Е а ширяева задачник огэ 2022 20 алгебраические выражения уравнения и неравенства часть 1 фипи

Задание 20 ОГЭ по математике

Алгебраические выражения, уравнения и неравенства. 43 примера с ответами.

Видео:Задание 20. ОГЭ математика 2024. Разбор за 2 часа. Уравнения неравенства системы алгебра.Скачать

Задание 20. ОГЭ математика 2024. Разбор за 2 часа. Уравнения неравенства системы алгебра.

Итоговая контрольная работа по биологии в 8 классе

Работа состоит из трёх частей и включает в себя 21 задание.

Видео:ОГЭ Задания 20 Решение систем уравнений способом алгебраического сложенияСкачать

ОГЭ Задания 20 Решение систем уравнений способом алгебраического сложения

Тест по географии на тему «Россия»

2 варианта по 14 вопросов.

Видео:ВСЕ ТИПЫ 20 ЗАДАНИЕ 2 ЧАСТЬ ОГЭ МАТЕМАТИКА 2023Скачать

ВСЕ ТИПЫ 20 ЗАДАНИЕ 2 ЧАСТЬ ОГЭ МАТЕМАТИКА 2023

Задание 21 ОГЭ. Текстовые задачи

Подборка текстовых задач из открытого банка ФИПИ.

Видео:Как решить систему уравнений на ОГЭ 2021? / Полный разбор задачи №20 ОГЭ по математикеСкачать

Как решить систему уравнений на ОГЭ 2021? / Полный разбор задачи №20 ОГЭ по математике

20. Алгебраические выражения, уравнения, неравенства и их системы

Видео:Задание №20. Уравнение 2 часть ОГЭ по математике 2023 | УмскулСкачать

Задание №20. Уравнение 2 часть ОГЭ по математике 2023 | Умскул

Решение №2755 Решите неравенство (х – 5)^2

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Решение №2741 Решите уравнение х^4 = (3х-4)^2.

Решите уравнение х^4 = (3х-4)^2.

  • Запись опубликована: 25.01.2022
  • Рубрика записи20. Алгебраические выражения, уравнения, неравенства и их системы
  • Комментарии к записи:0 комментариев

Видео:Задание 20 (часть 1) | ОГЭ 2024 Математика | Алгебраические выраженияСкачать

Задание 20 (часть 1) | ОГЭ 2024 Математика | Алгебраические выражения

Решение №2729 Решите неравенство 16/((x+2)^2-5)

Видео:Все типы 20 задания ОГЭ по математике | Молодой репетиторСкачать

Все типы 20 задания ОГЭ по математике | Молодой репетитор

Решение №2711 Решите уравнение х(х^2 + 2х + 1) = 6(х + 1).

Решите уравнение х(х^2 + 2х + 1) = 6(х + 1).

  • Запись опубликована: 08.01.2022
  • Рубрика записи20. Алгебраические выражения, уравнения, неравенства и их системы
  • Комментарии к записи:0 комментариев

Видео:5 основных заданий из №20 из ОГЭ | Математика | TutorOnlineСкачать

5 основных заданий из №20 из ОГЭ | Математика | TutorOnline

Решение №2699 Решите уравнение x^6 = -(7х + 10)^3.

Решите уравнение x^6 = -(7х + 10)^3.

  • Запись опубликована: 06.01.2022
  • Рубрика записи20. Алгебраические выражения, уравнения, неравенства и их системы
  • Комментарии к записи:0 комментариев

Видео:Алгебраические выражения с ФИПИ для ОГЭ по математике. Первая страницаСкачать

Алгебраические выражения с ФИПИ для ОГЭ по математике. Первая страница

Решение №2691 Решите уравнение 1/(x-2)^2-1/(x-2)-6=0

Решите уравнение 1/(x-2)^2-1/(x-2)-6=0

  • Запись опубликована: 04.01.2022
  • Рубрика записи20. Алгебраические выражения, уравнения, неравенства и их системы
  • Комментарии к записи:0 комментариев

Видео:Задание №20 ОГЭ - Алгебраические выраженияСкачать

Задание №20 ОГЭ - Алгебраические выражения

Решение №2688 Решите уравнение 1/(х-3)^2-3/(x-3)-4=0

Решите уравнение 1/(х-3)^2-3/(x-3)-4=0

  • Запись опубликована: 04.01.2022
  • Рубрика записи20. Алгебраические выражения, уравнения, неравенства и их системы
  • Комментарии к записи:0 комментариев

Видео:Разбор реального варианта ОГЭ по математике 2024 на 5 за часСкачать

Разбор реального варианта ОГЭ по математике 2024 на 5 за час

Решение №2622 Один из корней уравнения 2х^2 + х – 3с = 0 равен -3. Найдите второй корень.

Один из корней уравнения 2х^2 + х — 3с = 0 равен -3. Найдите второй корень.

Видео:Как решать неравенства? Часть 1| МатематикаСкачать

Как решать неравенства? Часть 1| Математика

Е. А. Ширяева ( Задачник (ОГЭ 2019) 22. Текстовые задачи Часть 1. ФИПИ

1 I) Движение по прямой 22. Текстовые задачи Часть 1. ФИПИ 1. Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 112 км. Отдохнув, он отправился обратно в А, увеличив скорость на 9 км/ч. По пути он сделал остановку на 4 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из А в В. 2. Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 180 км. Отдохнув, он отправился обратно в А, увеличив скорость на 5 км/ч. По пути он сделал остановку на 3 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из А в В. 3. Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 105 км. Отдохнув, он отправился обратно в А, увеличив скорость на 16 км/ч. По пути он сделал остановку на 4 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из А в В. II) Движение по прямой (навстречу) 4. Из двух городов одновременно навстречу друг другу отправились два велосипедиста. Проехав некоторую часть пути, первый велосипедист сделал остановку на 56 минут, а затем продолжил движение до встречи со вторым велосипедистом. Расстояние между городами составляет 182 км, скорость первого велосипедиста равна 13 км/ч, скорость второго 15 км/ч. Определите расстояние от города, из которого выехал второй велосипедист, до места встречи. 5. Из двух городов одновременно навстречу друг другу отправились два велосипедиста. Проехав некоторую часть пути, первый велосипедист сделал остановку на 2 минуты, а затем продолжил движение до встречи со вторым велосипедистом. Расстояние между городами составляет 277 км, скорость первого велосипедиста равна 16 км/ч, скорость второго 30 км/ч. Определите расстояние от города, из которого выехал второй велосипедист, до места встречи. 6. Из двух городов одновременно навстречу друг другу отправились два велосипедиста. Проехав некоторую часть пути, первый велосипедист сделал остановку на 44 минуты, а затем продолжил движение до встречи со вторым велосипедистом. Расстояние между городами составляет 141 км, скорость первого велосипедиста равна 24 км/ч, скорость второго 15 км/ч. Определите расстояние от города, из которого выехал второй велосипедист, до места встречи.

2 III) Движение по прямой (вдогонку) 7. Два автомобиля одновременно отправляются в 560-километровый пробег. Первый едет со скоростью, на 10 км/ч большей, чем второй, и прибывает к финишу на 1 час раньше второго. Найдите скорость первого автомобиля. 8. Два автомобиля одновременно отправляются в 800-километровый пробег. Первый едет со скоростью, на 36 км/ч большей, чем второй, и прибывает к финишу на 5 часов раньше второго. Найдите скорость первого автомобиля. 9. Два автомобиля одновременно отправляются в 630-километровый пробег. Первый едет со скоростью, на 24 км/ч большей, чем второй, и прибывает к финишу на 3 часа раньше второго. Найдите скорость первого автомобиля. 10. Два велосипедиста одновременно отправляются в 224-километровый пробег. Первый едет со скоростью на 2 км/ч большей, чем второй, и прибывает к финишу на 2 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым. 11. Два велосипедиста одновременно отправляются в 208-километровый пробег. Первый едет со скоростью на 3 км/ч большей, чем второй, и прибывает к финишу на 3 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым. 12. Два велосипедиста одновременно отправляются в 100-километровый пробег. Первый едет со скоростью на 15 км/ч большей, чем второй, и прибывает к финишу на 6 часов раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым. 13. Из А в В одновременно выехали два автомобилиста. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого автомобилиста на 6 км/ч, а вторую половину пути проехал со скоростью 45 км/ч, в результате чего прибыл в В одновременно с первым автомобилистом. Найдите скорость первого автомобилиста, если известно, что она больше 35 км/ч. 14. Из А в В одновременно выехали два автомобилиста. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого автомобилиста на 17 км/ч, а вторую половину пути проехал со скоростью 102 км/ч, в результате чего прибыл в В одновременно с первым автомобилистом. Найдите скорость первого автомобилиста, если известно, что она больше 65 км/ч. 15. Из А в В одновременно выехали два автомобилиста. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого автомобилиста на 11 км/ч, а вторую половину пути проехал со скоростью 66 км/ч, в результате чего прибыл в В одновременно с первым автомобилистом. Найдите скорость первого автомобилиста, если известно, что она больше 40 км/ч.

3 16. Из А в В одновременно выехали два автомобилиста. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 48 км/ч, а вторую половину пути проехал со скоростью на 32 км/ч больше скорости первого, в результате чего прибыл в В одновременно с первым автомобилистом. Найдите скорость первого автомобилиста. 17. Из А в В одновременно выехали два автомобилиста. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 57 км/ч, а вторую половину пути проехал со скоростью на 38 км/ч больше скорости первого, в результате чего прибыл в В одновременно с первым автомобилистом. Найдите скорость первого автомобилиста. IV) Движение по окружности (замкнутой трассе) 18. Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя один час, когда одному из них оставалось 4 км до окончания первого круга, ему сообщили, что второй бегун прошёл первый круг 18 минут назад. Найдите скорость первого бегуна, если известно, что она на 10 км/ч меньше скорости второго. 19. Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя один час, когда одному из них оставалось 7 км до окончания первого круга, ему сообщили, что второй бегун прошёл первый круг 3 минуты назад. Найдите скорость первого бегуна, если известно, что она на 8 км/ч меньше скорости второго. 20. Два бегуна одновременно стартовали в одном направлении из одного и того же места круговой трассы в беге на несколько кругов. Спустя один час, когда одному из них оставалось 2 км до окончания первого круга, ему сообщили, что второй бегун прошёл первый круг 24 минуты назад. Найдите скорость первого бегуна, если известно, что она на 10 км/ч меньше скорости второго. V) Средняя скорость 21. Первые 105 км автомобиль ехал со скоростью 35 км/ч, следующие 120 км со скоростью 60 км/ч, а последние 500 км со скоростью 100 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. 22. Первые 200 км автомобиль ехал со скоростью 50 км/ч, следующие 320 км со скоростью 80 км/ч, а последние 140 км со скоростью 35 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. 23. Первые 140 км автомобиль ехал со скоростью 70 км/ч, следующие 180 км со скоростью 60 км/ч, а последние 225 км со скоростью 45 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.

4 24. Первую половину трассы автомобиль проехал со скоростью 69 км/ч, а вторую со скоростью 111 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. 25. Первую половину трассы автомобиль проехал со скоростью 55 км/ч, а вторую со скоростью 70 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. 26. Первую половину трассы автомобиль проехал со скоростью 78 км/ч, а вторую со скоростью 91 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. VI) Движение протяженных тел 27. Поезд, двигаясь равномерно со скоростью 135 км/ч, проезжает мимо столба за 4 секунды. Найдите длину поезда в метрах. 28. Поезд, двигаясь равномерно со скоростью 45 км/ч, проезжает мимо столба за 48 секунд. Найдите длину поезда в метрах. 29. Поезд, двигаясь равномерно со скоростью 54 км/ч, проезжает мимо столба за 10 секунд. Найдите длину поезда в метрах. 30. Поезд, двигаясь равномерно со скоростью 63 км/ч, проезжает мимо пешехода, идущего в том же направлении параллельно путям со скоростью 3 км/ч, за 39 секунд. Найдите длину поезда в метрах. 31. Поезд, двигаясь равномерно со скоростью 44 км/ч, проезжает мимо пешехода, идущего в том же направлении параллельно путям со скоростью 4 км/ч, за 81 секунду. Найдите длину поезда в метрах. 32. Поезд, двигаясь равномерно со скоростью 141 км/ч, проезжает мимо пешехода, идущего в том же направлении параллельно путям со скоростью 6 км/ч, за 8 секунд. Найдите длину поезда в метрах. 33. Поезд, двигаясь равномерно со скоростью 36 км/ч, проезжает мимо пешехода, идущего параллельно путям со скоростью 4 км/ч навстречу поезду, за 54 секунды. Найдите длину поезда в метрах. 34. Поезд, двигаясь равномерно со скоростью 151 км/ч, проезжает мимо пешехода, идущего параллельно путям со скоростью 5 км/ч навстречу поезду, за 15 секунд. Найдите длину поезда в метрах. 35. Поезд, двигаясь равномерно со скоростью 75 км/ч, проезжает мимо пешехода, идущего параллельно путям со скоростью 3 км/ч навстречу поезду, за 30 секунд. Найдите длину поезда в метрах.

5 VII) Движение по воде 36. Баржа прошла по течению реки 56 км и, повернув обратно, прошла ещё 54 км, затратив на весь путь 5 часов. Найдите собственную скорость баржи, если скорость течения реки равна 5 км/ч. 37. Баржа прошла по течению реки 40 км и, повернув обратно, прошла ещё 36 км, затратив на весь путь 4 часа. Найдите собственную скорость баржи, если скорость течения реки равна 5 км/ч. 38. Баржа прошла по течению реки 88 км и, повернув обратно, прошла ещё 66 км, затратив на весь путь 11 часов. Найдите собственную скорость баржи, если скорость течения реки равна 5 км/ч. 39. Расстояние между пристанями А и В равно 72 км. Из А в В по течению реки отправился плот, а через час вслед за ним отправилась моторная лодка, которая, прибыв в пункт В, тотчас повернула обратно и возвратилась в А. К этому времени плот прошёл 33 км. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 3 км/ч. 40. Расстояние между пристанями А и В равно 135 км. Из А в В по течению реки отправился плот, а через час вслед за ним отправилась моторная лодка, которая, прибыв в пункт В, тотчас повернула обратно и возвратилась в А. К этому времени плот прошёл 76 км. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 4 км/ч. 41. Расстояние между пристанями А и В равно 84 км. Из А в В по течению реки отправился плот, а через час вслед за ним отправилась моторная лодка, которая, прибыв в пункт В, тотчас повернула обратно и возвратилась в А. К этому времени плот прошёл 40 км. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 5 км/ч. 42. Моторная лодка прошла против течения реки 77 км и вернулась в пункт отправления, затратив на обратный путь на 2 часа меньше, чем на путь против течения. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 4 км/ч. 43. Моторная лодка прошла против течения реки 297 км и вернулась в пункт отправления, затратив на обратный путь на 3 часа меньше, чем на путь против течения. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 2 км/ч. 44. Моторная лодка прошла против течения реки 72 км и вернулась в пункт отправления, затратив на обратный путь на 2 часа меньше, чем на путь против течения. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 3 км/ч. 45. Теплоход проходит по течению реки до пункта назначения 132 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 25 км/ч, стоянка длится 21 часа, а в пункт отправления теплоход возвращается через 32 часа после отплытия из него.

6 46. Теплоход проходит по течению реки до пункта назначения 176 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 19 км/ч, стоянка длится 1 час, а в пункт отправления теплоход возвращается через 20 часов после отплытия из него. 47. Теплоход проходит по течению реки до пункта назначения 210 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 24 км/ч, стоянка длится 9 часов, а в пункт отправления теплоход возвращается через 27 часов после отплытия из него. VIII) Сплавы и проценты 48. Имеются два сосуда, содержащие 40 кг и 20 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 33% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 47% кислоты. Сколько килограммов кислоты содержится в первом растворе? 49. Имеются два сосуда, содержащие 24 кг и 26 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 39% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 40% кислоты. Сколько килограммов кислоты содержится в первом растворе? 50. Имеются два сосуда, содержащие 48 кг и 42 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 42% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 40% кислоты. Сколько килограммов кислоты содержится во втором растворе? 51. Свежие фрукты содержат 78% воды, а высушенные 22%. Сколько требуется свежих фруктов для приготовления 22 кг высушенных фруктов? 52. Свежие фрукты содержат 93% воды, а высушенные 16%. Сколько требуется свежих фруктов для приготовления 21 кг высушенных фруктов? 53. Свежие фрукты содержат 86% воды, а высушенные 30%. Сколько требуется свежих фруктов для приготовления 94 кг высушенных фруктов? 54. Свежие фрукты содержат 80% воды, а высушенные 28%. Сколько сухих фруктов получится из 288 кг свежих фруктов? 55. Свежие фрукты содержат 75% воды, а высушенные 25%. Сколько сухих фруктов получится из 135 кг свежих фруктов? 56. Свежие фрукты содержат 84% воды, а высушенные 16%. Сколько сухих фруктов получится из 231 кг свежих фруктов?

7 IX) Работа 57. Первый рабочий за час делает на 13 детали больше, чем второй, и выполняет заказ, состоящий из 208 деталей, на 8 часов быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает второй рабочий? 58. Первый рабочий за час делает на 9 детали больше, чем второй, и выполняет заказ, состоящий из 216 деталей, на 4 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает второй рабочий? 59. Первый рабочий за час делает на 5 деталей больше, чем второй, и выполняет заказ, состоящий из 200 деталей, на 2 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает второй рабочий? 60. Первая труба пропускает на 5 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 200 литров она заполняет на 2 минут дольше, чем вторая труба? 61. Первая труба пропускает на 9 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 216 литров она заполняет на 4 минуты дольше, чем вторая труба? 62. Первая труба пропускает на 13 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 208 литров она заполняет на 8 минут дольше, чем вторая труба?

8 I) Движение по прямой 22. Текстовые задачи Часть 2. ФИПИ. Расширенная версия 1. Из пунктов А и В, расстояние между которыми 19 км, вышли одновременно навстречу друг другу два пешехода и встретились в 9 км от А. Найдите скорость пешехода, шедшего из А, если известно, что он шёл со скоростью, на 1 км/ч большей, чем пешеход, шедший из В, и сделал в пути получасовую остановку. 2. Из пункта А в пункт В, расстояние между которыми 34 км, выехал велосипедист. Одновременно с ним из В в А вышел пешеход. Велосипедист ехал со скоростью, на 8 км/ч большей скорости пешехода, и сделал в пути получасовую остановку. Найдите скорость пешехода, если известно, что они встретились в 24 км от пункта А. 3. Из пункта А в пункт В, расстояние между которыми 13 км, вышел пешеход. Одновременно с ним из В в А выехал велосипедист. Велосипедист ехал со скоростью, на 11 км/ч большей скорости пешехода, и сделал в пути получасовую остановку. Найдите скорость пешехода, если известно, что они встретились в 8 км от пункта В. 4. Из городов А и В навстречу друг другу одновременно выехали мотоциклист и велосипедист. Мотоциклист приехал в В на 56 минут раньше, чем велосипедист приехал в А, а встретились они через 21 минуту после выезда. Сколько часов затратил на путь из В в А велосипедист? 5. Из городов А и В навстречу друг другу одновременно выехали мотоциклист и велосипедист. Мотоциклист приехал в В на 40 минут раньше, чем велосипедист приехал в А, а встретились они через 15 минут после выезда. Сколько часов затратил на путь из В в А велосипедист? 6. Из городов А и В навстречу друг другу одновременно выехали мотоциклист и велосипедист. Мотоциклист приехал в В на 48 минут раньше, чем велосипедист приехал в А, а встретились они через 18 минут после выезда. Сколько часов затратил на путь из В в А велосипедист? 7. Два человека одновременно отправляются из одного и того же места по одной дороге на прогулку до опушки леса, находящейся в 3,4 км от места отправления. Один идёт со скоростью 3,1 км/ч, а другой со скоростью 3,7 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии от точки отправления произойдёт их встреча? 8. Два человека одновременно отправляются из одного и того же места по одной дороге на прогулку до опушки леса, находящейся в 1,5 км от места отправления. Один идёт со скоростью 2,4 км/ч, а другой со скоростью 5,6 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии от точки отправления произойдёт их встреча?

9 9. Два человека одновременно отправляются из одного и того же места по одной дороге на прогулку до опушки леса, находящейся в 2,5 км от места отправления. Один идёт со скоростью 2,7 км/ч, а другой со скоростью 4,8 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии от точки отправления произойдёт их встреча? 10. Первый велосипедист выехал из посёлка по шоссе со скоростью 18 км/ч. Через час после него со скоростью 16 км/ч из того же посёлка в том же направлении выехал второй велосипедист, а ещё через час третий. Найдите скорость третьего велосипедиста, если сначала он догнал второго, а через 4 часа после этого догнал первого. 11. Первый велосипедист выехал из посёлка по шоссе со скоростью 12 км/ч. Через час после него со скоростью 10 км/ч из того же посёлка в том же направлении выехал второй велосипедист, а ещё через час третий. Найдите скорость третьего велосипедиста, если сначала он догнал второго, а через 2 часа после этого догнал первого. 12. Первый велосипедист выехал из посёлка по шоссе со скоростью 24 км/ч. Через час после него со скоростью 21 км/ч из того же посёлка в том же направлении выехал второй велосипедист, а ещё через час третий. Найдите скорость третьего велосипедиста, если сначала он догнал второго, а через 9 часов после этого догнал первого. II) Средняя скорость 13. Первые 2 часа автомобиль ехал со скоростью 70 км/ч, следующие 3 часа со скоростью 60 км/ч, а последние 5 часов со скоростью 45 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. 14. Первые 5 часов автомобиль ехал со скоростью 60 км/ч, следующие 3 часа со скоростью 100 км/ч, а последние 4 часа со скоростью 75 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. 15. Первые 2 часа автомобиль ехал со скоростью 45 км/ч, следующие 4 часа со скоростью 100 км/ч, а последние 2 часа со скоростью 75 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. III) Движение по воде 16. Туристы проплыли на лодке от лагеря некоторое расстояние вверх по течению реки, затем причалили к берегу и, погуляв 3 часа, вернулись обратно через 5 часов от начала путешествия. На какое расстояние от лагеря они отплыли, если скорость течения реки равна 2 км/ч, а собственная скорость лодки 8 км/ч?

10 17. Туристы проплыли на лодке от лагеря некоторое расстояние вверх по течению реки, затем причалили к берегу и, погуляв 2 часа, вернулись обратно через 6 часов от начала путешествия. На какое расстояние от лагеря они отплыли, если скорость течения реки равна 3 км/ч, а собственная скорость лодки 6 км/ч? 18. Туристы проплыли на лодке от лагеря некоторое расстояние вверх по течению реки, затем причалили к берегу и, погуляв 3 часа, вернулись обратно через 6 часов от начала путешествия. На какое расстояние от лагеря они отплыли, если скорость течения реки равна 3 км/ч, а собственная скорость лодки 9 км/ч? 19. Рыболов проплыл на лодке от пристани некоторое расстояние вверх по течению реки, затем бросил якорь, 2 часа ловил рыбу и вернулся обратно через 5 часов от начала путешествия. На какое расстояние от пристани он отплыл, если скорость течения реки равна 2 км/ч, а собственная скорость лодки 6 км/ч? 20. Рыболов проплыл на лодке от пристани некоторое расстояние вверх по течению реки, затем бросил якорь, 2 часа ловил рыбу и вернулся обратно через 6 часов от начала путешествия. На какое расстояние от пристани он отплыл, если скорость течения реки равна 1 км/ч, а собственная скорость лодки 5 км/ч? 21. Рыболов проплыл на лодке от пристани некоторое расстояние вверх по течению реки, затем бросил якорь, 2 часа ловил рыбу и вернулся обратно через 5 часов от начала путешествия. На какое расстояние от пристани он отплыл, если скорость течения реки равна 4 км/ч, а собственная скорость лодки 6 км/ч? 22. Катер прошёл от одной пристани до другой, расстояние между которыми по реке равно 48 км, сделал стоянку на 20 мин и вернулся обратно через 1 5 часа после начала поездки. Найдите скорость течения реки, если извест- 3 но, что скорость катера в стоячей воде равна 20 км/ч. 23. Расстояние между двумя пристанями по реке равно 24 км. Моторная лодка прошла от одной пристани до другой, сделала стоянку на 1 час 40 минут и вернулась обратно. Всё путешествие заняло 6 ч. Найдите скорость 2 3 течения реки, если известно, что скорость моторной лодки в стоячей воде равна 10 км/ч. 24. Расстояние между двумя пристанями по реке равно 80 км. Катер прошёл от одной пристани до другой, сделал стоянку на 1 час 20 минут и вернулся обратно. Всё путешествие заняло 10 ч. Найдите скорость течения 1 3 реки, если известно, что скорость катера в стоячей воде равна 18 км/ч.

11 IV) Сплавы Проценты 25. Смешали некоторое количество 55-процентного раствора некоторого вещества с таким же количеством 97-процентного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора? 26. Смешали некоторое количество 19-процентного раствора некоторого вещества с таким же количеством 23-процентного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора? 27. Смешали некоторое количество 30-процентного раствора некоторого вещества с таким же количеством 58-процентного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора? 28. Имеется два сплава с разным содержанием меди: в первом содержится 60%, а во втором 45% меди. В каком отношении надо взять первый и второй сплавы, чтобы получить из них новый сплав, содержащий 55% меди? 29. Имеется два сплава с разным содержанием меди: в первом содержится 70%, а во втором 40% меди. В каком отношении надо взять первый и второй сплавы, чтобы получить из них новый сплав, содержащий 50% меди? 30. Имеется два сплава с разным содержанием золота: в первом содержится 50%, а во втором 80% золота. В каком отношении надо взять первый и второй сплавы, чтобы получить из них новый сплав, содержащий 55% золота? 31. При смешивании первого раствора кислоты, концентрация которого 20%, и второго раствора этой же кислоты, концентрация которого 50%, получили раствор, содержащий 30% кислоты. В каком отношении были взяты первый и второй растворы? 32. При смешивании первого раствора соли, концентрация которого 40%, и второго раствора этой же соли, концентрация которого 48%, получился раствор с концентрацией 42%. В каком отношении были взяты первый и второй растворы? 33. При смешивании первого раствора кислоты, концентрация которого 30%, и второго раствора этой же кислоты, концентрация которого 50%, получили раствор, содержащий 45% кислоты. В каком отношении были взяты первый и второй растворы? V) Совместная работа 34. Три бригады изготовили вместе 266 деталей. Известно, что вторая бригада изготовила деталей в 4 раза больше, чем первая и на 5 деталей меньше, чем третья. На сколько деталей больше изготовила третья бригада, чем первая.

12 35. Три бригады изготовили вместе 327 деталей. Известно, что вторая бригада изготовила деталей в 5 раз больше, чем первая и на 19 деталей меньше, чем третья. На сколько деталей больше изготовила третья бригада, чем первая. 36. Три бригады изготовили вместе 114 деталей. Известно, что вторая бригада изготовила деталей в 3 раза больше, чем первая и на 16 деталей меньше, чем третья. На сколько деталей больше изготовила третья бригада, чем первая. 37. Игорь и Паша красят забор за 20 часов. Паша и Володя красят этот же забор за 21 час, а Володя и Игорь за 28 часов. За сколько минут мальчики покрасят забор, работая втроём? 38. Игорь и Паша красят забор за 5 часов. Паша и Володя красят этот же забор за 6 часов, а Володя и Игорь за 20 часов. За сколько минут мальчики покрасят забор, работая втроём? 39. Игорь и Паша красят забор за 18 часов. Паша и Володя красят этот же забор за 20 часов, а Володя и Игорь за 30 часов. За сколько минут мальчики покрасят забор, работая втроём? 40. Первый рабочий за час делает на 10 деталей больше, чем второй, и выполняет заказ, состоящий из 60 деталей, на 3 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает первый рабочий? 41. Первый рабочий за час делает на 16 деталей больше, чем второй, и выполняет заказ, состоящий из 105 деталей, на 4 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает первый рабочий? 42. Первый рабочий за час делает на 9 деталей больше, чем второй, и заканчивает работу над заказом, состоящим из 112 деталей, на 4 часа раньше, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает первый рабочий? 43. Первая труба пропускает на 16 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает вторая труба, если резервуар объёмом 105 литров она заполняет на 4 минуты быстрее, чем первая труба? 44. Первая труба пропускает на 6 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 140 литров она заполняет на 3 минуты дольше, чем вторая труба? 45. Первая труба пропускает на 5 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает вторая труба, если резервуар объёмом 200 литров она заполняет на 2 минуты быстрее, чем первая труба?

13 22. Текстовые задачи Часть 3. ФИПИ. Расширенная версия. Дополнительные задачи I) Движение по прямой 1. Дорога между пунктами A и В состоит из подъёма и спуска, а её длина равна 7 км. Турист прошёл путь из А в В за 2 часа, из которых спуск занял 1 час. С какой скоростью турист шёл на спуске, если его скорость на подъёме меньше его скорости на спуске на 3 км/ч? 2. Дорога между пунктами A и В состоит из подъёма и спуска, а её длина равна 10 км. Турист прошёл путь из А в В за 4 часа, из которых спуск занял 2 часа. С какой скоростью турист шёл на спуске, если его скорость на подъёме меньше его скорости на спуске на 1 км/ч? 3. Дорога между пунктами A и В состоит из подъёма и спуска, а её длина равна 22 км. Турист прошёл путь из А в В за 8 часов, из которых спуск занял 3 часа. С какой скоростью турист шёл на спуске, если его скорость на подъёме меньше его скорости на спуске на 2 км/ч? 4. Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 208 км. Отдохнув, он отправился обратно в А, увеличив скорость на 3 км/ч. По пути он сделал остановку на 3 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из В в А. 5. Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 105 км. Отдохнув, он отправился обратно в А, увеличив скорость на 16 км/ч. По пути он сделал остановку на 4 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из В в А. 6. Два велосипедиста одновременно отправляются в 105-километровый пробег. Первый едет со скоростью на 16 км/ч большей, чем второй, и прибывает к финишу на 4 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу первым. 7. Два велосипедиста одновременно отправляются в 209-километровый пробег. Первый едет со скоростью на 8 км/ч большей, чем второй, и прибывает к финишу на 8 часов раньше второго. Найдите скорость велосипедиста, пришедшего к финишу первым. 8. Два автомобиля одновременно отправляются в 930-километровый пробег. Первый едет со скоростью на 31 км/ч большей, чем второй, и прибывает к финишу на 5 часа раньше второго. Найдите скорость первого автомобиля. 9. Два автомобиля одновременно отправляются в 660-километровый пробег. Первый едет со скоростью на 11 км/ч большей, чем второй, и прибывает к финишу на 2 часа раньше второго. Найдите скорость первого автомобиля.

14 10. Из пункта А в пункт В, расстояние между которыми 13 км, вышел пешеход. Через полчаса навстречу ему из В в А выехал велосипедист, который ехал со скоростью, на 11 км/ч большей скорости пешехода. Найдите скорость велосипедиста, если известно, что они встретились в 5 км от пункта А. 11. Из пункта А в пункт В, расстояние между которыми 34 км, вышел пешеход. Через полчаса навстречу ему из В в А выехал велосипедист. Велосипедист ехал со скоростью, на 8 км/ч большей скорости пешехода. Найдите скорость велосипедиста, если известно, что они встретились в 10 км от пункта А. 12. Из пункта А в пункт В, расстояние между которыми 19 км, вышел пешеход. Через полчаса навстречу ему из пункта В вышел турист и встретил пешехода в 9 км от В. Турист шёл со скоростью, на 1 км/ч большей, чем пешеход. Найдите скорость пешехода, шедшего из А. 13. Из пункта А в пункт В, расстояние между которыми 27 км, вышел турист. Через полчаса навстречу ему из пункта В вышел пешеход и встретил туриста в 12 км от А. Найдите скорость туриста, если известно, что она была на 2 км/ч меньше скорости пешехода. 14. Поезд, двигаясь равномерно со скоростью 36 км/ч, проезжает мимо пешехода, идущего параллельно путям со скоростью 4 км/ч навстречу поезду, за 36 секунд. Найдите длину поезда в метрах. 15. Поезд, двигаясь равномерно со скоростью 177 км/ч, проезжает мимо пешехода, идущего параллельно путям со скоростью 3 км/ч навстречу поезду, за 13 секунд. Найдите длину поезда в метрах. 16. Поезд, двигаясь равномерно со скоростью 87 км/ч, проезжает мимо пешехода, идущего параллельно путям со скоростью 3 км/ч навстречу поезду, за 8 секунд. Найдите длину поезда в метрах. 17. По двум параллельным железнодорожным путям в одном направлении следуют пассажирский и товарный поезда, скорости которых равны соответственно 50 км/ч и 40 км/ч. Длина товарного поезда равна 1350 метрам. Найдите длину пассажирского поезда, если время, за которое он прошёл мимо товарного поезда, равно 9 минутам. 18. По двум параллельным железнодорожным путям в одном направлении следуют пассажирский и товарный поезда, скорости которых равны соответственно 110 км/ч и 70 км/ч. Длина товарного поезда равна 1800 метрам. Найдите длину пассажирского поезда, если время, за которое он прошёл мимо товарного поезда, равно 3 минутам. 19. По двум параллельным железнодорожным путям в одном направлении следуют пассажирский и товарный поезда, скорости которых равны соответственно 100 км/ч и 90 км/ч. Длина товарного поезда равна 800 метрам. Найдите длину пассажирского поезда, если время, за которое он прошёл мимо товарного поезда, равно 6 минутам.

15 20. Расстояние между городами А и В равно 120 км. Из города А в город В выехал автомобиль, а через 90 минут следом за ним со скоростью 100 км/ч выехал мотоциклист. Мотоциклист догнал автомобиль в городе С и повернул обратно. Когда он проехал половину пути из С в А, автомобиль прибыл в В. Найдите расстояние от А до С. 21. Расстояние между городами А и В равно 100 км. Из города А в город В выехал автомобиль, а через 75 минут следом за ним со скоростью 64 км/ч выехал мотоциклист. Мотоциклист догнал автомобиль в городе С и повернул обратно. Когда он проехал половину пути из С в А, автомобиль прибыл в В. Найдите расстояние от А до С. 22. Расстояние между городами А и В равно 140 км. Из города А в город В выехал автомобиль, а через 30 минут следом за ним со скоростью 50 км/ч выехал мотоциклист. Мотоциклист догнал автомобиль в городе С и повернул обратно. Когда он проехал половину пути из С в А, автомобиль прибыл в В. Найдите расстояние от А до С. II) Движение по воде 23. От пристани А к пристани В, расстояние между которыми равно 280 км, отправился с постоянной скоростью первый теплоход, а через 4 часа после этого следом за ним, со скоростью, на 8 км/ч большей, отправился второй. Найдите скорость второго теплохода, если в пункт В оба теплохода прибыли одновременно. 24. От пристани А к пристани В, расстояние между которыми равно 240 км, отправился с постоянной скоростью первый теплоход, а через 3 часа после этого следом за ним, со скоростью, на 4 км/ч большей, отправился второй. Найдите скорость второго теплохода, если в пункт В оба теплохода прибыли одновременно. 25. От пристани А к пристани В, расстояние между которыми равно 210 км, отправился с постоянной скоростью первый теплоход, а через 7 часов после этого следом за ним, со скоростью, на 15 км/ч большей, отправился второй. Найдите скорость второго теплохода, если в пункт В оба теплохода прибыли одновременно. 26. От пристани А к пристани В, расстояние между которыми равно 153 км, отправился с постоянной скоростью первый теплоход, а через 4 часа после этого следом за ним, со скоростью, на 16 км/ч большей, отправился второй. Найдите скорость первого теплохода, если в пункт В оба теплохода прибыли одновременно.

16 27. От пристани А к пристани В, расстояние между которыми равно 238 км, отправился с постоянной скоростью первый теплоход, а через 7 часов после этого следом за ним, со скоростью, на 17 км/ч большей, отправился второй. Найдите скорость второго теплохода, если в пункт В оба теплохода прибыли одновременно. 28. От пристани А к пристани В, расстояние между которыми равно 162 км, отправился с постоянной скоростью первый теплоход, а через 3 часа после этого следом за ним, со скоростью, на 9 км/ч большей, отправился второй. Найдите скорость второго теплохода, если в пункт В оба теплохода прибыли одновременно. 29. Из пункта А в пункт В, расположенный ниже по течению реки, отправился плот. Одновременно навстречу ему из пункта В вышел катер. Встретив плот, катер сразу повернул и поплыл назад. Какую часть пути от А до В пройдет плот к моменту возвращения катера в пункт В, если скорость катера в стоячей воде вчетверо больше скорости течения реки?

📸 Видео

ОГЭ по Математике 2021. Задание 20. Уравнения, неравенства, система уравнений.Скачать

ОГЭ по Математике 2021. Задание 20. Уравнения, неравенства, система уравнений.

ОГЭ vs ЕГЭ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

ОГЭ vs ЕГЭ 😉 #егэ #математика #профильныйегэ #shorts #огэ

Задание 9 на ОГЭ по математике 2023 / Разбираем все типы уравнений за 5 минут!Скачать

Задание 9 на ОГЭ по математике 2023 / Разбираем все типы уравнений за 5 минут!

ОГЭ Задание 20 Разные способы решения систем уравненийСкачать

ОГЭ Задание 20 Разные способы решения систем уравнений

ОГЭ 2022. Алгебраические выражения. Задание № 20. Часть 1Скачать

ОГЭ 2022. Алгебраические выражения. Задание № 20. Часть 1

Разбор реального варианта ОГЭ по математике 2023 | Математика ОГЭ 2023 | УмскулСкачать

Разбор реального варианта ОГЭ по математике 2023 | Математика ОГЭ 2023 | Умскул

20 задание ОГЭ по математикеСкачать

20 задание ОГЭ по математике
Поделиться или сохранить к себе: