Движущая сила и основное уравнение массопередачи

Основное кинетическое уравнение массопередачи. Коэффициент массопередачи и движущая сила процесса.

Конструкция выпуска должна обеспечивать хорошее перемеши­вание сточных вод с водой водоема, что позволяет лучше использо­вать самоочищающую способность последнего.

Выпуски бывают сосредоточенные, когда сточные воды выпус­каются через одно отверстие, и рассеивающие, когда имеется несколь­ко выпускных отверстий. Различают также береговые и русловые выпуски.

Береговые выпуски бывают незатопленные и затопленные. При незатопленных береговых выпусках излив сточных вод производится несколько выше уровня воды в реке. При затопленных береговых выпусках устраивается береговой колодец и излив сточных вод про­исходит под уровень воды, к водоеме.

Русловые выпуски располагаются в водоеме на некотором рас­стоянии от берега. По сравнению с береговыми выпусками они обес­печивают лучшее и более быстрое смешение сточных вод с водами водоема.

По конструкции наиболее совершенны рассеивающие русловые выпуски. Такие выпуски заканчиваются выпускным оголовком в ви­де горизонтально расположенной конусной трубы, на боковой по­верхности которой имеется вырез с поперечными направляющими. Этим обеспечивается хорошее смешение.

Весьма эффективное смешение сточных вод с водами водоема обес­печивает конструкция рассеивающего фильтрующего струйного выпуска в виде стальной перфорированной трубы с приваренной к ней по всей длине металлической обоймой со щелевыми отверстия­ми Обойма заполнена крупным гравием или щебнем.

Выбор конструкции выпуска и места его расположения определяется технико-экономическими расчетами.

Основное кинетическое уравнение массопередачи. Коэффициент массопередачи и движущая сила процесса.

Основной закон массопередачи можно сформулировать, исходя из общих кинетических закономерностей химико-технологических процессов.
jм= Движущая сила и основное уравнение массопередачи= Движущая сила и основное уравнение массопередачи=Kм*ΔС – основной закон кинематики

Скоростью любого процесса МП будет называться количество вещества М, которое передается из одной фазы в другую через единицу поверхности контакта фаз F в единицу времени τ. [кг/м 2 *ч]

М=Км*ΔС*F, где Км – коэффициент массопередачи (скорость процесса), С-концентрация

Км= Движущая сила и основное уравнение массопередачи[кг/ед конц*м 2 ]

В аппаратуре, используемой для проведения массообменных процессов, равновесные концентрации распределяемого вещества никогда не достигаются. Действительные концентрации распределяемого вещества, или рабочие концентрации, всегда отличаются от равновесных. Разность между этими концентрациями, характеризующая степень отклонения от равновесия, и представляет собой движущую силу массообменных процессов.

Дата добавления: 2015-01-24 ; просмотров: 1347 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Видео:Физика 10 класс (Урок№18 - Основное уравнение МКТ.)Скачать

Физика 10 класс (Урок№18 - Основное уравнение МКТ.)

Лекция № 11 Процесс массопередачи

Движущая сила и основное уравнение массопередачи

Массопередача – это сложный процесс, включающий перенос вещества (массы) в пределах одной фазы, перенос через поверхность раздела фаз и его перенос в пределах другой фазы. Как известно, при теплопередаче обменивающиеся теплотой среды в большинстве случаев разделены твердой стенкой, в то время как массопередача происходит обычно через границу раздела соприкасающихся фаз. Эта граница может быть либо подвижной (массопередача в системах газ-жидкость или пар-жидкость, жидкость-жидкость), либо неподвижной (массопередача с твердой фазой).

массоотдача – это перенос вещества из фазы к границе раздела фаз или в обратном направлении, т. е. в пределах только одной фазы.

Виды процессов массопередачи. В промышленности применяются в основном следующие процессы массопередачи:

1. Абсорбция — поглощение газа жидкостью, т. е. процесс разделения, характеризуемый переходом вещества из газовой фазы в жидкую.

2. Экстракция (в системе жидкость-жидкость) — извлечение вещества, растворенного в жидкости, другой жидкостью, практически несмешивающейся или частично смешивающейся с первой. При этом извлекаемый компонент исходного раствора переходит из одной жидкой фазы в другую.

8. Перегонка — разделение гомогенных жидких смесей путем взаимного обмена компонентами между жидкостью и паром, полученным испарением разделяемой жидкой смеси.

4. Адсорбция — поглощение компонента газа, пара или раствора твердым пористым поглотителем, т. е. процесс разделения, характеризуемый переходом вещества из газовой (паровой) или жидкой фазы в твердую.

5. Сушка — удаление влаги из твердых материалов, главным образом путем ее испарения.

6. Кристаллизация — выделение твердой фазы в виде кристаллов из растворов или расплавов.

7. Растворение и экстракция (в системе твердое тело — жидкость).

Процессы массопередачи можно разделить на две группы.

К одной группе относятся процессы (абсорбция, экстракция и др.), в которых участвуют минимально три вещества: одно находится только в одной фазе, другое — только во второй фазе, а третье — переходит из одной фазы в другую и представляет собой распределяемое между фазами вещество.

К другой группе относятся процессы (например, перегонка), в которых вещества, составляющие две фазы, обмениваясь компонентами, сами непосредственно участвуют в массопередаче и уже не могут рассматриваться как инертные носители распределяемого вещества.

Скорость массообменных процессов, как правило, лимитируется молекулярной диффузией. Поэтому процессы массопередачи иногда называют диффузионными процессами.

Равновесие при массопередаче

Правило фаз. Знание равновесия в процессах массопередачи позволяет установить пределы, до которых могут протекать эти процессы. В основе равновесия лежит известное правило фаз:

Видео:Дифференциальное уравнение Эйлера. Основное уравнение гидростатикиСкачать

Дифференциальное уравнение Эйлера. Основное уравнение гидростатики

Ф + С = К + 2, (1)

где Ф — число фаз; С — число степеней свободы, т. е. число независимых переменных, значения которых можно произвольно изменять без нарушения числа или вида (состава) фаз в системе; К — число компонентов системы.

Правило фаз указывает число параметров, которое можно менять произвольно (в известных пределах) при расчете равновесия в процессах масообмена.

Зависимости между независимыми переменными могут быть изображены в плоских координатах в виде так называемых фазовых диаграмм. В расчетах по массопередаче используют диаграммы зависимости давления от концентрации (при t = const), температуры от концентрации (при Р = const) и диаграммы зависимости между равновесными концентрациями фаз, приведенные ниже.

Фазовое равновесие. Линия равновесия. Рассмотрим в качестве примера процесс массопередачи, в котором аммиак, представляющий собой распределяемый компонент, поглощается из его смеси с воздухом чистой водой, т. е. ввиду отсутствия равновесия переходит из газовой фазы Фу, где его концентрация равна у, в жидкую фазу Фх, имеющую начальную концентрацию х = 0. С началом растворения аммиака в воде начнется переход части его молекул в обратном направлении со скоростью, пропорциональной концентрации аммиака в воде и на границе раздела фаз. С течением времени скорость перехода аммиака в воду будет снижаться, а скорость обратного перехода возрастать, причем такой двусторонний переход будет продолжаться до тех пор, пока скорости переноса в обоих направлениях не станут равны друг другу. При равенстве скоростей установится динамическое равновесие, при котором не будет происходить видимого перехода вещества из фазы в фазу.

При равновесии достигается определенная зависимость между предельными или равновесными концентрациями распределяемого вещества в фазах для данных температуры и давления, при которых осуществляется процесс массопередачи.

В условиях равновесия некоторому значению Движущая сила и основное уравнение массопередачиотвечает строго определенная равновесная концентрация в другой фазе, которую обозначим через Движущая сила и основное уравнение массопередачи. Соответственно концентрация у отвечает равновесная концентрация Движущая сила и основное уравнение массопередачи. В самом общем виде связь между концентрациями распределяемого вещества в фазах при равновесии выражается зависимостью:

Движущая сила и основное уравнение массопередачиили Движущая сила и основное уравнение массопередачи. (2)

Движущая сила и основное уравнение массопередачиЛюбая из этих зависимостей изображается графически линией равновесия, которая либо является кривой, как показано на рис. 1, либо в частном случае — прямой линией. На рис. 1, а показана равновесная кривая для системы с компонентами-носителями, выражающая зависимость равновесной концентрации, например в газовой фазе, от концентрации жидкой фазы при Р = const и t = const. На рис. 1, б приведен пример равновесной кривой для процесса ректификации, построенной при Р = const. Каждая точка кривой, как показано на рисунке, соответствует разным температурам (t1, t2 и т. д.).

Отношение концентраций фаз при равновесии называется коэффициентом распределения Движущая сила и основное уравнение массопередачи. Для разбавленных растворов линия равновесия близка к прямой, и т является практически величиной постоянной, равной тангенсу угла наклона линии равновесия.

Конкретный вид законов равновесного распределения различен для разных процессов массопередачи. Так, например, в процессе абсорбции при низких концентрациях распределяемого вещества в исходном растворе равновесие описывается законом Генри для идеальных растворов в процессах ректификации — законом Рауля и т. д.

Зная линию равновесия для конкретного процесса и рабочие, т. е. неравновесные, концентрации фаз в соответствующих точках, можно определить направление и движущую силу массопередачи в любой точке аппарата. На основе этих данных может быть рассчитана средняя движущая сила, а по ней — скорость процесса массопередачи.

Движущая сила и основное уравнение массопередачиМатериальный баланс. Рабочая линия. Рабочие концентрации распределяемого вещества не равны равновесным, и в действующих аппаратах никогда не достигают равновесных значений.

Зависимость между рабочими концентрациями распределяемого вещества в фазах Движущая сила и основное уравнение массопередачиизображается линией, которая носит название рабочей линии процесса. Вид функции Движущая сила и основное уравнение массопередачиили уравнение рабочей линии в его общем виде, является одинаковым для всех массообменных процессов и получается из их материальных балансов.

Рассмотрим схему массообменного аппарата, работающего в режиме идеального вытеснения при противотоке фаз (рис. 2). Пусть в процессе массопередачи из фазы в фазу, например из газовой фазы в жидкую, переходит только один распределяемый компонент (скажем, аммиак).

Сверху в аппарат поступает Lн кг/с одной фазы (жидкой), содержащей Движущая сила и основное уравнение массопередачивес. долей распределяемого компонента, а снизу из аппарата удаляется Lк кг/с той же фазы, содержащей Движущая сила и основное уравнение массопередачивес. долей распределяемого компонента. Снизу в аппарат поступает Движущая сила и основное уравнение массопередачикг/с другой фазы (газовой) концентрацией Движущая сила и основное уравнение массопередачии сверху удаляется Движущая сила и основное уравнение массопередачикг/с этой фазы, имеющей концентрацию Движущая сила и основное уравнение массопередачивес. долей распределяемого компонента.

Тогда материальный баланс по всему веществу

Движущая сила и основное уравнение массопередачи, (3)

и материальный баланс по распределяемому компоненту

Движущая сила и основное уравнение массопередачи. (4)

Теперь напишем уравнения материального баланса для части аппарата от его нижнего конца до некоторого произвольного сечения, для которого расходы фаз составляют G и L кг/с, а их текущие концентрации равны Движущая сила и основное уравнение массопередачии Движущая сила и основное уравнение массопередачисоответственно.

Материальный баланс по всему веществу

Движущая сила и основное уравнение массопередачи, (5)

и материальный баланс по распределяемому компоненту

Движущая сила и основное уравнение массопередачи. (6)

Решая это уравнение относительно Движущая сила и основное уравнение массопередачи, получим

Движущая сила и основное уравнение массопередачи. (7)

Уравнение (7) представляет собой уравнение рабочей линии, выражающее связь между рабочими концентрациями распределяемого компонента в фазах для произвольного сечения аппарата.

Расходы фаз постоянны по высоте аппарата, например в процессах ректификации, когда числа молей компонентов, которыми обмениваются фазы, равны. В других случаях, если концентрации фаз мало изменяются по высоте аппарата, то расходы фаз по его высоте можно с достаточной для практических целей точностью считать постоянными, т. е. принять L = const и G = const. При этом Lк = L, Gн = G и уравнение (7) приводится к виду

Движущая сила и основное уравнение массопередачи. (8)

Вводя обозначения Движущая сила и основное уравнение массопередачии Движущая сила и основное уравнение массопередачи, находим

Движущая сила и основное уравнение массопередачи. (9)

Выражения (8) и (9) являются уравнениями рабочей линии, которыми обычно пользуются при расчетах массообменных процессов.

Таким образом, рабочая линия представляет собой прямую, которая наклонена к горизонту под углом, тангенс которого равен А, и отсекает на оси ординат отрезок, равный В. Рабочая линия для всего аппарата ограничена точками с координатами Движущая сила и основное уравнение массопередачии Движущая сила и основное уравнение массопередачи(верхний конец аппарата, рис. 3) и Движущая сила и основное уравнение массопередачии Движущая сила и основное уравнение массопередачи(нижний конец аппарата).

Скорость массопередачи

Скорость массопередачи связана с механизмом переноса распределяемого вещества в фазах между которыми происходит массообмен.

Перенос вещества внутри фазы может происходить только путем молекулярной диффузии либо путем конвекции и молекулярной диффузии одновременно. Посредством одной молекулярной диффузии вещество перемещается, строго говоря, лишь в неподвижной среде. В движущейся среде перенос вещества осуществляется как молекулярной диффузией, так и самой средой в направлении ее движения или отдельными ее частицами в разнообразных направлениях.

В турбулентном потоке перенос молекулярной диффузией преобладает только вблизи границы фазы. При турбулентном течении возникают нерегулярные пульсации скорости, под действием которых, наряду с общим движением потока, происходит перемещение частиц во всех направлениях, в том числе и в поперечном.

Конвективный перенос вещества, осуществляемый под действием турбулентных пульсаций, часто называют турбулентной диффузией.

Молекулярная диффузия. Молекулярной диффузией называется перенос распределяемого вещества, обусловленный беспорядочным тепловым движением молекул, атомов, ионов, коллоидных частиц. Молекулярная диффузия описывается первым законом Ф и к а, согласно которому масса вещества dМ, продиффундировавшего за время dt через элементарную поверхность dF (нормальную к направлению диффузии), пропорциональна градиенту концентрации этого вещества

Движущая сила и основное уравнение массопередачиили Движущая сила и основное уравнение массопередачи. (1)

Из выражения (1) следует, что удельный поток вещества, переносимого молекулярной диффузией через единицу поверхности (F = 1) в. единицу времени (t = 1), или скорость молекулярной диффузии, составляет

Движущая сила и основное уравнение массопередачи. (2)

По своей структуре закон Фика аналогичен закону Фурье, описывающему передачу тепла теплопроводностью, причем аналогом градиента температур является в данном случае градиент концентраций, представляющий собой изменение концентрации диффундирующего вещества на единицу длины нормали между двумя поверхностями постоянных, но различных концентраций.

Коэффициент пропорциональности D в выражении закона Фика называется коэффициентом молекулярной диффузии, или просто коэффициентом диффузии. Знак минус перед правой частью первого закона Фика указывает на то, что молекулярная диффузия всегда протекает в направлении уменьшения концентрации распределяемого компонента.

Согласно уравнению (1), коэффициент диффузии выражается как:

Движущая сила и основное уравнение массопередачи

откуда (до сокращения одноименных величин) вытекает физический смысл D. Коэффициент диффузии, показывает, какая масса вещества диффундирует в единицу времени через единицу поверхности при градиенте концентрации, равном единице.

Коэффициент молекулярной диффузии представляет собой физическую константу, характеризующую способность данного вещества проникать вследствие диффузии в неподвижную среду. Величина D таким образом не зависит от гидродинамических условий, в которых протекает процесс.

Турбулентная диффузия. Масса вещества dMт, переносимого в пределах фазы вследствие турбулентной диффузии, может быть принята, по аналогии с молекулярной диффузией, пропорциональной поверхности dF, времени dt и градиенту концентрации Движущая сила и основное уравнение массопередачии определяется по, уравнению

Движущая сила и основное уравнение массопередачи, (3)

где Движущая сила и основное уравнение массопередачи— коэффициент турбулентной диффузии.

Коэффициент турбулентной диффузии Движущая сила и основное уравнение массопередачи показывает какая масса вещества передается посредством турбулентной диффузии в единицу времени через единицу поверхности при градиенте концентрации, равном единице.

Коэффициент Движущая сила и основное уравнение массопередачи выражается в тех же единицах, что и коэффициент молекулярной диффузии D, т. е. в м2/с. Однако в отличие от D коэффициент турбулентной диффузии Движущая сила и основное уравнение массопередачи не является физической константой; он зависит от гидродинамических условий, определяемых в основном скоростью потока и масштабом турбулентности.

Конвективный перенос. Скорость конвективного, переноса вещества вместе с самой средой в направлении, совпадающем с направлением общего потока, равна

Движущая сила и основное уравнение массопередачи, (4)

где v — скорость потока жидкости, газа или пара; С — коэффициент пропорциональности.

Суммарный перенос вещества вследствие конвективного переноса и молекулярной диффузии, по аналогии с теплообменом, называют конвективным массообменом или конвективной диффузией.

Распределение концентрации при переносе путем конвективной диффузии определяется в самом общем виде дифференциальным уравнением конвективной диффузии.

Дифференциальное уравнение конвективной диффузии. Выделим в потоке данной фазы элементарный параллелепипед с ребрами dx, dy и dz, ориентированными относительно осей координат, как показано на рис. 1. Рассмотрим материальный баланс по распределяемому веществу для параллелепипеда в наиболее общем случае неустановившегося массообмена. Будем считать, что процесс переноса происходит в условиях установившегося движения потока фазы. Распределяемое вещество проходит сквозь грани параллелепипеда как путем конвективного переноса, так и молекулярной диффузии.

Обозначим концентрацию распределяемого вещества в плоскости левей грани параллелепипеда площадью dydz через с и проекции скорости на оси координат для данного элемента (точки) потока — через Движущая сила и основное уравнение массопередачи, Движущая сила и основное уравнение массопередачии Движущая сила и основное уравнение массопередачи, соответственно.

Тогда масса вещества, поступающего только путем конвективной диффузии через площадь dydz, т. е. в направлении оси х, за время dt составит

Движущая сила и основное уравнение массопередачи. (5)

На противоположной грани параллелепипеда скорость в направлении оси х равна Движущая сила и основное уравнение массопередачии концентрация распределяемого вещества составляет Движущая сила и основное уравнение массопередачи. Следовательно, за время dt через противоположную грань параллелепипеда выходит путем конвективной диффузии:

Движущая сила и основное уравнение массопередачи. (6)

Разность между массами вещества, прошедшего через противоположные грани параллелепипеда за время dt в направлении оси х, равна

Движущая сила и основное уравнение массопередачи, (7)

где dV = dx dy dz — объем элементарного параллелепипеда. Аналогично в направлении осей у и z:

Движущая сила и основное уравнение массопередачии Движущая сила и основное уравнение массопередачи. (8)

Таким образом, содержание распределяемого вещества в объеме параллелепипеда изменится за время dt вследствие перемещения вещества только путем конвективной диффузии на величину

Движущая сила и основное уравнение массопередачи

или в развернутом виде

Движущая сила и основное уравнение массопередачи. (9)

Согласно уравнению неразрывности потока для установившегося движения фазы

Движущая сила и основное уравнение массопередачи. (10)

Следовательно, предыдущее выражение dMк примет вид

Движущая сила и основное уравнение массопередачи. (11)

Масса распределяемого вещества, поступающего в параллелепипед только путем молекулярной диффузии через грань dy dz за время dt составляет

Движущая сила и основное уравнение массопередачи. (12)

Масса вещества, выходящего за то же время путем молекулярной диффузии через противоположную грань,

Движущая сила и основное уравнение массопередачи. (13)

Разность между массами продиффундировавшего через противоположные грани параллелепипеда вещества в направлении оси х за время dt равна

Движущая сила и основное уравнение массопередачи. (14)

Аналогично в направлении осей у и z:

Движущая сила и основное уравнение массопередачии Движущая сила и основное уравнение массопередачи. (15)

Масса распределяемого вещества в объеме всего параллелепипеда за время dt изменится при переносе путем молекулярной диффузии на величину

Движущая сила и основное уравнение массопередачи. (16)

В результате изменение массы распределяемого вещества во времени в объеме параллелепипеда

Движущая сила и основное уравнение массопередачи. (17)

Изменение массы распределяемого вещества за счет конвективной и молекулярной диффузии в объеме параллелепипеда по закону сохранения массы должно равняться соответствующему изменению массы этого вещества во времени, т. е.

Движущая сила и основное уравнение массопередачи

Движущая сила и основное уравнение массопередачиДвижущая сила и основное уравнение массопередачиДвижущая сила и основное уравнение массопередачиДвижущая сила и основное уравнение массопередачи. (19)

Проводя соответствующие сокращения и перегруппировывая члены этого уравнения, получим

Движущая сила и основное уравнение массопередачиДвижущая сила и основное уравнение массопередачи Движущая сила и основное уравнение массопередачи(20)

или в более краткой записи

Движущая сила и основное уравнение массопередачи. (20, а)

Уравнение (20) представляет собой дифференциальное уравнение конвективной диффузии. Оно выражает закон распределения концентрации данного компонента в движущейся стационарно среде при неустановившемся процессе массообмена.

Уравнение (20) по структуре аналогично дифференциальному уравнению конвективного теплообмена (уравнению Фурье-Кирхгофа). Отличие состоит в том, что в уравнение (20) вместо температурного градиента входит градиент концентрации, а вместо коэффициента температуропроводности а — коэффициент молекулярной диффузии D.

Для частного случая установившегося массообмена уравнение (20) принимает вид:

Движущая сила и основное уравнение массопередачи. (21)

При массообмене в неподвижной среде Движущая сила и основное уравнение массопередачи= Движущая сила и основное уравнение массопередачи= Движущая сила и основное уравнение массопередачи= 0, а конвективная составляющая в левой части уравнения (19) равна нулю, и уравнение обращается в дифференциальное уравнение молекулярной диффузии.

Движущая сила и основное уравнение массопередачи. (22)

Уравнение (22) носит название второго закона Фика. В дифференциальном уравнении конвективной диффузии, помимо концентрации, переменной является скорость потока. Поэтому данное уравнение надо рассматривать совместно с дифференциальными уравнениями гидродинамики: уравнениями Навье-Стокса и уравнением неразрывности потока. Однако эта система уравнений не имеет аналитического решения, и для получения расчетных зависимостей по массообмену приходится прибегать к преобразованию дифференциального уравнения конвективной диффузии методами теории подобия.

Ввиду сложности механизма процессов массоотдачи в фазах для практических целей принимают, что скорость массоотдачи пропорциональна движущей силе, равной разности концентраций в ядре и на границе фазы или (в случае обратного направления переноса) разности концентраций на границе и в ядре фазы. Соответственно, если распределяемое вещество переходит из фазы Фу в фазу Фх, то основное уравнение массоотдачи, определяющее количеством М вещества, переносимого в единицу времени в каждой из фаз (к границе фазы или в обратном направлении), выражается следующим образом:

Движущая сила и основное уравнение массопередачи(1)

Движущая сила и основное уравнение массопередачи, (1, а)

входящие в эти уравнения разности концентраций Движущая сила и основное уравнение массопередачии Движущая сила и основное уравнение массопередачипредставляют собой движущую силу процесса массоотдачи соответственно в фазах Фу и Фх, причем Движущая сила и основное уравнение массопередачии Движущая сила и основное уравнение массопередачи— средние концентрации в основной массе (ядре) каждой из фаз, Движущая сила и основное уравнение массопередачии Движущая сила и основное уравнение массопередачи— концентрации у границы соответствующей фазы.

Коэффициенты пропорциональности в уравнениях (1) и (1, а) называются коэффициентами массоотдачи. Коэффициенты массоотдачи Движущая сила и основное уравнение массопередачи(в фазе Фх и Движущая сила и основное уравнение массопередачи(в фазе Фу) показывают, какая масса вещества переходит от поверхности раздела фаз в ядро фазы: или в обратном направлении) через единицу поверхности в единицу времени при движущейся силе, равной единице.

Коэффициент массоотдачи является не физической константой, а кинетической характеристикой, зависящей от физических свойств фазы (плотности, вязкости и др.) и гидродинамических условий в ней (ламинарный или турбулентный режим течения), связанных в свою очередь с физическими свойствами фазы, а также с геометрическими факторами, определяемыми конструкцией и размерами массообменного аппарата, Таким образом, величина Движущая сила и основное уравнение массопередачиявляется функцией многих переменных, что значительно осложняет расчет или опытное определение коэффициентов массоотдачи. Значениями последних учитывается как молекулярный, так и конвективный перенос вещества в фазе.

По своему смыслу коэффициент массоотдачи является аналогом коэффициента теплоотдачи в процессах переноса тепла, а основное уравнение массоотдачи идентично по структуре основному уравнению теплоотдачи.

Коэффициент массоотдачи может быть выражен в различных единицах в зависимости от выбора единиц для массы распределяемого вещества и движущей силы. Если принять, что масса вещества выражена в килограммах, то в общей форме коэффициент массоотдачи выразится следующим образом:

Движущая сила и основное уравнение массопередачи

При этом единица измерения р в каждом конкретном случае будет связана с единицами, принятыми для выражения движущей силы (табл. Х-1).

Подобие процессов переноса массы. Наиболее строгий и принципиально возможный путь для определения коэффициентов массоотдачи, заключается в интегрировании уравнения диффузии в движущейся среде (Х,19) совместно с уравнениями движения, т. е. с уравнениями Навье-Стокса и уравнением неразрывности потока при заданных начальных и граничных условиях.

Однако система указанных уравнений практически не имеет общего решения. Поэтому так же, как для гидродинамических и теплообменных процессов, не решая системы основных уравнений, можно методами теории подобия найти связь между переменными, характеризующими процесс переноса в потоке фазы, в виде обобщенного (критериального) уравнения массоотдачи.

Общая функциональная зависимость Nu’ от определяющих критериев и симплексов подобия для неустановившихся процессов массоотдачи может быть выражена как

Движущая сила и основное уравнение массопередачи. (13)

Для установившихся процессов массоотдачи условие равенства критериев Fo’ в сходственных точках подобных потоков отпадает н приведенные выше обобщенные зависимости принимают вид:

Движущая сила и основное уравнение массопередачи. (14)

Расчетная зависимость типа уравнения (13 и 14) называется обобщенным или критериальным уравнением массоотдачи.

Как отмечалось, процесс массопередачи включает процессы массоотдачи в пределах каждой из двух взаимодействующих фаз и, кроме того, процесс переноса распределяемого вещества через поверхность раздела фаз. Сложность расчета процесса связана с тем, что практически невозможно измерить концентрации фаз непосредственно у границы их раздела. Учитывая это, основное уравнение массопередачи, определяющее массу М вещества, переносимого из фазы в фазу в единицу времени (нагрузку аппарата), выражают следующим образом:

Движущая сила и основное уравнение массопередачи, (1)

Движущая сила и основное уравнение массопередачи, (2)

где у*, х* — равновесные концентрации в данной фазе, соответствующие концентрациям распределяемого вещества в основной массе (ядре) другой фазы; Ку, Кх— коэффициенты и массопередачи, выраженные соответственно через концентрации фаз Фу и Фх.

Коэффициент массопередачи (Kу или Кх) показывает, какая масса вещества переходит из фазы в фазу за единицу времени через единицу поверхности контакта фаз при движущей силе массопередачи, равной единице.

По физическому смыслу коэффициенты массопередачи отличаются от коэффициентов массоотдачи, но выражены в одинаковых с ними единицах измерения. Таким образом, коэффициенты массопередачи могут выражаться в м/с, кг/(м2 с); кг/(м2 с мол доли) и в с/м.

Концентрации фаз изменяются при их движении вдоль поверхности раздела, соответственно изменяется движущая сила массопередачи. Поэтому в уравнение массопередачи вводят величину средней движущей силы ( Движущая сила и основное уравнение массопередачиили Движущая сила и основное уравнение массопередачи). Тогда уравнения (1) и (2) принимают вид:

Движущая сила и основное уравнение массопередачи, (3)

Движущая сила и основное уравнение массопередачи. (4)

С помощью уравнений (3) и (4) обычно находят поверхность контакта фаз F и по ней рассчитывают основные размеры аппарата. Для определения F необходимо предварительно рассчитать коэффициент массопередачи Kу или Кх и среднюю движущую силу. Величина М либо задается при расчете, либо определяется из материального баланса.

Зависимость между коэффициентами массопередачи и массоотдачи. Чтобы установить связь между коэффициентом массопередачи и коэффициентами массоотдачи, обычно принимают, что да границе раздела фаз см. рис. 5) достигается равновесие. Это предположение равносильно допущению о том, что сопротивлением переносу через границу раздела фаз можно пренебречь. Отсюда вытекает, как следствие, положение об аддитивности фазовых сопротивлений, которое является одной из предпосылок для расчета коэффициента массопередачи. Допустим, что распределяемое вещество переходит из фазы Фу в фазу Фх, и движущая сила массопередачи выражается в концентрациях фазы Фу. При установившемся процессе массопередачи количество вещества, переходящее из фазы в фазу, определим по уравнению (1).

Для упрощения рассмотрим случай, когда равновесная зависимость % между концентрациями в фазах линейна, т. е. линия равновесия описывается уравнением у* = m x, где т – тангенс угла наклона линии равновесия. После ряда преобразований получаем

Движущая сила и основное уравнение массопередачи(9)

При выражении коэффициента массопередачи в концентрациях фазы Фх аналогичные рассуждения приводят к зависимости

Движущая сила и основное уравнение массопередачи, (10)

Левые части уравнений (9) и (10) представляют собой общее сопротивление переносу вещества из фазы в фазу, т. е. сопротивление массопередаче, а их правые части — сумму сопротивлений массоотдаче в фазах. Поэтому зависимости (9) и (10) являются уравнениями аддитивности фазовых сопротивлений.

При т = const уравнение (10) можно получить, разделив уравнение (9) на т. Отсюда следует, что величины Kу и Kх связаны зависимостью Kу = Kх/m.

Уравнения аддитивности (9) и (10) выведены для линейной равновесной зависимости, но они остаются в силе и для кривой линии равновесия.

Видео:Основное уравнение динамики вращательного движения. 10 класс.Скачать

Основное уравнение динамики вращательного движения. 10 класс.

Классификация основных процессов и аппаратов. Основные признаки массообменных процессов. Графическое представление массообменного процессса

Страницы работы

Движущая сила и основное уравнение массопередачи

Движущая сила и основное уравнение массопередачи

Движущая сила и основное уравнение массопередачи

Движущая сила и основное уравнение массопередачи

Движущая сила и основное уравнение массопередачи

Фрагмент текста работы

1. Классификация основных процессов и аппаратов. 3

2. Основные признаки массообменных процессов. 6

3. Основное уравнение массопередачи. 7

4. Материальный баланс массообменного процесса. 8

5. Рабочая линия. 9

6. Графическое представление массообменного процессса. 10

7. Движущая сила массообменных процессов. 11

8. средняя интегральная движущая сила. 11

9. средняя логарифмическая движущая сила. 13

10. Число единиц переноса (ЧЕП) 16

12. Теоретическая тарелка, ВЭТТ. 18

14. Правило фаз ГИББСА.. 19

15. НАСЫЩЕННЫЕ И НЕНАСЫЩЕННЫЕ ПАРЫ.. 20

16. КЛАССИФИКАЦИЯ БИНАРНЫХ СМЕСЕЙ ЖИДКОСТЕЙ.. 21

17. Основные законы фазового равновесия. 21

18. Равновесие идеальных бинарных смесей, изотерма паровой фазы.. 23

19. Равновесие идеальных бинарных смесей, изотерма жидкой фазы.. 24

20. Графический метод расчета равновесных составов фаз. 25

21. Кривая равновесия фаз. 26

22. Изобарные температурные кривые. 27

23. Энтальпийная (тепловая) диаграмма. 28

24. РАВНОВЕСИЕ БИНАРНЫХ СИСТЕМ, 28

ЧАСТИЧНО ОТКЛОНЯЮЩИХСЯ.. 28

ОТ ЗАКОНА РАУЛЯ.. 28

25. РАВНОВЕСИЕ БИНАРНЫХ СИСТЕМ, 30

ОБРАЗУЮЩИХ АЗЕОТРОПНЫЕ СМЕСИ.. 30

26. РАВНОВЕСИЕ ЧАСТИЧНО РАСТВОРИМЫХ ЖИДКОСТЕЙ.. 33

27. РАВНОВЕСИЕ ВЗАИМНО НЕРАСТВОРИМЫХ ЖИДКОСТЕЙ.. 38

28. Способы перегонки жидкостей. 42

29. Расчет процесса ОИ. Материальный и тепловой баланс ОИ. 43

30. Постепенное испарение. 46

31. Постепенная конденсация. 47

32-33. Многократное испарение и конденсация. 48

34. Сущность процесса ректификации. 49

35. Принципиальное устройство ректификационной колонны.. 50

36. Материальный баланс колонны.. 51

37. Расчет минимальных флегмовых и паровых чисел. 52

38. Уравнение рабочей линии для верхней части колонны.. 54

39. Уравнение рабочей линии для нижней части колонны.. 55

40. Внутреннее и внешнее флегмовое число. 56

41. Тепловой баланс ректификационной колонны.. 57

42. Тепловой баланс верхней части колонны.. 59

43. Тепловой баланс нижней части колонны.. 61

45-46. Режимы полного и минимального орошения. 62

49. Способы создания орошения в колонне. 65

50. Парциальный конденсатор. 65

51. Холодное («острое») испаряющееся орошение. 66

52. Верхнее циркуляционное (неиспаряющееся) орошение. 68

53. СПОСОБЫ ПОДВОДА ТЕПЛА В НИЗ КОЛОННЫ.. 70

54. Выбор давления при ректификации. 72

55. Особенности работы колонн с вводом водяного пара. 73

56. Расчет процесса ОИ многокомпонентных смесей. 74

57. Расчет ректификации многокомпонентных смесей в режиме полного орошения. Уравнение Фенске. 76

58. Расчет ректификации многокомпонентных смесей в режиме минимального орошения. Уравнение Андервуда. 78

Видео:Механизмы массопереносаСкачать

Механизмы массопереноса

1. Классификация основных процессов и аппаратов

по способу создания движущей силы

Движущая сила и основное уравнение массопередачи

Движущая сила и основное уравнение массопередачи

— переход вещества из одной фазы в другую

1) тв→ж растворение твердых веществ;

4) ж →г испарение жидкости, десорбция;

5) г → ж конденсация паров, абсорбция;

Движущая сила: разность концентраций вещества между соответствующими фазами системы

Скорость определяется законами массопередачи
Гидромеханические процессы

связаны с переработкой суспензий

Суспензия – неоднородная система, состоящая из жидкости или газов и взвешенных в них твердых или жидких частиц

1) перемещение жидкости или газа;

2) перемешивание в жидкой среде;

3) разделение жидких неоднородных систем (осаждение, фильтрование, центрифугирование);

4) очистка газов от пыли.

Движущая сила: разность давлений, обусловленная разностью плотностей.

Скорость определяется законами гидромеханики

связаны с обработкой твердых тел и их перемещением

Движущая сила: разность сил, давлений, градиент напряжений (сдвиг, растяжение)

Скорость определяется законами механики твердых тел

связаны с теплообменом

4) конденсация; 8) кристаллизация.

Движущая сила: разность температур

Скорость определяется законами теплопередачи

связаны с химическими превращениями участвующих в процессе веществ и получением новых соединений

1) каталитический крекинг;

Движущая сила: разность концентраций реагирующих веществ

Скорость определяется законами химической кинетик

Движущая сила и основное уравнение массопередачиДвижущая сила и основное уравнение массопередачиДвижущая сила и основное уравнение массопередачиДвижущая сила и основное уравнение массопередачиВ основу классификации положен основной процесс, определяющий назначение аппарата

Движущая сила и основное уравнение массопередачипо способу осуществления во времени

Движущая сила и основное уравнение массопередачи

Характеризуются неустановившимся состоянием во времени

Работа делится на определенные циклы, в течение которых осуществляются все стадии процесса

Характеризуются установившимся режимом, не зависящим от времени

Обеспечивается непрерывный подвод сырья и вывод продуктов, установившееся состояние – среднестатическое

Видео:Основы массорепедачи. Первая лекцияСкачать

Основы массорепедачи. Первая лекция

2. Основные признаки массообменных процессов

1) применяют для разделения смесей,

3) вещество переходит из одной фазы в другую за счет диффузии,

Движущая сила и основное уравнение массопередачи

5) все массообменные процессы обратимы, направление процесса определяется законами фазового равновесия, фактическими концентрациями компонента в фазах и внешними условиями (t, p),

6) переход вещества из одной фазы в другую заканчивается при достижении динамического равновесия.

Видео:Урок 132. Основные понятия гидродинамики. Уравнение непрерывностиСкачать

Урок 132. Основные понятия гидродинамики. Уравнение непрерывности

3. Основное уравнение массопередачи

Движущая сила и основное уравнение массопередачиДвижущая сила и основное уравнение массопередачи

Ky коэффициент скорости или массопередачи

Разность концентраций изменяется во времени, поэтому используем среднюю величину движущей силы:

Движущая сила и основное уравнение массопередачиДвижущая сила и основное уравнение массопередачи

илиДвижущая сила и основное уравнение массопередачиДвижущая сила и основное уравнение массопередачи, кг

Размерность коэффициента массопередачи

Движущая сила и основное уравнение массопередачиДвижущая сила и основное уравнение массопередачиДвижущая сила и основное уравнение массопередачи

Размерность движущей силы

кг/м 3 , кг/кг, м 3 /м 3 , моль/моль, моль/м 3 ;

для газовых фаз: кГ/см 2 , Па, мм рт.ст. и т.д.

Основное уравнение массопередачи

Движущая сила и основное уравнение массопередачи

Движущая сила и основное уравнение массопередачиДвижущая сила и основное уравнение массопередачи

Движущая сила и основное уравнение массопередачи, кг/ч

📽️ Видео

Массообменные процессы. Часть 1. Уровень: начальныйСкачать

Массообменные процессы. Часть 1. Уровень: начальный

Урок 147. Задачи на основное уравнение МКТ идеального газаСкачать

Урок 147. Задачи на основное уравнение МКТ идеального газа

Уравнения и графики механических гармонических колебаний. 11 класс.Скачать

Уравнения и графики механических гармонических колебаний. 11 класс.

Массопередача лекция 3Скачать

Массопередача лекция 3

Урок 84. Теорема о движении центра массСкачать

Урок 84. Теорема о движении центра масс

Урок 94. Вычисление моментов инерции телСкачать

Урок 94. Вычисление моментов инерции тел

Гидромеханические процессы. Часть 1. Уровень: начальный.Скачать

Гидромеханические процессы. Часть 1. Уровень: начальный.

Физика - уравнения равноускоренного движенияСкачать

Физика - уравнения равноускоренного движения

Волновая функция (видео 5) | Квантовая физика | ФизикаСкачать

Волновая функция (видео 5) | Квантовая физика | Физика

Физика. Лекция 8. Уравнения Максвелла и электромагнитные волны.Скачать

Физика. Лекция 8. Уравнения Максвелла и электромагнитные волны.

Урок 455. Уравнение ШрёдингераСкачать

Урок 455. Уравнение Шрёдингера

Гидравлика лекция 2Скачать

Гидравлика лекция 2
Поделиться или сохранить к себе: