Егэ базовый уровень тригонометрические уравнения

Тригонометрия (задания для подготовке к ЕГЭ)

Егэ базовый уровень тригонометрические уравнения

В данной работе собраны задания, встречающиеся в открытом банке заданий ЕГЭ, в сборниках по подготовке к ЕГЭ предыдущих лет, а также на различных сайтах. Все задания можно использовать на уроках в 10 классе приизучении темы : «Тригонометрия».

Содержание
  1. Просмотр содержимого документа «тригонометрия (задания для подготовке к ЕГЭ)»
  2. Материал по подготовке к ЕГЭ по теме:»Тригонометрические уравнения»
  3. Краткое описание документа:
  4. Дистанционное обучение как современный формат преподавания
  5. Математика: теория и методика преподавания в образовательной организации
  6. Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
  7. Дистанционные курсы для педагогов
  8. Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
  9. Материал подходит для УМК
  10. Другие материалы
  11. Вам будут интересны эти курсы:
  12. Оставьте свой комментарий
  13. Автор материала
  14. Дистанционные курсы для педагогов
  15. Подарочные сертификаты
  16. Тригонометрические уравнения и преобразования
  17. Четность тригонометрических функций
  18. Тригонометрические тождества
  19. 🌟 Видео

Просмотр содержимого документа
«тригонометрия (задания для подготовке к ЕГЭ)»

1. Найдите значение выражения Егэ базовый уровень тригонометрические уравнения.

2. Найдите значение выражения Егэ базовый уровень тригонометрические уравнения.

3. Найдите Егэ базовый уровень тригонометрические уравнения, если Егэ базовый уровень тригонометрические уравненияи Егэ базовый уровень тригонометрические уравнения.

4. Найдите значение выражения Егэ базовый уровень тригонометрические уравнения.

5. Найдите значение выражения Егэ базовый уровень тригонометрические уравнения.

6. Найдите значение выражения Егэ базовый уровень тригонометрические уравнения.

7. Найдите Егэ базовый уровень тригонометрические уравнения, если Егэ базовый уровень тригонометрические уравненияи Егэ базовый уровень тригонометрические уравнения.

8. Найдите значение выражения Егэ базовый уровень тригонометрические уравнения.

9. Найдите значение выражения Егэ базовый уровень тригонометрические уравнения.

10. Найдите Егэ базовый уровень тригонометрические уравнения, если Егэ базовый уровень тригонометрические уравнения.

11. Найдите Егэ базовый уровень тригонометрические уравнения, если Егэ базовый уровень тригонометрические уравненияи Егэ базовый уровень тригонометрические уравнения.

12. Найдите значение выражения Егэ базовый уровень тригонометрические уравнения.

13. Найдите значение выражения Егэ базовый уровень тригонометрические уравнения

14. Найдите значение выражения Егэ базовый уровень тригонометрические уравнения.

15. Найдите значение выражения Егэ базовый уровень тригонометрические уравнения.

16. Найдите Егэ базовый уровень тригонометрические уравнения, если Егэ базовый уровень тригонометрические уравнения.

17. Найдите Егэ базовый уровень тригонометрические уравнения, если и Егэ базовый уровень тригонометрические уравнения.

18. Найдите значение выражения .

19. Найдите значение выражения Егэ базовый уровень тригонометрические уравнения.

20. Найдите значение выражения , если .

21. Найдите Егэ базовый уровень тригонометрические уравнения, если Егэ базовый уровень тригонометрические уравненияи Егэ базовый уровень тригонометрические уравнения.

22. Найдите , если и .

23. Найдите , если и .

24. Найдите значение выражения .

25. Найдите значение выражения .

26. Найдите значение выражения .

27. Найдите , если .

28. Найдите значение выражения .

29. Найдите , если

30. Найдите значение выражения .

31. Найдите значение выражения .

32. Найдите значение выражения .

33. Найдите значение выражения .

34. Найдите значение выражения .

35. Найдите Егэ базовый уровень тригонометрические уравнения, если .

36. Найдите Егэ базовый уровень тригонометрические уравнения, если и .

37. Найдите Егэ базовый уровень тригонометрические уравнения, если и .

38. Найдите значение выражения .

39. Найдите значение выражения .

40. Найдите значение выражения .

41. Найдите значение выражения .

42. Найдите значение выражения

43. Найдите значение выражения .

44. Найдите Егэ базовый уровень тригонометрические уравнения, если Егэ базовый уровень тригонометрические уравнения.

45. Найдите значение выражения .

46. Найдите значение выражения .

47. Найдите значение выражения .

48. Найдите значение выражения

49. Найдите Егэ базовый уровень тригонометрические уравнения, если .

50 Найдите значение выражения .

51. Найдите значение выражения .

52. Найдите значение выражения .

53. Найдите значение выражения

54. Найдите значение выражения

55. Найдите , если .

56. Найдите , если .

57. Найдите , если

58. Найдите , если .

59. Найдите , если и

60. Найдите значение выражения

61. Найдите значение выражения .

62. Найдите значение выражения .

63. Найдите , если и .

64. Найдите , если

65. Найдите Егэ базовый уровень тригонометрические уравнения, если .

66. Найдите Егэ базовый уровень тригонометрические уравнения, если и .

67. Найдите значение выражения .

68. Найдите значение выражения .

69. Найдите , если .

70. Найдите значение выражения .

71. Найдите значение выражения .

72. Найдите значение выражения .

73. Найдите значение выражения , если .

74. Найдите значение выражения .

75. Найдите , если и .

76. Найдите , если и .

77. Найдите значение выражения .

78. Найдите значение выражения .

79. Найдите значение выражения .

80. Найдите значение выражения .

81. Найдите значение выражения .

82. Найдите значение выражения , если .

83. Найдите значение выражения .

84. Найдите значение выражения .

85 Найдите значение выражения .

86. Найдите значение выражения .

87. Найдите , если .

88. Найдите значение выражения .

89. Найдите значение выражения .

90. Найдите значение выражения .

91. Найдите значение выражения:

92. Найдите , если .

93. Найдите , если и .

94. Найдите значение выражения .

95. Найдите значение выражения .

96. Найдите значение выражения .

97. Найдите значение выражения .

98. Найдите значение выражения .

99. Найдите значение выражения .

100. Найдите значение выражения .

101. Найдите значение выражения .

102. Найдите значение выражения .

103. Найдите значение выражения: .

104. Найдите значение выражения: .

105. Найдите значение выражения .

106. Найдите значение выражения .

107. Найдите значение выражения .

109. Найдите корень уравнения . В ответе напишите наименьший положительный корень.

Видео:Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часаСкачать

Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часа

Материал по подготовке к ЕГЭ по теме:»Тригонометрические уравнения»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Методический центр сектора дошкольного, общего и дополнительного образования

Муниципального бюджетного учреждения

«Городское управление народного образования»

МБОУ «Гимназия №2»

Данная работа может быть использована в качестве учебного материала при подготовке учащихся к экзамену. В данной работе рассмотрены решения простейших тригонометрических уравнений. Рассмотрены основные методы решения тригонометрических уравнений, показаны способы отбора корней.

I . Важные моменты при решении тригонометрических уравнений.

При решении тригонометрических уравнений необходимо уметь вычислять значения арксинуса, арккосинуса, арктангенса и арккотангенса. Это возможно вычислять с помощью таблицы или единичной окружности.

Егэ базовый уровень тригонометрические уравнения

Егэ базовый уровень тригонометрические уравнения

Примеры использования единичной окружности.

arcsin = arccos = arctg = arcctg =

Егэ базовый уровень тригонометрические уравнения

arctg (-1) = arcctg(-1) =

Егэ базовый уровень тригонометрические уравнения

а rcsin(- ) =- arccos( )= arctg( )= — arcctg( ) =

Егэ базовый уровень тригонометрические уравнения

а rcsin 0 = 0 arccos 0 = arctg 0 = 0

arcctg 0 = не существует

Тренировку по нахождению значений арксинуса, арккосинуса, арктангенса и арккотангенса можно провести, используя следующую таблицу.

Егэ базовый уровень тригонометрические уравнения

Для успешного решения тригонометрических уравнений необходимо знать основные формулы.

Егэ базовый уровень тригонометрические уравнения

При решении тригонометрических уравнений (для упрощения тригонометрических выражений) иногда приходится использовать формулы приведения.

Егэ базовый уровень тригонометрические уравнения

Тренировку можно произвести с помощью следующей таблицы.

II . Решение простейших тригонометрических уравнений.

Для удобства запоминания формул можно использовать следующую таблицу.

Егэ базовый уровень тригонометрические уравнения

Частные случаи решения тригонометрических уравнений.

Егэ базовый уровень тригонометрические уравнения

Примеры решения простейших тригонометрических уравнений.

Егэ базовый уровень тригонометрические уравнения

Егэ базовый уровень тригонометрические уравнения

Егэ базовый уровень тригонометрические уравнения

III . Методы решения тригонометрических уравнений.

Решение тригонометрического уравнения состоит из двух этапов: преобразование уравнения для получения его простейшего вида ( см. выше ) и решение полученного простейшего тригонометрического уравнения. Существует семь основных методов решения тригонометрических уравнений.

1.Приведение к квадратному уравнению.

Егэ базовый уровень тригонометрические уравнения

2.Приведение к однородному уравнению.

Уравнение называется однородным относительно sin и cos, если все его члены одной и той же степени относительно sin и cos одного и того же угла. Чтобы решить однородное уравнение, надо:

а) перенести все его члены в левую часть;

б) вынести все общие множители за скобки;

в) приравнять все множители и скобки нулю;

г) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на cos ( или sin ) в старшей степени;

д) решить полученное алгебраическое уравнение относительно тангенса или котангенса.

3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 , разделим обе части уравнения на cos 2 x

tg 2 x +4 tgx +3=0, пусть tgx = t , тогда t 2 +4 t +3=0.

Корнями этого уравнения являются числа -1 и -3.

3. Разложение на множители.

4. Введение вспомогательного угла.

sinx + cosx =2 разделим обе части уравнения на 2, получим

Егэ базовый уровень тригонометрические уравнениятак как cos = и sin =

IV . Отбор корней тригонометрического уравнения.

При выполнении задания С-1 необходимо найти те корни уравнения, которые принадлежат заданному промежутку. Это можно сделать с помощью перебора или решения неравенства.

1.Решить уравнение: 2,5sin2x = 7 cos 2 x – 1,

Найти все корни уравнения, принадлежащие отрезку х .

В данном уравнении отбор корней проведем перебором.

Для решения уравнения воспользуемся основным тригонометрическим формулой двойного угла для синуса и основным тригонометрическим тождеством. Получим уравнение

5sinxcosx = 7cos 2 x – sin 2 x – cos 2 x, т . е . sin 2 x – 6cos 2 x+ 5sinxcosx = 0

Разделим обе части уравнения на cos 2 x. Получим tg 2 x+ 5tgx – 6 = 0.

Пусть tgx = t, тогда t 2 + 5t – 6 = 0, t = 1 или t = –6.

tgx = 1 или tg = –6;

Проведём отбор корней, принадлежащих отрезку .

Если n =0, то x=. Этот корень принадлежит рассматриваемому промежутку.

Если n =1, то x=. Этот корень тоже принадлежит рассматриваемому промежутку.

Если n =2, то x =. Ясно, что данный корень не принадлежит промежутку.

Если n = –1, то x = – не принадлежит промежутку .

Если k =0, то x= arctg (-6), x =- arctg 6 – не принадлежит промежутку .

Если k =1, то x= arctg (-6)+. Этот корень принадлежит рассматриваемому промежутку.

Аналогично предыдущему случаю убедимся, что при k = 0 и k = 2, а, следовательно, при k = –1, –2,… k = 3,4,… мы получим корни, не принадлежащие промежутку .

2. Решить уравнение sin 2 x -2 cos 2 x =2 и указать корни, принадлежащие промежутку .

Используя формулу двойного угла косинуса и основное тригонометрическое тождеств. Получим уравнение sin 2 x =1.

Проведём отбор корней, принадлежащих отрезку .

Составим и решим неравенства:

целых значений m удовлетворяющих неравенству нет.

n =1 удовлетворяет неравенству.

3.Необходимо обратить внимание на уравнения, содержащие деление.

Решите уравнение: а) . б) Найдите все корни этого уравнения принадлежащие отрезку .

б ) Если k =0, то х =. Данный корень не принадлежит промежутку.

Если k =-1, то х =. Данный корень не принадлежит промежутку.

Если k =-2, то х =. Данный корень принадлежит промежутку.

Если k =-3, то х =. Данный корень принадлежит промежутку.

Краткое описание документа:

Данная работа может быть использована в качестве учебного материала при подготовке учащихся к экзамену. В данной работе рассмотрены решения простейших тригонометрических уравнений. Рассмотрены основные методы решения тригонометрических уравнений, показаны способы отбора корней. Представлены тренажёры по определению арксинуса, арккосинуса, арктангенса, арккотангенса. показана работа с единичной окружностью

Егэ базовый уровень тригонометрические уравнения

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 949 человек из 80 регионов

Егэ базовый уровень тригонометрические уравнения

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 681 человек из 75 регионов

Егэ базовый уровень тригонометрические уравнения

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 314 человек из 70 регионов

Ищем педагогов в команду «Инфоурок»

Видео:Решение тригонометрических уравнение в ЕГЭ для новичков | ЕГЭ Математика | Аня Матеманя | ТопскулСкачать

Решение тригонометрических уравнение в ЕГЭ для новичков | ЕГЭ Математика | Аня Матеманя | Топскул

Дистанционные курсы для педагогов

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 567 037 материалов в базе

Материал подходит для УМК

Егэ базовый уровень тригонометрические уравнения

«Алгебра и начала математического анализа. Базовый и углубленный уровни», Алимов А.Ш., Колягин Ю.М. и др.

§ 36. Решение тригонометрических уравнений

Другие материалы

  • 23.05.2018
  • 334
  • 5

Егэ базовый уровень тригонометрические уравнения

  • 23.05.2018
  • 508
  • 7

Егэ базовый уровень тригонометрические уравнения

  • 22.05.2018
  • 7022
  • 133

Егэ базовый уровень тригонометрические уравнения

  • 10.05.2018
  • 510
  • 5

Егэ базовый уровень тригонометрические уравнения

  • 06.05.2018
  • 2466
  • 91

Егэ базовый уровень тригонометрические уравнения

  • 03.05.2018
  • 568
  • 4

Егэ базовый уровень тригонометрические уравнения

  • 03.05.2018
  • 4328
  • 249

Егэ базовый уровень тригонометрические уравнения

  • 30.04.2018
  • 905
  • 19

Егэ базовый уровень тригонометрические уравнения

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 14.06.2018 3437
  • DOCX 2.6 мбайт
  • 74 скачивания
  • Рейтинг: 5 из 5
  • Оцените материал:

Настоящий материал опубликован пользователем Колобова Светлана Айратовна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

Егэ базовый уровень тригонометрические уравнения

  • На сайте: 4 года и 2 месяца
  • Подписчики: 3
  • Всего просмотров: 13593
  • Всего материалов: 15

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Видео:Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor online

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Егэ базовый уровень тригонометрические уравнения

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Егэ базовый уровень тригонометрические уравнения

Рособрнадзор не планирует переносить досрочный период ЕГЭ

Время чтения: 0 минут

Егэ базовый уровень тригонометрические уравнения

Онлайн-конференция о создании школьных служб примирения

Время чтения: 3 минуты

Егэ базовый уровень тригонометрические уравнения

Новые курсы: управление детским садом, коучинг, немецкий язык и другие

Время чтения: 18 минут

Егэ базовый уровень тригонометрические уравнения

В Воронеже продлили удаленное обучение для учеников 5-11-х классов

Время чтения: 1 минута

Егэ базовый уровень тригонометрические уравнения

У 76% российских учителей оклад ниже МРОТ

Время чтения: 2 минуты

Егэ базовый уровень тригонометрические уравнения

Количество бюджетных мест в вузах по IT-программам вырастет до 160 тыс.

Время чтения: 2 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Видео:Вся тригонометрия к ЕГЭ за 20 минут | Математика ЕГЭ — Эрик ЛегионСкачать

Вся тригонометрия к ЕГЭ за 20 минут | Математика ЕГЭ — Эрик Легион

Тригонометрические уравнения и преобразования

Тригонометрическими уравнениями называют уравнения, в которых переменная содержится под знаком тригонометрических функций. К их числу прежде всего относятся простейшие тригонометрические уравнения, т.е. уравнения вида $sin x=a, cos x=a, tg x=a$, где $а$ – действительное число.

Перед решением уравнений разберем некоторые тригонометрические выражения и формулы.

Значения тригонометрических функций некоторых углов

$α$$ 0$$/$$/$$/$$/$$π$
$sinα$$ 0$$ /$$ /$$ /$$ 1$$ 0$
$cosα$$ 1$$ /$$ /$$ /$$ 0$$ -1$
$tgα$$ 0$$ /$$ 1$$ √3$$ -$$ 0$
$ctgα$$ -$$ √3$$ 1$$ /$$ 0$$ -$

Периоды повтора значений тригонометрических функций

Период повторения у синуса и косинуса $2π$, у тангенса и котангенса $π$

Знаки тригонометрических функций по четвертям

Эта информация нам пригодится для использования формул приведения. Формулы приведения необходимы для понижения углов до значения от $0$ до $90$ градусов.

Чтобы правильно раскрыть формулы приведения необходимо помнить, что:

  1. если в формуле содержатся углы $180°$ и $360°$ ($π$ и $2π$), то наименование функции не изменяется; (если же в формуле содержатся углы $90°$ и $270°$ ($/$ и $/$), то наименование функции меняется на противоположную (синус на косинус, тангенс на котангенс и т. д.);
  2. чтобы определить знак в правой части формулы ($+$ или $-$), достаточно, считая угол $α$ острым, определить знак преобразуемого выражения.

Преобразовать $сos(90° + α)$. Прежде всего, мы замечаем, что в формуле содержится угол $90$, поэтому $cos$ измениться на $sin$.

Чтобы определить знак перед $sinα$, предположим, что угол $α$ острый, тогда угол $90° + α$ должен оканчиваться во 2-й четверти, а косинус угла, лежащего во 2-й четверти, отрицателен. Поэтому, перед $sinα$ нужен знак $-$.

$сos(90° + α)= — sinα$ — это конечный результат преобразования

Видео:Как решить пункт б) в задании 13 профиля ЕГЭ. ТригонометрияСкачать

Как решить пункт б) в задании 13 профиля ЕГЭ. Тригонометрия

Четность тригонометрических функций

Косинус четная функция: $cos(-t)=cos t$

Синус, тангенс и котангенс нечетные функции: $sin(-t)= — sin t; tg(-t)= — tg t; ctg(-t)= — ctg t$

Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по Математике

Тригонометрические тождества

  1. $tgα=/$
  2. $ctgα=/$
  3. $sin^2α+cos^2α=1$ (Основное тригонометрическое тождество)

Из основного тригонометрического тождества можно выразить формулы для нахождения синуса и косинуса

Вычислить $sin t$, если $cos t = / ; t ∈(/;2π)$

Найдем $sin t$ через основное тригонометрическое тождество. И определим знак, так как $t ∈(/;2π)$ -это четвертая четверть, то синус в ней имеет знак минус

🌟 Видео

Профильный ЕГЭ 2024. Задача 12. Тригонометрические уравнения. 10 классСкачать

Профильный ЕГЭ 2024. Задача 12. Тригонометрические уравнения. 10 класс

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

ТРИГОНОМЕТРИЯ ЕГЭ-2020. БАЗОВЫЙ УРОВЕНЬ - МАТЕМАТИКАСкачать

ТРИГОНОМЕТРИЯ ЕГЭ-2020. БАЗОВЫЙ УРОВЕНЬ - МАТЕМАТИКА

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.

САМЫЕ СЛОЖНЫЕ Задания #6 ЕГЭ 2024 (Тригонометрические Уравнения) | Школа ПифагораСкачать

САМЫЕ СЛОЖНЫЕ Задания #6 ЕГЭ 2024 (Тригонометрические Уравнения) | Школа Пифагора

Решение тригонометрических уравнений №12 | Математика ЕГЭ 2023 | УмскулСкачать

Решение тригонометрических уравнений №12 | Математика ЕГЭ 2023 | Умскул

✓ Тригонометрия: с нуля и до ЕГЭ | #ТрушинLive #030 | Борис ТрушинСкачать

✓ Тригонометрия: с нуля и до ЕГЭ | #ТрушинLive #030 | Борис Трушин

Тригонометрические уравнения | Борис ТрушинСкачать

Тригонометрические уравнения | Борис Трушин

ЕГЭ-ПРОФИЛЬ. ЗАДАНИЕ-1. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯСкачать

ЕГЭ-ПРОФИЛЬ. ЗАДАНИЕ-1. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ

ТРИГОНОМЕТРИЯ С НУЛЯ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

ТРИГОНОМЕТРИЯ С НУЛЯ 😉 #егэ #математика #профильныйегэ #shorts #огэ

Тригонометрические уравнения. Задание 12 | Профильная математика ЕГЭ 2023 | УмскулСкачать

Тригонометрические уравнения. Задание 12 | Профильная математика ЕГЭ 2023 | Умскул

Профильный ЕГЭ 2022. Сложные уравнения. Задание 12Скачать

Профильный ЕГЭ 2022. Сложные уравнения. Задание 12

Прокачиваем тригонометрию. Задача 13 профильный ЕГЭ, Ященко 2021Скачать

Прокачиваем тригонометрию. Задача 13 профильный ЕГЭ, Ященко 2021

Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать

Математика| Преобразование тригонометрических выражений. Формулы и задачи
Поделиться или сохранить к себе: