо соединить H + и OH – с образованием двух молекул воды. Оставшиеся 2H + расходуются на образование серной кислоты. В этом случае не нужно прибавлять дополнительные ионы никеля и сульфат-ионы:

Ni 2+ + SO4 2– + 2H2O + 2H2O → Ni 0 + 2OH – + H2 0 + O2 0 + SO4 2– + 4H + .

Ni 2+ + SO4 2– + 4H2O → Ni 0 + H2 0 + O2 0 + SO4 2– + 2H + + 2H2O.

NiSO4 + 2H2O → Ni 0 + H2 0 + O2 0 + H2SO4.

7. Раствор CH3COONa

Расписываем диссоциацию на ионы:
CH3COONa → CH3COO – + Na +

Натрий стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу выше, на катоде восстанавливается только водород. На аноде будет происходит окисление ацетат-ионов с образованием углекислого газа и удвоением остатка углеродной цепи:

К: 2Na + (в растворе)
2H2O + 2e → H2 0 + 2OH –
А: 2CH3COO – – 2e → CH3-CH3 + CO2

Так как количества электронов в процессах окисления и восстановления совпадают, составляем суммарное уравнение:
2Na + + 2CH3COO – + 2H2O → 2Na + + 2OH – + H2 0 + CH3-CH3 + CO2

Соединяем катионы и анионы:
2CH3COONa + 2H2O → 2NaOH + H2 0 + CH3-CH3 + CO2.

8. Раствор H2SO4

Расписываем диссоциацию на ионы:
H2SO4 → 2H + + SO4 2–

Из катионов в растворе присутствуют только катионы H+, они и будут восстанавливаться до простого вещества. На аноде будет протекать окисление воды, так как кислород содержащие кислотные остатки в растворах на аноде не окисляются.

К: 2H + +2e → H2
A: 2H2O – 4e → O2 + 4H +

Уравниваем число электронов. Для этого удваиваем каждый коэффициент в уравнении катодного процесса:

К: 4H + +4e → 2H2
A: 2H2O – 4e → O2 + 4H +

Суммируем левые и правые части уравнений:
4H + + 2H2O → 2H2 + O2 + 4H +

Катионы H + находятся в обеих частях реакции, следовательно, их нужно сократить. Получаем, что в случае растворов кислот, электролизу подвергаются только молекулы H2O:
2H2O → 2H2 + O2.

9. Раствор NaOH

Расписываем диссоциацию на ионы:
NaOH → Na + + OH –

Натрий стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу, на катоде восстанавливается только водород. На аноде будут окисляться гидроксид-анионы с образованием кислорода и воды:

К: Na+ (в растворе)
2H2O + 2e → H2 0 + 2OH –
А: 4OH – – 4e → O2 + 2H2O

Уравниваем число электронов, принимаемых и отдаваемых на электродах:

К: Na + (в растворе)
4H2O + 4e → 2H2 0 + 4OH –
А: 4OH – – 4e → O2 + 2H2O

Суммируем левые и правые части процессов:
4H2O + 4OH – → 2H2 0 + 4OH – + O2 0 + 2H2O

Сокращая 2H2O и ионы OH – , получаем итоговое уравнение электролиза:
2H2O → 2H2 + O2.

Вывод:
При электролизе растворов 1) кислородсодержащих кислот;
2) щелочей;
3) солей активных металлов и кислородсодержащих кислот
на электродах протекает электролиз воды:
2H2O → 2H2 + O2.

Видео:Al(OH)3 + NaOH → Na[Al(OH)4] | Получение гидроксида алюминия и растворение его в избытке щёлочиСкачать

Al(OH)3 + NaOH → Na[Al(OH)4] | Получение гидроксида алюминия и растворение его в избытке щёлочи

1.4.9. Электролиз расплавов и растворов (солей, щелочей, кислот).

Что такое электролиз? Для более простого понимания ответа на этот вопрос давайте представим себе любой источник постоянного тока. У каждого источника постоянного тока всегда можно найти положительный и отрицательный полюс:

Электролиз гидроксида алюминия уравнение реакции

Подсоединим к нему две химически стойких электропроводящих пластины, которые назовем электродами. Пластину, присоединенную к положительному полюсу назовем анодом, а к отрицательному катодом:

Электролиз гидроксида алюминия уравнение реакции

Далее, представьте, что у вас есть возможность опустить эти два электрода в расплав хлорида натрия:

Электролиз гидроксида алюминия уравнение реакции

Хлорид натрия является электролитом, при его расплавлении происходит диссоциация на катионы натрия и хлорид-ионы:

Очевидно, что заряженные отрицательно анионы хлора направятся к положительно заряженному электроду – аноду, а положительно заряженные катионы Na + направятся к отрицательно заряженному электроду – катоду. В результате этого и катионы Na + и анионы Cl − разрядятся, то есть станут нейтральными атомами. Разрядка происходит посредством приобретения электронов в случае ионов Na + и потери электронов в случае ионов Cl − . То есть на катоде протекает процесс:

Поскольку каждый атом хлора имеет по неспаренному электрону, одиночное существование их невыгодно и атомы хлора объединяются в молекулу из двух атомов хлора:

Таким образом, суммарно, процесс, протекающий на аноде, правильнее записать так:

То есть мы имеем:

Катод: Na + + 1e − = Na 0

Анод: 2Cl − − 2e − = Cl2

Подведем электронный баланс:

Na + + 1e − = Na 0 |∙2

2Cl − − 2e − = Cl2 |∙1 + + 2e − + 2Cl − − 2e − = 2Na 0 + Cl2

Сократим два электрона аналогично тому, как это делается в алгебре получим ионное уравнение электролиза:

2Na + + 2Cl − = 2Na 0 + Cl2

далее, объединив ионы Na + и Cl − получим, уравнение электролиза расплава хлорида натрия:

Рассмотренный выше случай является с теоретической точки зрения наиболее простым, поскольку в расплаве хлорида натрия из положительно заряженных ионов были только ионы натрия, а из отрицательных – только анионы хлора.

Другими словами, ни у катионов Na + , ни у анионов Cl − не было «конкурентов» за катод и анод.

А, что будет, например, если вместо расплава хлорида натрия ток пропустить через его водный раствор? Диссоциация хлорида натрия наблюдается и в этом случае, но становится невозможным образование металлического натрия в водном растворе. Ведь мы знаем, что натрий – представитель щелочных металлов – крайне активный металл, реагирующий с водой очень бурно. Если натрий не способен восстановиться в таких условиях, что же тогда будет восстанавливаться на катоде?

Давайте вспомним строение молекулы воды. Она представляет собой диполь, то есть у нее есть отрицательный и положительный полюсы:

Электролиз гидроксида алюминия уравнение реакции

Именно благодаря этому свойству, она способна «облеплять» как поверхность катода, так и поверхность анода:

Электролиз гидроксида алюминия уравнение реакции

При этом могут происходить процессы:

Таким образом, получается, что если мы рассмотрим раствор любого электролита, то мы увидим, что катионы и анионы, образующиеся при диссоциации электролита, конкурируют с молекулами воды за восстановление на катоде и окисление на аноде.

Так какие же процессы будут происходить на катоде и на аноде? Разрядка ионов, образовавшихся при диссоциации электролита или окисление/восстановление молекул воды? Или, возможно, будут происходить все указанные процессы одновременно?

В зависимости от типа электролита при электролизе его водного раствора возможны самые разные ситуации. Например, катионы щелочных, щелочноземельных металлов, алюминия и магния просто не способны восстановиться в водной среде, так как при их восстановлении должны были бы получаться соответственно щелочные, щелочноземельные металлы, алюминий или магний т.е. металлы, реагирующие с водой.

В таком случае является возможным только восстановление молекул воды на катоде.

Запомнить то, какой процесс будет протекать на катоде при электролизе раствора какого-либо электролита можно, следуя следующим принципам:

1) Если электролит состоит из катиона металла, который в свободном состоянии в обычных условиях реагирует с водой, на катоде идет процесс:

Это касается металлов, находящихся в начале ряда активности по Al включительно.

2) Если электролит состоит из катиона металла, который в свободном виде не реагирует с водой, но реагирует с кислотами неокислителями, идут сразу два процесса, как восстановления катионов металла, так и молекул воды:

К таким металлам относятся металлы, находящиеся между Al и Н в ряду активности.

3) Если электролит состоит из катионов водорода (кислота) или катионов металлов, не реагирующих с кислотами неокислителями — восстанавливаются только катионы электролита:

2Н + + 2е − = Н2 – в случае кислоты

Me n + + ne = Me 0 – в случае соли

На аноде тем временем ситуация следующая:

1) Если электролит содержит анионы бескислородных кислотных остатков (кроме F − ), то на аноде идет процесс их окисления, молекулы воды не окисляются. Например:

Фторид-ионы не окисляются на аноде поскольку фтор не способен образоваться в водном растворе (реагирует с водой)

2) Если в состав электролита входят гидроксид-ионы (щелочи) они окисляются вместо молекул воды:

3) В случае того, если электролит содержит кислородсодержащий кислотный остаток (кроме остатков органических кислот) или фторид-ион (F − ) на аноде идет процесс окисления молекул воды:

4) В случае кислотного остатка карбоновой кислоты на аноде идет процесс:

2RCOO − − 2e − = R-R + 2CO2

Давайте потренируемся записывать уравнения электролиза для различных ситуаций:

Пример №1

Напишите уравнения процессов протекающих на катоде и аноде при электролизе расплава хлорида цинка, а также общее уравнение электролиза.

При расплавлении хлорида цинка происходит его диссоциация:

Далее следует обратить внимание на то, что электролизу подвергается именно расплав хлорида цинка, а не водный раствор. Другими словами, без вариантов, на катоде может происходить только восстановление катионов цинка, а на аноде окисление хлорид-ионов т.к. отсутствуют молекулы воды:

Катод: Zn 2+ + 2e − = Zn 0 |∙1

Анод: 2Cl − − 2e − = Cl2 |∙1

Пример №2

Напишите уравнения процессов протекающих на катоде и аноде при электролизе водного раствора хлорида цинка, а также общее уравнение электролиза.

Так как в данном случае, электролизу подвергается водный раствор, то в электролизе, теоретически, могут принимать участие молекулы воды. Так как цинк расположен в ряду активности между Al и Н то это значит, что на катоде будет происходить как восстановление катионов цинка, так и молекул воды.

Zn 2+ + 2e − = Zn 0

Хлорид-ион является кислотным остатком бескислородной кислоты HCl, поэтому в конкуренции за окисление на аноде хлорид-ионы «выигрывают» у молекул воды:

В данном конкретном случае нельзя записать суммарное уравнение электролиза, поскольку неизвестно соотношение между выделяющимися на катоде водородом и цинком.

Пример №3

Напишите уравнения процессов протекающих на катоде и аноде при электролизе водного раствора нитрата меди, а также общее уравнение электролиза.

Нитрат меди в растворе находится в продиссоциированном состоянии:

Медь находится в ряду активности правее водорода, то есть на катоде восстанавливаться будут катионы меди:

Cu 2+ + 2e − = Cu 0

Нитрат-ион NO3 − — кислородсодержащий кислотный остаток, это значит, что в окислении на аноде нитрат ионы «проигрывают» в конкуренции молекулам воды:

Катод: Cu 2+ + 2e − = Cu 0 |∙2

2Cu 2+ + 2H2O = 2Cu 0 + O2 + 4H +

Полученное в результате сложения уравнение является ионным уравнением электролиза. Чтобы получить полное молекулярное уравнение электролиза нужно добавить по 4 нитрат иона в левую и правую часть полученного ионного уравнения в качестве противоионов. Тогда мы получим:

Пример №4

Напишите уравнения процессов, протекающих на катоде и аноде при электролизе водного раствора ацетата калия, а также общее уравнение электролиза.

Решение:

Ацетат калия в водном растворе диссоциирует на катионы калия и ацетат-ионы:

Калий является щелочным металлом, т.е. находится в ряду электрохимическом ряду напряжений в самом начале. Это значит, что его катионы не способны разряжаться на катоде. Вместо них восстанавливаться будут молекулы воды:

Как уже было сказано выше, кислотные остатки карбоновых кислот «выигрывают» в конкуренции за окисление у молекул воды на аноде:

Таким образом, подведя электронный баланс и сложив два уравнения полуреакций на катоде и аноде получаем:

Катод: 2H2O + 2e − = 2OH − + H2 |∙1

Мы получили полное уравнение электролиза в ионном виде. Добавив по два иона калия в левую и правую часть уравнения и сложив с противоионами мы получаем полное уравнение электролиза в молекулярном виде:

Пример №5

Напишите уравнения процессов, протекающих на катоде и аноде при электролизе водного раствора серной кислоты, а также общее уравнение электролиза.

Серная кислота диссоциирует на катионы водорода и сульфат-ионы:

На катоде будет происходить восстановление катионов водорода H + , а на аноде окисление молекул воды, поскольку сульфат-ионы являются кислородсодержащими кислотными остатками:

Катод: 2Н + + 2e − = H2 |∙2

Сократив ионы водорода в левой и правой и левой части уравнения получим уравнение электролиза водного раствора серной кислоты:

Как можно видеть, электролиз водного раствора серной кислоты сводится к электролизу воды.

Пример №6

Напишите уравнения процессов, протекающих на катоде и аноде при электролизе водного раствора гидроксида натрия, а также общее уравнение электролиза.

Диссоциация гидроксида натрия:

На катоде будут восстанавливаться только молекулы воды, так как натрий – высокоактивный металл, на аноде только гидроксид-ионы:

Катод: 2H2O + 2e − = 2OH − + H2 |∙2

Сократим две молекулы воды слева и справа и 4 гидроксид-иона и приходим к тому, что, как и в случае серной кислоты электролиз водного раствора гидроксида натрия сводится к электролизу воды:

💡 Видео

Опыты по химии. Получение и исследование амфотерных свойств гидроксида алюминияСкачать

Опыты по химии. Получение и исследование амфотерных свойств гидроксида алюминия

Химия 9 класс (Урок№25 - Алюминий. Свойства алюминия. Амфотерность оксида и гидроксида алюминия.)Скачать

Химия 9 класс (Урок№25 - Алюминий. Свойства алюминия. Амфотерность оксида и гидроксида алюминия.)

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ ХИМИЯ 8 класс // Подготовка к ЕГЭ по Химии - INTENSIVСкачать

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ ХИМИЯ 8 класс // Подготовка к ЕГЭ по Химии - INTENSIV

ПОЛУЧЕНИЕ AlCl3 | ГИДРОКСИД АЛЮМИНИЯ И ЕГО РАСТВОРЕНИЕСкачать

ПОЛУЧЕНИЕ AlCl3 | ГИДРОКСИД АЛЮМИНИЯ И ЕГО РАСТВОРЕНИЕ

ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по ХимииСкачать

ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по Химии

Химическая реакция йода и алюминия.Скачать

Химическая реакция йода и алюминия.

Электролиз. Часть 1. Процесс электролиза, основные закономерности.Скачать

Электролиз. Часть 1. Процесс электролиза, основные закономерности.

AlOH3 NaOH → NaAlOH4 Получение гидроксида алюминия и растворение его в иСкачать

AlOH3 NaOH → NaAlOH4   Получение гидроксида алюминия и растворение его в и

Получение и свойства гидроксида алюминияСкачать

Получение и свойства гидроксида алюминия

гидроксид алюминияСкачать

гидроксид алюминия

Получение Алюмината Натрия - NaAlO2.Реакция Расплава Гидроксида Натрия и Алюминия. Реакция Al и NaOHСкачать

Получение Алюмината Натрия - NaAlO2.Реакция Расплава Гидроксида Натрия и Алюминия. Реакция Al и NaOH

8 класс. Химия. Амфотерные свойства гидроксида алюминия.Скачать

8 класс. Химия. Амфотерные свойства гидроксида алюминия.

гидроксид алюминияСкачать

гидроксид   алюминия

Гидролизуем ХЛОРИД АЛЮМИНИЯСкачать

Гидролизуем ХЛОРИД АЛЮМИНИЯ

Гидроксид калия ЭлекиролизСкачать

Гидроксид  калия  Элекиролиз

Амфотерные свойства гидроксида алюминияСкачать

Амфотерные свойства гидроксида алюминия
Поделиться или сохранить к себе: