Электродинамический ваттметр конструкция принцип действия уравнение шкалы

Содержание
  1. Ваттметры — виды и применение, схема подключения, особенности использования

    Каждый потребитель, питаемый от электрической сети, потребляет какую-то мощность. Мощность характеризует в данном случае скорость выполнения электрической сетью работы, необходимой для функционирования того или иного прибора либо цепи, которая от этой сети питается. Разумеется, сеть должна быть в состоянии обеспечить данную мощность и не быть при этом перегруженной, иначе может случиться авария. Для измерения потребляемой мощности в цепях переменного тока используют специальные приборы — ваттметры. Ваттметры показывают текущую потребляемую мощность, а некоторые из них способны даже подсчитать количество энергии в киловатт-часах, израсходованной за определенное время, пока потребитель работал. В данной статье мы рассмотрим несколько основных видов ваттметров. Ваттметры находят применение в самых разных сферах промышленности и быта, особенно в электроэнергетике и в машиностроении. Кроме того ваттметры часто полезны в быту. Их используют для определения мощности различной бытовой техники, для расчета приблизительной стоимости электроэнергии в месяц, для диагностики приборов, для тестирования сетей, да и просто в качестве наглядных индикаторов. Есть щитовые ваттметры, ваттметры в виде сетевых адаптеров, цифровые и аналоговые ваттметры. Принцип работы данных приборов в общем виде прост: измеряются напряжение питания и потребляемый ток, а мощность определяется как произведение данных величин с учетом коэффициента мощности исследуемой цепи. Коэффициент мощности определяется по разности фаз между током и напряжением. Цифровые ваттметры отображают показания на дисплее или записывают их в цифровой форме, а аналоговые — показывают стрелкой на шкале. Электродинамические измерительные приборы Приборы, основанные на принципе взаимодействия двух магнитных полей, создаваемых токами, текущими в двух различных катушках по устройству и принципу действия называют электродинамическими. Одна из этих катушек укреплена неподвижно, а вторая, помещенная внутри первой, может поворачиваться вокруг своей оси и удерживается в некотором начальном положении спиральными пружинами. По отклонению подвижной катушки можно непосредственно судить о силе протекающего по катушкам тока. В зависимости отданных прибора и способа его включения с помощью этого прибора можно измерять либо силу тока в цепи (амперметр), либо напряжение на зажимах цепи (вольтметр), либо мощность, потребляемую в цепи (ваттметр). Т. к. направление электрического тока, протекающего через обе катушки электродинамического измерительного прибора изменяется одновременно, то направление силы взаимодействия между катушками остается неизменным при изменении направления подводимого к прибору тока. Поэтому такие измерительные приборы пригодны для измерения как переменного, так и постоянного токов. К аналоговым устройства относятся ваттметры электродинамической системы. Их работа основана на взаимодействии пары катушек, первая из которых неподвижна, а вторая — подвижна, то есть может отклоняться в сторону. Неподвижная катушка связана с током, а подвижная — с напряжением. Неподвижная катушка имеет небольшое число витков и включается в цепь измерения мощности последовательно, в то время как подвижная катушка имеет значительно большее количество витков и включается через резистор параллельно исследуемому прибору. Чем больший ток проходит по неподвижной катушке — тем сильнее ее магнитное поле отклоняет подвижную катушку, связанную со стрелкой. Шкала прибора отградуирована в ваттах. Как вы уже поняли, здесь автоматически учитываются и ток, и напряжение, и коэффициент мощности цепи. Схема подключения ваттметра: Схема подключения ваттметра с крышки прибора Д5065: Мощность трехфазной системы может быть измерена с помощи трех ваттметров, включенных в каждую из фаз. Однако задача может быть решена и проще. При равномерной нагрузке измерения мог быть проведены с помощью одного ваттметра. При неравномерной нагрузке и трехпроводной системе — двумя ваттметрами (или одним ваттметром специальной конструкции, так называемым двухэлементным). При неравномерной нагрузке и четырехпроводной системе — тремя ваттметрами или одним трехэлементным. Иногда для измерения реактивной мощности применяют синусные ваттметры, у которых отклонение подвижной части пропорционально не косинусу, а синусу угла сдвига фаз между током и напряжением. Устройство ваттметров для измерения реактивной мощности такое же, как и для активной. Разница лишь в том, что в синусных ваттметрах искусственно создается сдвиг фаз на 90° между напряжением и током в параллельной цепи. Включаются синусные ваттметры или, каких иногда называют, варметры по тем же измерительным схемам, что и ваттметры для измерения активной мощности. При неравномерной нагрузке в четырехпроводной линии последовательные обмотки трех ваттметров включают в линейные провода, а параллельные цепи подключают к линейным проводам и нулевому проводу. Мощность трехфазной цепи определяется как сумма показаний ваттметров. Возможно применение одного трехэлементного ваттметра. Цифровые ваттметры Цифровой ваттметр работает совершенно иначе. Ток измеряется косвенным путем по закону Ома посредством оценки падения напряжения на калиброванном шунте, а напряжение — по схеме цифрового вольтметра. Датчиком тока может быть не обязательно шунт, но и трансформатор тока. Измеренные схемой мгновенные параметры тока и напряжения обрабатываются микропроцессором, который вычисляет на основе этих данных потребляемую мощность, а также величину суммарной электроэнергии, которая была израсходована потребителем за время проведения замеров. Результат отображается на цифровом дисплее прибора. Аналоговые приборы часто можно встретить в виде щитовых, модульных изделий, а цифровые — в виде профессионального оборудования и портативных устройств. Бытовой ваттметр Очень распространенный пример простого цифрового ваттметра — бытовой ваттметр в виде сетевого адаптера — переходника. Он предназначен для наблюдения мощности потребления, а также для оперативной оценки стоимости электроэнергии в домашних условиях. Ваттметр вставляется в ту розетку, от которой обычно питается прибор, потребление которого необходимо узнать. Затем в розетку ваттметра втыкается вилка самого прибора. По нажатии соответствующей кнопки, ваттметр начинает отсчет времени и запись количества потребленной с этого момента электроэнергии, то есть той энергии, которая была отдана через его розетку. Тут же считается стоимость электроэнергии, если предварительно задана цена киловатт-часа. Пока прибор работает а ваттметр измеряет мощность, стоимость на дисплее периодически обновляется. Ваттметры такого типа способны измерять мощности до 3600 Вт. Стоит вставить прибор в розетку и воткнуть в него вилку — на дисплее тут же начинается отсчет времени и в режиме реального времени отображается потребляемая мощность. При помощи кнопок можно переключить отображаемый параметр с мощности — на ток, на напряжение, посмотреть пиковую мощность, минимальную мощность и т. д. Кроме того на дисплее можно увидеть частоту переменного тока в розетке. Задав стоимость киловатт-часа электроэнергии, при помощи бытового ваттметра можно оценить стоимость электроэнергии, потребляемой холодильником, компьютером, вентилятором, кондиционером, обогревателем, водонагревателем и т. д. Профессиональные ваттметры Профессиональные ваттметры отличаются расширенным функционалом и повышенным классом точности. Данные приборы позволяют тестировать более простые измерительные приборы, а сами способны измерять мощности в значительно более широком диапазоне величин токов, напряжений и частот нежели бытовые. Профессиональный ваттметр стоит дороже, как любой стационарный прибор подобного класса, просто в силу повышенных требований к точности и качеству измерений. Зачастую профессиональные ваттметры не критичны к форме тока, они могут измерять переменный и постоянный, синусоидальной, прямоугольный, пульсирующий и пилообразный токи, вычислять при этом мощность потребления с указанием коэффициента мощности и характера нагрузки (активная, индуктивная, емкостная, смешанная). Выпускаются как для работы с однофазными цепями, так и для трехфазных. Аналоговый ваттметр в составе профессионального лабораторного измерительного комплекта К540: Щитовые ваттметры Для осуществления замеров и индикации активной и реактивной мощности в сетях трехфазного или однофазного переменного тока, полезны щитовые встраиваемые ваттметры. Значение текущей мощности индикатор показывает в виде цифр на своем дисплее, который может иметь обычно до четырех разрядов для обеспечения достаточно высокой точности. Прибор имеет вид своеобразной измерительной головки, монтируемой в корпус. Привычное применение ваттметров данного вида — индикаторные панели различных электротехнических устройств, работающих в сетях с частотой 50 Гц, то есть такие, где ваттметр установлен стационарно и больше не снимается. Возможно сопряжение ваттметра с электронными схемами, которые корректируют работу цепи в которой он установлен в зависимости от динамики активной или реактивной мощности потребления. Ваттметр для измерения мощности: назначение, типы, подключение, применение Один из параметров, который характеризует состояние электрической сети – это ее мощность. Она отражает величину работы, выполняемую электрическим током в единицу времени. Мощность устройств, включаемых в электрическую цепь, должна быть в рамках мощности сети. Иначе возможны неприятные сюрпризы – от выхода из строя оборудования до короткого замыкания и пожара. Измеряют мощность электрического тока специальным прибором – ваттметром. И если в цепи постоянного тока она рассчитывается простым умножением силы тока на напряжение (достаточно наличия вольтметра и амперметра), то в сети переменного тока без измерительного оборудования не обойтись. Также им контролируют режим работы электрического оборудования и учитывают расход энергии. Применение Ваттметров Основная область применения – это электроэнергетическая промышленность и машиностроение, мастерские по ремонту электроприборов. Однако достаточно широко используют и бытовые измерители, которые приобретают любители электроники, компьютеров и просто обыватели – для учета и экономии энергопотребления. Применяют ваттметры для: Определения мощности приборов; Тестирования электрических сетей, и их отдельных участков; Испытаний электрических установок (как показывающие приборы); Контроля работы оборудования; Учета расхода электроэнергии. Типы ваттметров Измерению мощности предшествует измерение силы тока и напряжения исследуемого участка цепи. В зависимости способов измерения, преобразования данных и показа итоговой информации, ваттметры делятся на аналоговые и цифровые. Аналоговые ваттметры бывают показывающие и самопишущие и отражают активную мощность участка цепи. Табло показывающего прибора имеет полукруглую шкалу и поворачивающуюся стрелку. Деления шкалы отградуированы в соответствии с определенными величинами мощности, измеряемой в ваттах (Вт). Цифровые ваттметры измеряют как активную, так и реактивную мощность. Кроме того, на дисплей прибора могут выводиться (кроме показания мощности) также и сила тока, напряжение, и расход энергии по времени. Данные измерений можно вывести удаленно на компьютер оператора. Видео о ваттметре из Китая:

    Устройство и принцип действия Аналоговые ваттметры Наиболее распространенными и точными аналоговыми ваттметрами являются приборы электродинамической системы. Принцип работы основан на взаимодействии двух катушек. Одна из них – неподвижная, имеет толстую обмотку с небольшим числом витков и малое сопротивление. Подключается последовательно с нагрузкой. Вторая катушка – подвижная. Ее намотка выполнена из тонкого провода и имеет большое количество витков, поэтому и сопротивление у нее высокое. Подключается она параллельно нагрузке и снабжается еще добавочным сопротивлением (для исключения короткого замыкания между катушками). При подключении прибора к сети, в катушках образуются магнитные поля. Их взаимодействие создает вращающий момент, который отклоняет подвижную катушку с подсоединенной к ней стрелкой на определенный угол. Величина угла эквивалентна произведению силы тока и напряжения в данный момент времени. Цифровые ваттметры В основе работы цифрового ваттметра лежит предварительное измерение силы тока и напряжения. Для этого на входе устанавливаются: последовательно нагрузке – датчик тока, параллельно – датчик напряжения. Они могут выполняться на базе термисторов, измерительных трансформаторов, термопар и других элементов. Мгновенные значения полученных величин тока и напряжения посредством аналого-цифрового преобразователя передаются к встроенному микропроцессору. Здесь производятся необходимые вычисления (находится активная и реактивная мощности) и выдаются в виде итоговой информации на дисплей и подключенные внешние устройства. Рисунок — Схема подключения Ваттметра Подключение Ваттметра Ваттметры имеют четыре клеммы (2 входа, 2 выхода) для подключения. Две из них используют при сборе последовательной (токовой) цепи – ее подключают первой, а две – для параллельной (цепи напряжения). Начало цепи напряжения (вход) подключают к началу токовой цепи (соединить клеммы перемычкой), соединенному с одним зажимом сети. Конец цепи напряжения (выход) соединяют с другим зажимом сети. Рассмотрим несколько ваттметров разного исполнения и разных производителей: Многофункциональный цифровой ваттметр СМ3010 класса точности 0,1 Предназначен для измерения активной мощности, тока, напряжения и частоты в цепях постоянного тока и в однофазных цепях переменного тока; для поверки ваттметров, амперметров, вольтметров класса 0,3 и ниже, частотомеров класса 0,01 и ниже. Пределы измерения тока Iп: на постоянном и переменном токе: 0,002-0,005-0,01-0,02-0,05-0,1-0,2-0,5-1-2-5-10 А. Пределы измерения напряжения Uп: постоянный ток: 1-3-7,5-15-30-75-150-300-450-700-1000 В. переменный ток: 1-3-7,5-15-30-75-150-300-450-700 В. Пределы измерения мощности соответственно Uп* Iп Пределы измерения частоты от 40 до 5000Гц. приведенная погрешность измерения тока, напряжения и мощности на постоянном токе ±0,1%; приведенная погрешность измерения тока и напряжения на переменном токе в диапазоне частот от 40 до 1500Гц ±0,1%; приведенная погрешность измерения мощности на переменном токе в диапазоне частот от 40 до 1000Гц ±0,1%; относительная погрешность измерения частоты в диапазоне частот от 40 до 5000Гц ±0,003%; Габаритные размеры 225х100х205 мм. Масса не более 1кг. Потребляемая мощность не более 5Вт. Ваттметры многофункциональные СМ3010 выпускаются по ТУ 4221-047-16851585-2014, соответствуют требованиям ТР ТС 004/2011, ТР ТС 020/2011. Устройства измерительные ЦП8506-120 (далее – устройства). Предназначены для измерения активной, реактивной, активной и реактивной трехфазных трехпроводных цепей переменного тока, отображения текущего значения измеряемой мощности на цифровом индикаторе и преобразования его в аналоговый выход-ной сигнал (далее – выходной сигнал). Измеренные значения отображаются в цифровой форме на встроенных индикаторах. Отображение измеренных величин на цифровых индикаторах производится в единицах измеряемой величины, поступающей непосредственно на вход устройства, или в единицах измеряемой величины, поступающей на вход трансформаторов тока и напряжения с учетом коэффициентов трансформации, в ваттах, киловаттах, мегаваттах, варах, киловарах, мегаварах. Цифровые индикаторы имеют по четыре значащих разряда. для измерения активной и реактивной мощности в трехфазных трехпроводных электрических цепях переменного тока частотой от 45 до 55 Гц Краткие технические характеристики ЦП8506-120 (Ваттметр) Варметр щитовой цифровой трехфазный: Коэффициент мощности: для ваттметра cos φ=1, для варметра sin φ=1 Габаритные размеры: 120х120х150 мм Высота знака: 20 мм Максимальный диапазон отображения: 9999 Класс точности: 0,5 Время преобразования: не более 0,5 с Рабочая температура: +5 … +40 град С (О4.1), -40…+50 град С (УХЛ3.1) Степень защиты по передней панели: IP40 Потребляемая мощность: 5ВА Масса: не более 1,2 кг Ваттметр Д5085 (Д 5085, Д-5085) Предназначен для измерения мощности в однофазных цепях переменного и постоянного тока, а также для поверки менее точных приборов. Габариты не более (205±1,45)х(290±1,6)х(135±2,0) мм. Класс точности 0,2. Ваттметры Д5085 предназначены для измерения мощности в однофазных цепях переменного и постоянного тока, а также для поверки менее точных приборов. Ваттметры Д5085 предназначены для эксплуатации в условиях умеренного климата в закрытых сухих отапливаемых помещениях, при температуре окружающего воздуха от 10 до 35 °С и относительной влажности до 80 % (при 25 °С ). Ваттметры Д5085 -04.1 (тропическое исполнение) предназначены для эксплуатации в условиях как сухого, так и влажного тропического климата в закрытых помещениях с кондиционированным или частично кондиционированным воздухом при температуре окружающего воздуха от 1 до 45 °C и относительной влажности до 80 % при температуре 25 °С (по ГОСТ 15150-69). Технические данные Ваттметры Д5085 соответствуют классу точности 0,2 по ГОСТ 8476-78. Номинальный коэффициент мощности ваттметра – 1,0. Номинальный ток параллельной цепи ваттметра Д5085 равен (5 ± 0,1) mА. Нормальная область частот ваттметра от 45 до 500 Гц, рабочая область частот – 500-1000 Гц. Предел допускаемой дополнительной погрешности прибора Ваттметр Д5085, вызванной отклонением напряжения на ± 20 % от номинального значения либо от пределов нормальной области напряжений, при неизменном значении измеряемой мощности равен ± 0,2 % от конечного значения диапазона измерений. Предел допускаемой дополнительной погрешности прибора Ваттметр Д5085, вызванной отклонением частоты от верхней границы нормальной области до любого значения в рабочей области частот, не превышает ± 0,2 % от конечного значения диапазона измерений. Предел допускаемой дополнительной погрешности прибора Ваттметр Д5085, вызванной изменением температуры окружающего воздуха от нормальной до любой температуры в пределах рабочих температур на каждые 10 °С изменения температуры, равен ±0,2% от конечного значения диапазона измерений. Нормальная температура – 20±2 °С, если на лицевойчасти прибора не оговорено иное значение. Ещё одно видео о встраиваемом ваттметре:

    Области применения, достоинства и недостатки Устройство, принцип работы, достоинства и недостатки, область применения приборов электродинамической системы. Уравнение зависимости угла отклонения стрелки прибора от числового значения и рода измеряемой величины. Характер шкалы. Устройство и принцип действия электродинамического ИМ Принцип действия электродинамического измерительного механизма основан на взаимодействии магнитных полей двух систем проводников с током. На рис. 1 схематически показано устройство электродинамического измерительного механизма, который состоит из подвижной 1 и неподвижной 2 катушек (рамок), стрелки 3, жестко прикрепленной к подвижной катушке, и шкалы 4, вдоль которой перемещается указатель стрелки. Риc. 1. Устройство электродинамического измерительного механизма Применяют круглые или прямоугольные катушки. Обычно неподвижная катушка состоит из двух одинаковых частей, разделенных воздушным зазором. Вращающий момент создается при взаимодействии магнитного поля, создаваемого током I1, проходящим по катушке 1, и магнитным полем, создаваемым током, проходящим через катушки возбуждения 2. Электромагнитная энергия We двух контуров с токами где L1, L2— индуктивность подвижной и неподвижной катушек; M1,2 — взаимная индуктивность катушек 1 и 2. Так как индуктивность катушек не зависит от угла поворота, поэтому вращающий момент, действующий на подвижную катушку 1 При механическом создании противодействующего момента угол отклонения подвижной может быть определен по формуле При включении электродинамического механизма в цепь переменного тока угол отклонения где I1 и I2 — действующие значения токов; y — угол сдвига фаз между векторами токов I1 и I2 . В электродинамических логометрических измерительных механизмах противодействующий момент создается электрическим способом. Подвижная часть такого механизма состоит из двух жестко закрепленных между собой под определенным углом g катушек. Угол отклонения a зависит от отношения токов I1/I2. Области применения, достоинства и недостатки Приборы электродинамической системы могут применяться как в цепях постоянного, так и в цепях переменного тока. Шкала приборов неравномерная. Характер шкалы зависит от формы катушек и их взаимного расположения. Изменяя множитель dM1,2/da, можно улучшить шкалу так, что в начале шкалы будет иметь место неравномерность, а далее шкала будет практически равномерной. Электродинамические ваттметры имеют практически равномерную шкалу, амперметры и вольтметры — равномерную шкалу, начиная с 15-20 % ее номинального значения. Электродинамические приборы применяют в качестве: ваттметров постоянного тока и однофазных, трехфазных, малокосинусных ваттметров переменного тока, амперметров и вольтметров переменного и постоянного токов. Электродинамические логометрические измерительные механизмы применяются в фазометрах, частотомерах, фарадомерах. Выпускаются комбинированные приборы — ампервольтваттметры. Электродинамические амперметры выполняются по двум схемам, показанным на рис. 2 а и 2б. Рис. 2. Схемы включения катушек электродинамического механизма Последовательное соединение катушек (рис. 2а) используется в амперметрах, предназначенных для измерения малых токов (до 0,5 А). Так как y = 0 и I1 = I2 = I, уравнение преобразования амперметра сводится к виду В параллельной схеме (рис. 2 б), которая используется при больших токах (до 10 А), подбором индуктивностей L1, L2 и резистора R в цепях катушек задаются токи I1 = k1I; I2 = k2I и разность фаз y =0. Уравнение преобразования амперметра будет иметь вид Для выполнения электродинамического вольтметра последовательно с катушками, соединенными по схеме (рис. 2 а), включается добавочный резистор RД, как показано на рис. 2 в. Уравнение преобразования вольтметра имеет вид где R = RД + RV — общее сопротивление цепи. Наиболее важной группой электродинамических приборов являются ваттметры. На рис. 2 г представлена простейшая схема однопредельного электродинамического ваттметра. Учитывая, что I1= IН и I2 = U/(R2 + RД), уравнение преобразования электродинамического ваттметра постоянного тока может быть записано в виде На переменном токе уравнение преобразования где j — угол сдвига фаз между приложенным напряжением U и током IH в нагрузке RН; R2 – сопротивление параллельной катушки; Ра — активная мощность нагрузки. Из выражений (8), (9) видно, что шкала ваттметров равномерная. Основными достоинствамиэлектродинамических приборов являются: возможность использования в цепях как постоянного, так и переменного токов; возможность градуировки на постоянном токе; высокая стабильность показаний во времени; высокий класс точности (например, выпускаются электродинамические амперметры и миллиамперметры, вольтметры, однофазные ваттметры класса точности 0,05, частотомеры — класса 0,5). Высокая точность приборов обусловлена отсутствием в них, в отличие от других электромеханических приборов, ферромагнитных элементов. В качестве недостатковтаких приборов можно отметить следующие: влияние внешних магнитных полей и механических воздействий; большую мощность потребления. По чувствительности электродинамические приборы уступают магнитоэлектрическим. Однако применение растяжек и светового указателя позволяют уменьшить собственное потребление мощности (имеются миллиамперметры с током полного отклонения 1 мА). Компенсационный метод измерения напряжения и эдс. начертите схему для измерения эдс компенсационным методом: опишите метод измерения и выведите уравнение для определения искомой эдс. Компенсационный метод (метод противопос­тавления) измерения заключается в уравновешивании, осуществляе­мом включением на индикатор равновесия либо двух электрически не связанных между собой, но противоположно направленных напряжений или ЭДС, либо двух раздельно регулируемых токов. Компенсационный метод исполь­зуют для непосредственного срав­нения напряжений или ЭДС, тока и косвенно для измерения других электрических, а также неэлектри­ческих величин, преобразуемых в электрические. Применяют следующие схемы компенсации: а) напряжений или ЭДС (рис. 7.2); б) электрических токов (рис. 7.3). Рис. 7.2, Схема компенсации на­пряжений Рис. 7.3. Схема компенсации токов Схема, показанная на рис. 7.2, наиболее распространенная. В ней измеряемое напряжение Ux компенсируется равным, но про­тивоположным по знаку известным напряжением UK. Падение на­пряжения UK создается током / на изменяемом по значению ком­пенсирующем образцовом сопротивлении RK. Изменение Rк про­исходит до тех пор, пока UK не будет равно Ux. Момент компен­сации определяют по отсутствию тока в цепи магнитоэлектриче­ского гальванометра G; при этом мощность от объекта измерения не потребляется. Компенсационный метод обеспечивает высокую точность изме­рения. Компенсаторами или потенциометрами называют устройства, предназначенные для измерения методом компенсации напряжения или э.д.с., а также ряда других электрических величин, связанных с напряжением или э.д.с. с функциональной зависимостью (например, I, P, R, и др.). В практических схемах компенсаторов для обеспечения необходи­мой точности измерения ток I в рабочей цепи определяют не ампер­метром непосредственной оценки, а компенсационным методом с помощью эталона ЭДС нормального элемента. Нормальные эле­менты обеспечивают постоянную во времени ЭДС, равную 1,01865 В при температуре 20 °С, внутреннее сопротивление 500—1000 Ом, ток перегрузки 1 мкА. С изменением температуры окружающей среды значение ЭДС уменьшается на каждый градус повышения температуры: Et = E20 — 0,00004 (t — 20) — 0,000001 (t где E t — ЭДС при температуре t, °С; E20 — ЭДС при 20 °С. Схема компенсатора представлена на рис. 7.4. Она содержит источник вспомогательной ЭДС Eвсп для питания рабочей цепи, в которую включают регулировочное Rp, компенсирующее RK и образцовое RH сопротивления. К зажимам НЭ подключают нор­мальный элемент, ЭДС которого Eнэ, к зажимам X — искомую ЭДС Ех. В качестве индикатора равновесия используют высоко­чувствительный магнитоэлектрический гальванометр G. При работе с компенсатором выполняют две операции: 1) устанавливают ток / в рабочей цепи компенсатора с помощью источника вспомогательной ЭДС Eвсп(положение 1 переключа­теля В); 2) измеряют искомую ЭДС Ех (положение 2 переключателя В). Для установки рабочего тока предварительно определяют темпе­ратуру окружающей среды, затем по (7.3) вычисляют точ­ное значение ЭДС нормаль­ного элемента для данной температуры. Далее устанав­ливают образцовое сопротив­ление RH, значение которого выбирают в зависимости от значений тока в рабочей це­пи и ЭДС при температуре t (сопротивление RK состоит из катушки с постоянным значе­нием сопротивления и после­довательно соединенной с ней температурной декадой). За­тем переключатель В ставят в положение 1 и ЭДС Рис. 7.4. Схема компенсатора нормального элемента противопоставляют падению напряжения на Ru, которое регулируется с помощью изменяющего значение тока / в рабочей цепи резистором Rp. Момент компенсации соответствует нулевому отклонению гальванометра G, т. е. Eнэ = IRn. После установления рабочего тока I для измерения Ех переключатель В ставят в положение 2 и регулировкой образцового компенсирующего сопротивления Rк вновь доводят до нуля ток в цепи гальванометра G. Тогда (7.4) где I — значение тока, установленное при положении 1 переклю­чателя В;RK— значение образцового компенсирующего сопро­тивления, при котором имеет место состояние равновесия. Сопротивление RK выполняют по специальным схемам, кото­рые обеспечивают постоянное сопротивление между точками 3, 4 и переменное сопротивление между точками 3, Д, а также необхо­димое число знаков и точность отсчета. 77. Определите потери мощности в дросселе и магнитную индукцию, при которой производилось измерение, если сопротивление амперметра и токовой цепи ваттметра равны 0,3 Ом каждое, а сопротивление вольтметра и цепи напряжения ваттметра 16 кОм каждое. Активное сопротивление обмотки дросселя, имеющего 500 витков, составляет 5 Ом. Показания приборов были: 4 А, 100 В, 80 Вт. Сечение сердечника 2,5х4 см 2 , частота тока 50 Гц. Решение. Потери в стали определяются с учетом потерь в приборах, которые включены после ваттметра, по формуле где — потери мощности в стали; — показание ваттметра; — потери в вольтметре в последовательной цепи ваттметра и катушки. Определяем потери мощности в вольтметре Определяем потери в последовательной цепи ваттметра Определяем потери мощности в катушке Определяем потери в стали Определяем магнитную индукции 112. Для измерения индуктивного и емкостного сопротивлений цепей переменного тока были определены ток, напряжение и активная мощность, причем их значения были соответственно равны 1А±10%, 50 В±10%, 20 Вт±10%. Каков диапазон возможных значений индуктивности и емкости, если измерения производились в сети переменного тока частотой 50 Гц? Решение. Определяем диапазон значений тока, напряжения и активной мощности I = 0,9÷1,1 А U = 45÷55 В Р = 18÷22 Вт Определяем диапазон полного сопротивления цепи переменного тока Определяем диапазон активного сопротивления цепи переменного тока Определяем диапазон реактивного сопротивления цепи переменного тока = 44,9 ÷ 41,2 Ом Определяем диапазон индуктивности = 0,143 ÷0,131Гн Определяем диапазон емкости = 70,9÷77,3 мкФ СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 1. Раннев Г.Г., Тарасенко А.П. «Методы и средства измерений» Учебник. М.: «Академия», 2004. 2. Шишмарев В.Ю.Средства измерений (4-е изд., стер.). Учебник. М.: «Академия», 2011.
  2. Ваттметр для измерения мощности: назначение, типы, подключение, применение
  3. Применение Ваттметров
  4. Типы ваттметров
  5. Устройство и принцип действия
  6. Аналоговые ваттметры
  7. Цифровые ваттметры
  8. Подключение Ваттметра
  9. Многофункциональный цифровой ваттметр СМ3010 класса точности 0,1
  10. Устройства измерительные ЦП8506-120 (далее – устройства).
  11. Ваттметр Д5085 (Д 5085, Д-5085)
  12. Области применения, достоинства и недостатки
  13. 🎬 Видео

Ваттметры — виды и применение, схема подключения, особенности использования

Каждый потребитель, питаемый от электрической сети, потребляет какую-то мощность. Мощность характеризует в данном случае скорость выполнения электрической сетью работы, необходимой для функционирования того или иного прибора либо цепи, которая от этой сети питается. Разумеется, сеть должна быть в состоянии обеспечить данную мощность и не быть при этом перегруженной, иначе может случиться авария.

Для измерения потребляемой мощности в цепях переменного тока используют специальные приборы — ваттметры. Ваттметры показывают текущую потребляемую мощность, а некоторые из них способны даже подсчитать количество энергии в киловатт-часах, израсходованной за определенное время, пока потребитель работал. В данной статье мы рассмотрим несколько основных видов ваттметров.

Электродинамический ваттметр конструкция принцип действия уравнение шкалы

Ваттметры находят применение в самых разных сферах промышленности и быта, особенно в электроэнергетике и в машиностроении. Кроме того ваттметры часто полезны в быту.

Их используют для определения мощности различной бытовой техники, для расчета приблизительной стоимости электроэнергии в месяц, для диагностики приборов, для тестирования сетей, да и просто в качестве наглядных индикаторов. Есть щитовые ваттметры, ваттметры в виде сетевых адаптеров, цифровые и аналоговые ваттметры.

Принцип работы данных приборов в общем виде прост: измеряются напряжение питания и потребляемый ток, а мощность определяется как произведение данных величин с учетом коэффициента мощности исследуемой цепи. Коэффициент мощности определяется по разности фаз между током и напряжением. Цифровые ваттметры отображают показания на дисплее или записывают их в цифровой форме, а аналоговые — показывают стрелкой на шкале.

Электродинамический ваттметр конструкция принцип действия уравнение шкалы

Электродинамические измерительные приборы

Приборы, основанные на принципе взаимодействия двух магнитных полей, создаваемых токами, текущими в двух различных катушках по устройству и принципу действия называют электродинамическими.

Одна из этих катушек укреплена неподвижно, а вторая, помещенная внутри первой, может поворачиваться вокруг своей оси и удерживается в некотором начальном положении спиральными пружинами. По отклонению подвижной катушки можно непосредственно судить о силе протекающего по катушкам тока.

В зависимости отданных прибора и способа его включения с помощью этого прибора можно измерять либо силу тока в цепи (амперметр), либо напряжение на зажимах цепи (вольтметр), либо мощность, потребляемую в цепи (ваттметр).

Т. к. направление электрического тока, протекающего через обе катушки электродинамического измерительного прибора изменяется одновременно, то направление силы взаимодействия между катушками остается неизменным при изменении направления подводимого к прибору тока. Поэтому такие измерительные приборы пригодны для измерения как переменного, так и постоянного токов.

К аналоговым устройства относятся ваттметры электродинамической системы. Их работа основана на взаимодействии пары катушек, первая из которых неподвижна, а вторая — подвижна, то есть может отклоняться в сторону. Неподвижная катушка связана с током, а подвижная — с напряжением.

Электродинамический ваттметр конструкция принцип действия уравнение шкалы

Неподвижная катушка имеет небольшое число витков и включается в цепь измерения мощности последовательно, в то время как подвижная катушка имеет значительно большее количество витков и включается через резистор параллельно исследуемому прибору.

Чем больший ток проходит по неподвижной катушке — тем сильнее ее магнитное поле отклоняет подвижную катушку, связанную со стрелкой. Шкала прибора отградуирована в ваттах. Как вы уже поняли, здесь автоматически учитываются и ток, и напряжение, и коэффициент мощности цепи.

Электродинамический ваттметр конструкция принцип действия уравнение шкалы

Схема подключения ваттметра:

Электродинамический ваттметр конструкция принцип действия уравнение шкалы

Схема подключения ваттметра с крышки прибора Д5065:

Электродинамический ваттметр конструкция принцип действия уравнение шкалы

Мощность трехфазной системы может быть измерена с помощи трех ваттметров, включенных в каждую из фаз. Однако задача может быть решена и проще.

При равномерной нагрузке измерения мог быть проведены с помощью одного ваттметра. При неравномерной нагрузке и трехпроводной системе — двумя ваттметрами (или одним ваттметром специальной конструкции, так называемым двухэлементным). При неравномерной нагрузке и четырехпроводной системе — тремя ваттметрами или одним трехэлементным.

Иногда для измерения реактивной мощности применяют синусные ваттметры, у которых отклонение подвижной части пропорционально не косинусу, а синусу угла сдвига фаз между током и напряжением.

Устройство ваттметров для измерения реактивной мощности такое же, как и для активной. Разница лишь в том, что в синусных ваттметрах искусственно создается сдвиг фаз на 90° между напряжением и током в параллельной цепи. Включаются синусные ваттметры или, каких иногда называют, варметры по тем же измерительным схемам, что и ваттметры для измерения активной мощности.

При неравномерной нагрузке в четырехпроводной линии последовательные обмотки трех ваттметров включают в линейные провода, а параллельные цепи подключают к линейным проводам и нулевому проводу. Мощность трехфазной цепи определяется как сумма показаний ваттметров. Возможно применение одного трехэлементного ваттметра.

Цифровые ваттметры

Цифровой ваттметр работает совершенно иначе. Ток измеряется косвенным путем по закону Ома посредством оценки падения напряжения на калиброванном шунте, а напряжение — по схеме цифрового вольтметра. Датчиком тока может быть не обязательно шунт, но и трансформатор тока.

Измеренные схемой мгновенные параметры тока и напряжения обрабатываются микропроцессором, который вычисляет на основе этих данных потребляемую мощность, а также величину суммарной электроэнергии, которая была израсходована потребителем за время проведения замеров. Результат отображается на цифровом дисплее прибора.

Электродинамический ваттметр конструкция принцип действия уравнение шкалы

Аналоговые приборы часто можно встретить в виде щитовых, модульных изделий, а цифровые — в виде профессионального оборудования и портативных устройств.

Бытовой ваттметр

Очень распространенный пример простого цифрового ваттметра — бытовой ваттметр в виде сетевого адаптера — переходника. Он предназначен для наблюдения мощности потребления, а также для оперативной оценки стоимости электроэнергии в домашних условиях. Ваттметр вставляется в ту розетку, от которой обычно питается прибор, потребление которого необходимо узнать. Затем в розетку ваттметра втыкается вилка самого прибора.

Электродинамический ваттметр конструкция принцип действия уравнение шкалы

По нажатии соответствующей кнопки, ваттметр начинает отсчет времени и запись количества потребленной с этого момента электроэнергии, то есть той энергии, которая была отдана через его розетку. Тут же считается стоимость электроэнергии, если предварительно задана цена киловатт-часа. Пока прибор работает а ваттметр измеряет мощность, стоимость на дисплее периодически обновляется. Ваттметры такого типа способны измерять мощности до 3600 Вт.

Стоит вставить прибор в розетку и воткнуть в него вилку — на дисплее тут же начинается отсчет времени и в режиме реального времени отображается потребляемая мощность. При помощи кнопок можно переключить отображаемый параметр с мощности — на ток, на напряжение, посмотреть пиковую мощность, минимальную мощность и т. д.

Кроме того на дисплее можно увидеть частоту переменного тока в розетке. Задав стоимость киловатт-часа электроэнергии, при помощи бытового ваттметра можно оценить стоимость электроэнергии, потребляемой холодильником, компьютером, вентилятором, кондиционером, обогревателем, водонагревателем и т. д.

Профессиональные ваттметры

Профессиональные ваттметры отличаются расширенным функционалом и повышенным классом точности. Данные приборы позволяют тестировать более простые измерительные приборы, а сами способны измерять мощности в значительно более широком диапазоне величин токов, напряжений и частот нежели бытовые.

Электродинамический ваттметр конструкция принцип действия уравнение шкалы

Профессиональный ваттметр стоит дороже, как любой стационарный прибор подобного класса, просто в силу повышенных требований к точности и качеству измерений. Зачастую профессиональные ваттметры не критичны к форме тока, они могут измерять переменный и постоянный, синусоидальной, прямоугольный, пульсирующий и пилообразный токи, вычислять при этом мощность потребления с указанием коэффициента мощности и характера нагрузки (активная, индуктивная, емкостная, смешанная). Выпускаются как для работы с однофазными цепями, так и для трехфазных.

Аналоговый ваттметр в составе профессионального лабораторного измерительного комплекта К540:

Электродинамический ваттметр конструкция принцип действия уравнение шкалы

Щитовые ваттметры

Для осуществления замеров и индикации активной и реактивной мощности в сетях трехфазного или однофазного переменного тока, полезны щитовые встраиваемые ваттметры. Значение текущей мощности индикатор показывает в виде цифр на своем дисплее, который может иметь обычно до четырех разрядов для обеспечения достаточно высокой точности. Прибор имеет вид своеобразной измерительной головки, монтируемой в корпус.

Электродинамический ваттметр конструкция принцип действия уравнение шкалы

Привычное применение ваттметров данного вида — индикаторные панели различных электротехнических устройств, работающих в сетях с частотой 50 Гц, то есть такие, где ваттметр установлен стационарно и больше не снимается. Возможно сопряжение ваттметра с электронными схемами, которые корректируют работу цепи в которой он установлен в зависимости от динамики активной или реактивной мощности потребления.

Видео:Измерение мощности ваттметромСкачать

Измерение мощности ваттметром

Ваттметр для измерения мощности: назначение, типы, подключение, применение

Электродинамический ваттметр конструкция принцип действия уравнение шкалыОдин из параметров, который характеризует состояние электрической сети – это ее мощность. Она отражает величину работы, выполняемую электрическим током в единицу времени. Мощность устройств, включаемых в электрическую цепь, должна быть в рамках мощности сети. Иначе возможны неприятные сюрпризы – от выхода из строя оборудования до короткого замыкания и пожара.

Измеряют мощность электрического тока специальным прибором – ваттметром. И если в цепи постоянного тока она рассчитывается простым умножением силы тока на напряжение (достаточно наличия вольтметра и амперметра), то в сети переменного тока без измерительного оборудования не обойтись. Также им контролируют режим работы электрического оборудования и учитывают расход энергии.

Видео:КАК РАБОТАЮТ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ [РадиолюбительTV 50]Скачать

КАК РАБОТАЮТ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ [РадиолюбительTV 50]

Применение Ваттметров

Основная область применения – это электроэнергетическая промышленность и машиностроение, мастерские по ремонту электроприборов. Однако достаточно широко используют и бытовые измерители, которые приобретают любители электроники, компьютеров и просто обыватели – для учета и экономии энергопотребления.

Применяют ваттметры для:

  • Определения мощности приборов;
  • Тестирования электрических сетей, и их отдельных участков;
  • Испытаний электрических установок (как показывающие приборы);
  • Контроля работы оборудования;
  • Учета расхода электроэнергии.

Видео:Амперметр и вольтметр: что у них внутри?Скачать

Амперметр и вольтметр: что у них внутри?

Типы ваттметров

Измерению мощности предшествует измерение силы тока и напряжения исследуемого участка цепи.

В зависимости способов измерения, преобразования данных и показа итоговой информации, ваттметры делятся на аналоговые и цифровые.

Аналоговые ваттметры бывают показывающие и самопишущие и отражают активную мощность участка цепи. Табло показывающего прибора имеет полукруглую шкалу и поворачивающуюся стрелку. Деления шкалы отградуированы в соответствии с определенными величинами мощности, измеряемой в ваттах (Вт).

Цифровые ваттметры измеряют как активную, так и реактивную мощность. Кроме того, на дисплей прибора могут выводиться (кроме показания мощности) также и сила тока, напряжение, и расход энергии по времени. Данные измерений можно вывести удаленно на компьютер оператора.

Видео о ваттметре из Китая:

Видео:Видеоурок «Классификация электроизмерительных приборов»Скачать

Видеоурок «Классификация электроизмерительных приборов»

Устройство и принцип действия

Аналоговые ваттметры

Наиболее распространенными и точными аналоговыми ваттметрами являются приборы электродинамической системы.

Принцип работы основан на взаимодействии двух катушек. Одна из них – неподвижная, имеет толстую обмотку с небольшим числом витков и малое сопротивление. Подключается последовательно с нагрузкой. Вторая катушка – подвижная.

Ее намотка выполнена из тонкого провода и имеет большое количество витков, поэтому и сопротивление у нее высокое.

Подключается она параллельно нагрузке и снабжается еще добавочным сопротивлением (для исключения короткого замыкания между катушками).

При подключении прибора к сети, в катушках образуются магнитные поля. Их взаимодействие создает вращающий момент, который отклоняет подвижную катушку с подсоединенной к ней стрелкой на определенный угол.

Величина угла эквивалентна произведению силы тока и напряжения в данный момент времени.

Цифровые ваттметры

В основе работы цифрового ваттметра лежит предварительное измерение силы тока и напряжения. Для этого на входе устанавливаются: последовательно нагрузке – датчик тока, параллельно – датчик напряжения. Они могут выполняться на базе термисторов, измерительных трансформаторов, термопар и других элементов.

Мгновенные значения полученных величин тока и напряжения посредством аналого-цифрового преобразователя передаются к встроенному микропроцессору. Здесь производятся необходимые вычисления (находится активная и реактивная мощности) и выдаются в виде итоговой информации на дисплей и подключенные внешние устройства. Электродинамический ваттметр конструкция принцип действия уравнение шкалы

Рисунок — Схема подключения Ваттметра

Видео:Урок 275. Электроизмерительные приборы. ГромкоговорителиСкачать

Урок 275. Электроизмерительные приборы. Громкоговорители

Подключение Ваттметра

Ваттметры имеют четыре клеммы (2 входа, 2 выхода) для подключения. Две из них используют при сборе последовательной (токовой) цепи – ее подключают первой, а две – для параллельной (цепи напряжения).

Начало цепи напряжения (вход) подключают к началу токовой цепи (соединить клеммы перемычкой), соединенному с одним зажимом сети. Конец цепи напряжения (выход) соединяют с другим зажимом сети.

Рассмотрим несколько ваттметров разного исполнения и разных производителей:

Электродинамический ваттметр конструкция принцип действия уравнение шкалы

Многофункциональный цифровой ваттметр СМ3010 класса точности 0,1

Предназначен для измерения активной мощности, тока, напряжения и частоты в цепях постоянного тока и в однофазных цепях переменного тока; для поверки ваттметров, амперметров, вольтметров класса 0,3 и ниже, частотомеров класса 0,01 и ниже.

Пределы измерения тока Iп:

  • на постоянном и переменном токе: 0,002-0,005-0,01-0,02-0,05-0,1-0,2-0,5-1-2-5-10 А.

Пределы измерения напряжения Uп:

  • постоянный ток: 1-3-7,5-15-30-75-150-300-450-700-1000 В.
  • переменный ток: 1-3-7,5-15-30-75-150-300-450-700 В.

Пределы измерения мощности соответственно Uп* Iп

Пределы измерения частоты от 40 до 5000Гц.

  • приведенная погрешность измерения тока, напряжения и мощности на постоянном токе ±0,1%;
  • приведенная погрешность измерения тока и напряжения на переменном токе в диапазоне частот от 40 до 1500Гц ±0,1%;
  • приведенная погрешность измерения мощности на переменном токе в диапазоне частот от 40 до 1000Гц ±0,1%;
  • относительная погрешность измерения частоты в диапазоне частот от 40 до 5000Гц ±0,003%;

Габаритные размеры 225х100х205 мм. Масса не более 1кг. Потребляемая мощность не более 5Вт.

Ваттметры многофункциональные СМ3010 выпускаются по ТУ 4221-047-16851585-2014, соответствуют требованиям ТР ТС 004/2011, ТР ТС 020/2011.

Электродинамический ваттметр конструкция принцип действия уравнение шкалы

Устройства измерительные ЦП8506-120 (далее – устройства).

Предназначены для измерения активной, реактивной, активной и реактивной трехфазных трехпроводных цепей переменного тока, отображения текущего значения измеряемой мощности на цифровом индикаторе и преобразования его в аналоговый выход-ной сигнал (далее – выходной сигнал).

Измеренные значения отображаются в цифровой форме на встроенных индикаторах. Отображение измеренных величин на цифровых индикаторах производится в единицах измеряемой величины, поступающей непосредственно на вход устройства, или в единицах измеряемой величины, поступающей на вход трансформаторов тока и напряжения с учетом коэффициентов трансформации, в ваттах, киловаттах, мегаваттах, варах, киловарах, мегаварах. Цифровые индикаторы имеют по четыре значащих разряда.

  • для измерения активной и реактивной мощности в трехфазных трехпроводных электрических цепях переменного тока частотой от 45 до 55 Гц

Краткие технические характеристики ЦП8506-120 (Ваттметр)

Варметр щитовой цифровой трехфазный:

  • Коэффициент мощности: для ваттметра cos φ=1, для варметра sin φ=1
  • Габаритные размеры: 120х120х150 мм
  • Высота знака: 20 мм
  • Максимальный диапазон отображения: 9999
  • Класс точности: 0,5
  • Время преобразования: не более 0,5 с
  • Рабочая температура: +5 … +40 град С (О4.1), -40…+50 град С (УХЛ3.1)
  • Степень защиты по передней панели: IP40
  • Потребляемая мощность: 5ВА
  • Масса: не более 1,2 кг

Электродинамический ваттметр конструкция принцип действия уравнение шкалы

Ваттметр Д5085 (Д 5085, Д-5085)

Предназначен для измерения мощности в однофазных цепях переменного и постоянного тока, а также для поверки менее точных приборов.

Габариты не более (205±1,45)х(290±1,6)х(135±2,0) мм.

Класс точности 0,2.

Ваттметры Д5085 предназначены для измерения мощности в однофазных цепях переменного и постоянного тока, а также для поверки менее точных приборов.

Ваттметры Д5085 предназначены для эксплуатации в условиях умеренного климата в закрытых сухих отапливаемых помещениях, при температуре окружающего воздуха от 10 до 35 °С и относительной влажности до 80 % (при 25 °С ).

Ваттметры Д5085 -04.1 (тропическое исполнение) предназначены для эксплуатации в условиях как сухого, так и влажного тропического климата в закрытых помещениях с кондиционированным или частично кондиционированным воздухом при температуре окружающего воздуха от 1 до 45 °C и относительной влажности до 80 % при температуре 25 °С (по ГОСТ 15150-69).

Технические данные

Ваттметры Д5085 соответствуют классу точности 0,2 по ГОСТ 8476-78.

Номинальный коэффициент мощности ваттметра – 1,0.

Номинальный ток параллельной цепи ваттметра Д5085 равен (5 ± 0,1) mА. Нормальная область частот ваттметра от 45 до 500 Гц, рабочая область частот – 500-1000 Гц.

Предел допускаемой дополнительной погрешности прибора Ваттметр Д5085, вызванной отклонением напряжения на ± 20 % от номинального значения либо от пределов нормальной области напряжений, при неизменном значении измеряемой мощности равен ± 0,2 % от конечного значения диапазона измерений.

Предел допускаемой дополнительной погрешности прибора Ваттметр Д5085, вызванной отклонением частоты от верхней границы нормальной области до любого значения в рабочей области частот, не превышает ± 0,2 % от конечного значения диапазона измерений.

Предел допускаемой дополнительной погрешности прибора Ваттметр Д5085, вызванной изменением температуры окружающего воздуха от нормальной до любой температуры в пределах рабочих температур на каждые 10 °С изменения температуры, равен ±0,2% от конечного значения диапазона измерений. Нормальная температура – 20±2 °С, если на лицевойчасти прибора не оговорено иное значение.

Ещё одно видео о встраиваемом ваттметре:

Видео:✅Бытовой ВАТТМЕТР для измерения мощности электроприборов | Как пользоваться ваттметромСкачать

✅Бытовой ВАТТМЕТР для измерения мощности электроприборов | Как пользоваться ваттметром

Области применения, достоинства и недостатки

Устройство, принцип работы, достоинства и недостатки, область применения приборов электродинамической системы. Уравнение зависимости угла отклонения стрелки прибора от числового значения и рода измеряемой величины. Характер шкалы.

Устройство и принцип действия электродинамического ИМ

Принцип действия электродинамического измерительного механизма основан на взаимодействии магнитных полей двух систем проводников с током.

На рис. 1 схематически показано устройство электродинамического измерительного механизма, который состоит из подвижной 1 и неподвижной 2 катушек (рамок), стрелки 3, жестко прикрепленной к подвижной катушке, и шкалы 4, вдоль которой перемещается указатель стрелки.

Электродинамический ваттметр конструкция принцип действия уравнение шкалы

Риc. 1. Устройство электродинамического измерительного механизма

Применяют круглые или прямоугольные катушки. Обычно неподвижная катушка состоит из двух одинаковых частей, разделенных воздушным зазором. Вращающий момент создается при взаимодействии магнитного поля, создаваемого током I1, проходящим по катушке 1, и магнитным полем, создаваемым током, проходящим через катушки возбуждения 2. Электромагнитная энергия We двух контуров с токами

где L1, L2— индуктивность подвижной и неподвижной катушек; M1,2 — взаимная индуктивность катушек 1 и 2.

Так как индуктивность катушек не зависит от угла поворота, поэтому вращающий момент, действующий на подвижную катушку 1

При механическом создании противодействующего момента угол отклонения подвижной может быть определен по формуле

При включении электродинамического механизма в цепь переменного тока угол отклонения

где I1 и I2 — действующие значения токов; y — угол сдвига фаз между векторами токов I1 и I2 .

В электродинамических логометрических измерительных механизмах противодействующий момент создается электрическим способом. Подвижная часть такого механизма состоит из двух жестко закрепленных между собой под определенным углом g катушек. Угол отклонения a зависит от отношения токов I1/I2.

Области применения, достоинства и недостатки

Приборы электродинамической системы могут применяться как в цепях постоянного, так и в цепях переменного тока. Шкала приборов неравномерная. Характер шкалы зависит от формы катушек и их взаимного расположения. Изменяя множитель dM1,2/da, можно улучшить шкалу так, что в начале шкалы будет иметь место неравномерность, а далее шкала будет практически равномерной. Электродинамические ваттметры имеют практически равномерную шкалу, амперметры и вольтметры — равномерную шкалу, начиная с 15-20 % ее номинального значения.

Электродинамические приборы применяют в качестве: ваттметров постоянного тока и однофазных, трехфазных, малокосинусных ваттметров переменного тока, амперметров и вольтметров переменного и постоянного токов. Электродинамические логометрические измерительные механизмы применяются в фазометрах, частотомерах, фарадомерах. Выпускаются комбинированные приборы — ампервольтваттметры.

Электродинамические амперметры выполняются по двум схемам, показанным на рис. 2 а и 2б.

Электродинамический ваттметр конструкция принцип действия уравнение шкалы

Рис. 2. Схемы включения катушек электродинамического механизма

Последовательное соединение катушек (рис. 2а) используется в амперметрах, предназначенных для измерения малых токов (до 0,5 А). Так как y = 0 и I1 = I2 = I, уравнение преобразования амперметра сводится к виду

В параллельной схеме (рис. 2 б), которая используется при больших токах (до 10 А), подбором индуктивностей L1, L2 и резистора R в цепях катушек задаются токи I1 = k1I; I2 = k2I и разность фаз y =0. Уравнение преобразования амперметра будет иметь вид

Для выполнения электродинамического вольтметра последовательно с катушками, соединенными по схеме (рис. 2 а), включается добавочный резистор RД, как показано на рис. 2 в. Уравнение преобразования вольтметра имеет вид

где R = RД + RV — общее сопротивление цепи.

Наиболее важной группой электродинамических приборов являются ваттметры. На рис. 2 г представлена простейшая схема однопредельного электродинамического ваттметра.

Учитывая, что I1= IН и I2 = U/(R2 + RД), уравнение преобразования электродинамического ваттметра постоянного тока может быть записано в виде

На переменном токе уравнение преобразования

где j — угол сдвига фаз между приложенным напряжением U и током IH в нагрузке RН; R2 – сопротивление параллельной катушки; Ра — активная мощность нагрузки.

Из выражений (8), (9) видно, что шкала ваттметров равномерная.

Основными достоинствамиэлектродинамических приборов являются: возможность использования в цепях как постоянного, так и переменного токов; возможность градуировки на постоянном токе; высокая стабильность показаний во времени; высокий класс точности (например, выпускаются электродинамические амперметры и миллиамперметры, вольтметры, однофазные ваттметры класса точности 0,05, частотомеры — класса 0,5). Высокая точность приборов обусловлена отсутствием в них, в отличие от других электромеханических приборов, ферромагнитных элементов.

В качестве недостатковтаких приборов можно отметить следующие: влияние внешних магнитных полей и механических воздействий; большую мощность потребления. По чувствительности электродинамические приборы уступают магнитоэлектрическим. Однако применение растяжек и светового указателя позволяют уменьшить собственное потребление мощности (имеются миллиамперметры с током полного отклонения 1 мА).

Компенсационный метод измерения напряжения и эдс. начертите схему для измерения эдс компенсационным методом: опишите метод измерения и выведите уравнение для определения искомой эдс.

Компенсационный метод (метод противопос­тавления) измерения заключается в уравновешивании, осуществляе­мом включением на индикатор равновесия либо двух электрически не связанных между собой, но противоположно направленных напряжений или ЭДС, либо двух раздельно регулируемых токов. Компенсационный метод исполь­зуют для непосредственного срав­нения напряжений или ЭДС, тока и косвенно для измерения других электрических, а также неэлектри­ческих величин, преобразуемых в электрические.

Применяют следующие схемы компенсации: а) напряжений или ЭДС (рис. 7.2); б) электрических токов (рис. 7.3).

Электродинамический ваттметр конструкция принцип действия уравнение шкалыЭлектродинамический ваттметр конструкция принцип действия уравнение шкалы

Рис. 7.2, Схема компенсации на­пряжений Рис. 7.3. Схема компенсации токов

Схема, показанная на рис. 7.2, наиболее распространенная. В ней измеряемое напряжение Ux компенсируется равным, но про­тивоположным по знаку известным напряжением UK. Падение на­пряжения UK создается током / на изменяемом по значению ком­пенсирующем образцовом сопротивлении RK. Изменение Rк про­исходит до тех пор, пока UK не будет равно Ux. Момент компен­сации определяют по отсутствию тока в цепи магнитоэлектриче­ского гальванометра G; при этом мощность от объекта измерения не потребляется.

Компенсационный метод обеспечивает высокую точность изме­рения.

Компенсаторами или потенциометрами называют устройства, предназначенные для измерения методом компенсации напряжения или э.д.с., а также ряда других электрических величин, связанных с напряжением или э.д.с. с функциональной зависимостью (например, I, P, R, и др.).

В практических схемах компенсаторов для обеспечения необходи­мой точности измерения ток I в рабочей цепи определяют не ампер­метром непосредственной оценки, а компенсационным методом с помощью эталона ЭДС нормального элемента. Нормальные эле­менты обеспечивают постоянную во времени ЭДС, равную 1,01865 В при температуре 20 °С, внутреннее сопротивление 500—1000 Ом, ток перегрузки 1 мкА. С изменением температуры окружающей среды значение ЭДС уменьшается на каждый градус повышения температуры:

Et = E20 — 0,00004 (t — 20) — 0,000001 (t

где E t — ЭДС при температуре t, °С; E20 — ЭДС при 20 °С.

Схема компенсатора представлена на рис. 7.4. Она содержит источник вспомогательной ЭДС Eвсп для питания рабочей цепи, в которую включают регулировочное Rp, компенсирующее RK и образцовое RH сопротивления. К зажимам НЭ подключают нор­мальный элемент, ЭДС которого Eнэ, к зажимам X — искомую ЭДС Ех. В качестве индикатора равновесия используют высоко­чувствительный магнитоэлектрический гальванометр G.

При работе с компенсатором выполняют две операции:

1) устанавливают ток / в рабочей цепи компенсатора с помощью источника вспомогательной ЭДС Eвсп(положение 1 переключа­теля В);

2) измеряют искомую ЭДС Ех (положение 2 переключателя В).

Для установки рабочего тока предварительно определяют темпе­ратуру окружающей среды, затем по (7.3) вычисляют точ­ное значение ЭДС нормаль­ного элемента для данной температуры. Далее устанав­ливают образцовое сопротив­ление RH, значение которого выбирают в зависимости от значений тока в рабочей це­пи и ЭДС при температуре t (сопротивление RK состоит из катушки с постоянным значе­нием сопротивления и после­довательно соединенной с ней температурной декадой). За­тем переключатель В ставят в положение 1 и ЭДС

Электродинамический ваттметр конструкция принцип действия уравнение шкалы

Рис. 7.4. Схема компенсатора

нормального элемента противопоставляют падению напряжения на Ru, которое регулируется с помощью изменяющего значение тока / в рабочей цепи резистором Rp. Момент компенсации соответствует нулевому отклонению гальванометра G, т. е. Eнэ = IRn.

После установления рабочего тока I для измерения Ех переключатель В ставят в положение 2 и регулировкой образцового компенсирующего сопротивления Rк вновь доводят до нуля ток в цепи гальванометра G. Тогда

Электродинамический ваттметр конструкция принцип действия уравнение шкалы(7.4)

где I — значение тока, установленное при положении 1 переклю­чателя В;RK— значение образцового компенсирующего сопро­тивления, при котором имеет место состояние равновесия.

Сопротивление RK выполняют по специальным схемам, кото­рые обеспечивают постоянное сопротивление между точками 3, 4 и переменное сопротивление между точками 3, Д, а также необхо­димое число знаков и точность отсчета.

77. Определите потери мощности в дросселе и магнитную индукцию, при которой производилось измерение, если сопротивление амперметра и токовой цепи ваттметра равны 0,3 Ом каждое, а сопротивление вольтметра и цепи напряжения ваттметра 16 кОм каждое. Активное сопротивление обмотки дросселя, имеющего 500 витков, составляет 5 Ом. Показания приборов были: 4 А, 100 В, 80 Вт. Сечение сердечника 2,5х4 см 2 , частота тока 50 Гц.

Решение.

Потери в стали определяются с учетом потерь в приборах, которые включены после ваттметра, по формуле

Электродинамический ваттметр конструкция принцип действия уравнение шкалы

где Электродинамический ваттметр конструкция принцип действия уравнение шкалы— потери мощности в стали;

Электродинамический ваттметр конструкция принцип действия уравнение шкалы— показание ваттметра;

Электродинамический ваттметр конструкция принцип действия уравнение шкалы— потери в вольтметре в последовательной цепи ваттметра и катушки.

Определяем потери мощности в вольтметре

Электродинамический ваттметр конструкция принцип действия уравнение шкалы

Определяем потери в последовательной цепи ваттметра

Электродинамический ваттметр конструкция принцип действия уравнение шкалы

Определяем потери мощности в катушке

Электродинамический ваттметр конструкция принцип действия уравнение шкалы

Определяем потери в стали

Электродинамический ваттметр конструкция принцип действия уравнение шкалы

Определяем магнитную индукции

Электродинамический ваттметр конструкция принцип действия уравнение шкалы

112. Для измерения индуктивного и емкостного сопротивлений цепей переменного тока были определены ток, напряжение и активная мощность, причем их значения были соответственно равны 1А±10%, 50 В±10%, 20 Вт±10%. Каков диапазон возможных значений индуктивности и емкости, если измерения производились в сети переменного тока частотой 50 Гц?

Решение.

Определяем диапазон значений тока, напряжения и активной мощности

I = 0,9÷1,1 А U = 45÷55 В Р = 18÷22 Вт

Определяем диапазон полного сопротивления цепи переменного тока

Электродинамический ваттметр конструкция принцип действия уравнение шкалы

Определяем диапазон активного сопротивления цепи переменного тока

Электродинамический ваттметр конструкция принцип действия уравнение шкалы

Определяем диапазон реактивного сопротивления цепи переменного тока

Электродинамический ваттметр конструкция принцип действия уравнение шкалы

Электродинамический ваттметр конструкция принцип действия уравнение шкалы= 44,9 ÷ 41,2 Ом

Определяем диапазон индуктивности

Электродинамический ваттметр конструкция принцип действия уравнение шкалы= 0,143 ÷0,131Гн

Определяем диапазон емкости

Электродинамический ваттметр конструкция принцип действия уравнение шкалы= 70,9÷77,3 мкФ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Раннев Г.Г., Тарасенко А.П. «Методы и средства измерений» Учебник. М.: «Академия», 2004.

2. Шишмарев В.Ю.Средства измерений (4-е изд., стер.). Учебник. М.: «Академия», 2011.

🎬 Видео

Урок 179 (осн). Электроизмерительные приборыСкачать

Урок 179 (осн). Электроизмерительные приборы

Электричество за 2 минуты! Напряжение, сила, мощность, постоянный и переменный ток. ПРОСТО О СЛОЖНОМСкачать

Электричество за 2 минуты! Напряжение, сила, мощность, постоянный и переменный ток. ПРОСТО О СЛОЖНОМ

Вольтметр и амперметр (видео 11) | Введение в электрические цепи | ЭлектротехникаСкачать

Вольтметр и амперметр (видео 11) | Введение в электрические цепи | Электротехника

ВАТТМЕТР - СЧЁТЧИК ЭЛЕКТРОЭНЕРГИИ ИЗ КИТАЯСкачать

ВАТТМЕТР - СЧЁТЧИК ЭЛЕКТРОЭНЕРГИИ ИЗ КИТАЯ

Как программировать ваттметр, как пользоваться, как обнулятьСкачать

Как программировать ваттметр, как пользоваться, как обнулять

Принцип действия электромагнитных расходомеров RosemountСкачать

Принцип действия электромагнитных расходомеров Rosemount

Счётчики энергии - ваттметры, обзор и особенности, настройки и функционалСкачать

Счётчики энергии - ваттметры, обзор и особенности, настройки и функционал

Видеоурок Электроизмерительные приборыСкачать

Видеоурок Электроизмерительные приборы

ВАТТМЕТР/АМПЕРМЕТР (ОБЗОР ВСЕХ ФУНКЦИЙ)Скачать

ВАТТМЕТР/АМПЕРМЕТР (ОБЗОР ВСЕХ ФУНКЦИЙ)

Электроизмерительный прибор электродинамической (ферродинамической) системы. Обзор изнутри.Скачать

Электроизмерительный прибор электродинамической (ферродинамической) системы. Обзор изнутри.

Основные физические понятия технической электродинамики, 1978Скачать

Основные физические понятия технической электродинамики, 1978

Ваттметр. Зачем и кому он нужен.Скачать

Ваттметр. Зачем и кому он нужен.

Ваттметры Д5085, Д5086, Д5087, Д5088, Д5089, Д50166Скачать

Ваттметры  Д5085, Д5086, Д5087, Д5088, Д5089, Д50166

Ваттметр HiDANCE Измеритель Мощности - Обзор, Тест, Настройки. Как Пользоваться Ваттметром !!!Скачать

Ваттметр HiDANCE Измеритель Мощности - Обзор, Тест, Настройки. Как Пользоваться Ваттметром !!!
Поделиться или сохранить к себе: