Пример решения задачи по определению нормального, касательного и модуля полного ускорения точки, а также, угла с вектором скорости, точки, движущейся по окружности заданного радиуса и известному закону заданному уравнением.
- Задача
- Решение
- Движение точки описывается уравнением 2t 3 как изменится угол тангенциального и полного ускорения
- Тангенциальное, или касательное ускорение
- Кинематические величины
- Траектория движения и ускорение
- Определение тангенциального ускорения
- Получение уравнения касательного ускорения
- Тангенциальное ускорение и модуль полного ускорения
- Связь касательного и углового ускорения
- Определение тангенциального ускорения по известной функции скорости
- Задача на определение тангенциального ускорения
- Тангенциальное ускорение — определение, формула и измерение
- Общие сведения
- Угловое ускорение
- Вывод формулы
- Решение простых примеров
- Сложная задача
- 💥 Видео
Видео:Рассмотрение темы: "Тангенциальное, нормальное и полное ускорение"Скачать
Задача
Точка движется по окружности радиуса R=4 м, закон ее движения определяется уравнением s=4,5t 3 ( s в метрах, t в секундах).
Определить модуль полного ускорения и угол φ его с вектором скорости в тот момент t1, когда скорость будет равна 6 м/с (рисунок 1.6).
Видео:Лекция 6.5 | Нормальное и тангенциальное ускорение | Александр Чирцов | ЛекториумСкачать
Решение
Дифференцируя s по времени, находим модуль вектора скорости точки
Подставляя в это выражение значение скорости, получим 6=13,5t1 2 , откуда находим
Касательное ускорение для любого момента времени равно
Так как для окружности радиус кривизны ρ=R, то нормальное ускорение для любого момента времени равно
Модуль вектора полного ускорения точки равен
Угол между вектором полного ускорения и вектором скорости определим следующим образом:
Видео:Урок 47. Неравномерное движение по окружности. Тангенциальное ускорениеСкачать
Движение точки описывается уравнением 2t 3 как изменится угол тангенциального и полного ускорения
Вращение тела вокруг неподвижной оси задано уравнением `varphi = 2t — 4t^3` (`varphi`- в рад, t — в с). Начало вращения тела при `t = 0` Положительные углы отсчитываются в направлении стрелки (см. рис.) В каком направлении поворачивается тело в момент времени `t = 5с`?
Вращение тела вокруг неподвижной оси задано уравнением `varphi= Asin pit` (`varphi` — в рад, t — в с). Начало вращения тела при `t = 0` Положительные углы отсчитываются в направлении стрелки (см. рис.) В каком направлении поворачивается тело в момент времени` t = 1,25с`?
Тело вращается вокруг неподвижной оси с угловым ускорением `beta = 2t^2` В начальный момент времени тело покоится Определить закон изменения угловой скорости тела (`omega`- в рад/с, `beta` — в рад/`с^2` `t` — в с)
Движение точки по окружности описывается уравнением `s = 2t^3` (s — в м, t — в с). Как изменяется со временем угол между векторами полного и тангенциального ускорения точки?
Какие из перечисленных выражений совпадают в случае свободного падения тела с выражением `(dv)/(dt)` (`vectau` — единичный вектор, касательный к траектории и направленный по движению)
Применима ли для вычисления угла поворота тела формула `varphi = omega * t` в случаях: (`omega` — в рад/ с, t- в с)
Вращение тела вокруг неподвижной оси задано уравнением `varphi = 2pi(6t — 3t^2)` (`varphi` — в рад, t-вс). Начало вращения тела при `t = 0`. Сколько оборотов сделает тело до момента изменения направления вращения?
Человек шёл из деревни в город со скоростью `5(км)/ч`. Обратно он возвращался с покупками той же дорогой, но со скоростью `3(км)/ч` . Определите в `(км)/ч` среднюю скорость пешехода за всё время движения.
Движение точки М (см. рис.) задано уравнением `x = 2t^2 — 4t^3` (x — в м, t — в с). Начало движения точки при ` t = 0`. Указать направления движения точки в следующие моменты времени:
Математический маятник совершает гармонические колебания. Отличны ли от нуля в средней точке траектории маятника
Прямолинейное движение материальной точки задано уравнением `x = 3t — 4t^3` (x — в м, t — в с). Начало движения точки при `t = 0`. Как изменяется модуль скорости в следующие моменты времени:
Математический маятник совершает гармонические колебания. Отличны ли от нуля в крайней точке траектории маятника.
Прямолинейное движение материальной точки задано уравнением `x = 20t — 5t^2` (x-в м, t — в с). Начало движения точки при ` t = 0`. Совпадают ли координата и пройденный точкой путь в следующие моменты времени:
Два грузовика движутся по прямому участку дороги: первый — со скоростью `vecupsilon`, второй — со скоростью `-4vecupsilon`. Какова скорость второго грузовика относительно первого?
Два грузовика движутся по прямому участку дороги: первый — со скоростью `vecupsilon`. второй — со скоростью `3vecupsilon` Модуль скорости первого грузовика относительно второго равен .
Прямолинейное движение материальной точки задано уравнением `x = 3t — t^2` (x — в м, t — в с). Начало движения точки при `t = 0`. Достигнет ли точка следующих координат:
Точка движется равномерно по окружности. Начало её радиус-вектора `vectau` совпадает с центром окружности. Отличны ли от нуля выражения:
Какой знак связывает выражения `abs((dvecupsilon)/(dt))` и `abs((dupsilon)/(dt))` при произвольном движении точки?
Применима ли для вычисления углового ускорения тела формула `beta =omega/t` в случаях: (`omega` — в рад/с: t — в с)
Является ли движение точки обязательно прямолинейным в следующих случаях:
Можно ли утверждать, что точка движется без ускорения в случаях:
Вращение тела вокруг неподвижной оси задано уравнением `varphi = Asin((pit)/4)` — в рад, t — в с). Начало вращения тела при t = 0 Как изменяется величина угловой скорости в следующие моменты времени:
Видео:Центростремительное ускорение. 9 класс.Скачать
Тангенциальное, или касательное ускорение
Все тела, которые окружают нас, находятся в постоянном движении. Перемещение в пространстве тел наблюдается на всех масштабных уровнях, начиная с движения элементарных частиц в атомах вещества и заканчивая ускоренным движением галактик во Вселенной. В любом случае процесс движения происходит с ускорением. В данной статье рассмотрим подробно понятие касательного ускорения и приведем формулу, по которой его можно рассчитать.
Видео:Скорости и ускорения точек вращающегося телаСкачать
Кинематические величины
Прежде чем вести разговор о касательном ускорении, рассмотрим, какими величинами принято характеризовать произвольное механическое перемещение тел в пространстве.
Вам будет интересно: Как научить ребенка делению: основные принципы, простые способы решения и советы учителей
В первую очередь — это путь L. Он показывает, какое расстояние в метрах, сантиметрах, километрах и так далее прошло тело за некоторый промежуток времени.
Вторая важная характеристика в кинематике — это скорость тела. В отличие от пути, она является величиной векторной и направлена вдоль траектории движения тела. Скорость определяет быстроту изменения пространственных координат во времени. Формула для ее вычисления имеет вид:
Вам будет интересно: Как сдать досрочный ЕГЭ?
Скорость — это по времени производная пути.
Наконец, третьей важной характеристикой движения тел является ускорение. Согласно определению в физике, ускорение — это величина, которая определяет изменение скорости от времени. Формулу для него можно записать в виде:
Ускорение, как и скорость, тоже является величиной векторной, однако в отличие от нее оно направлено в сторону изменения скорости. Направление ускорения также совпадает с вектором результирующей силы, оказывающей действие на тело.
Видео:Движение по окружности. Нормальное и тангенциальное ускорение | 50 уроков физики (4/50)Скачать
Траектория движения и ускорение
Многие задачи в физике рассматривают в рамках прямолинейного движения. В этом случае, как правило, не говорят о касательном ускорении точки, а работают с линейным ускорением. Однако если перемещение тела не является линейным, то полное его ускорение может быть разложено на две составляющие:
В случае линейного движения нормальная составляющая равна нулю, поэтому о векторном разложении ускорения не говорят.
Вам будет интересно: Малоизвестные и интересные факты о золоте
Таким образом, траектория движения во многом определяет характер и составные части полного ускорения. Под траекторией движения понимают воображаемую линию в пространстве, вдоль которой тело перемещается. Любая криволинейная траектория приводит к появлению ненулевых компонент ускорения, отмеченных выше.
Видео:Вращательное движение. 10 класс.Скачать
Определение тангенциального ускорения
Тангенциальное или, как его еще называют, касательное ускорение — это компонента полного ускорения, которая направлена по касательной к траектории движения. Поскольку вдоль траектории направлена также скорость, то вектор тангенциального ускорения совпадает с вектором скорости.
Выше было дано понятие ускорения как меры изменения скорости. Поскольку скорость — это вектор, то изменить ее можно либо по модулю, либо по направлению. Касательное ускорение определяет только изменение модуля скорости.
Заметим, что в случае прямолинейного движения вектор скорости своего направления не меняет, поэтому, в соответствии с приведенным определением, тангенциальное ускорение и линейное ускорение — это одна и та же величина.
Видео:Физика - перемещение, скорость и ускорение. Графики движения.Скачать
Получение уравнения касательного ускорения
Предположим, что тело движется по некоторой кривой траектории. Тогда его скорость v¯ в выбранной точке можно представить в следующем виде:
Здесь v — модуль вектора v¯, ut¯ — единичный вектор скорости, направленный по касательной к траектории.
Используя математическое определение ускорения, получаем:
a¯ = dv¯/dt = d(v*ut¯)/dt = dv/dt*ut¯ + v*d(ut¯)/dt
При нахождении производной здесь использовалось свойство произведения двух функций. Мы видим, что полное ускорение a¯ в рассматриваемой точке соответствует сумме двух слагаемых. Они являются касательным и нормальным ускорением точки соответственно.
Скажем пару слов о нормальном ускорении. Оно ответственно за изменение вектора скорости, то есть за изменение направления движения тела вдоль кривой. Если явно вычислить значение второго слагаемого, то получится формула для нормального ускорения:
an = v*d(ut¯)/dt = v2/r
Нормальное ускорение направлено вдоль нормали, восстановленной в данную точку кривой. В случае движения по окружности нормальное ускорение является центростремительным.
Уравнение касательного ускорения at¯ имеет вид:
Это выражение говорит о том, что тангенциальное ускорение соответствует изменению не направления, а модуля скорости v¯ за момент времени. Поскольку тангенциальное ускорение направлено по касательной к рассматриваемой точки траектории, то оно всегда перпендикулярно нормальной компоненте.
Видео:Физика - движение по окружностиСкачать
Тангенциальное ускорение и модуль полного ускорения
Выше была представлена вся информация, которая позволяет вычислить полное ускорение через касательное и нормальное. Действительно, так как обе компоненты являются взаимно перпендикулярными, то их вектора образуют катеты прямоугольного треугольника, гипотенузой которого является вектор полного ускорения. Этот факт позволяет записать формулу для модуля полного ускорения в следующем виде:
Угол θ между полным ускорением и тангенциальным можно определить так:
Чем больше тангенциальное ускорение, тем ближе оказываются направления касательного и полного ускорения.
Видео:3. Кинематика материальной точки. Угловые величиныСкачать
Связь касательного и углового ускорения
Типичной криволинейной траекторией, по которой движутся тела в технике и природе, является окружность. Действительно, перемещение шестерен, лопастей и планет вокруг собственной оси или вокруг своих светил происходит именно по окружности. Движение, соответствующее этой траектории, называется вращением.
Кинематика вращения характеризуется теми же величинами, что кинематика движения по прямой, однако, они имеют угловой характер. Так, для описания вращения используют центральный угол поворота θ, угловые скорость ω и ускорение α. Для этих величин справедливы следующие формулы:
Предположим, что тело совершило один оборот вокруг оси вращения за время t, тогда для скорости угловой можно записать:
Линейная скорость в этом случае будет равна:
Где r — радиус траектории. Последние два выражения позволяют записать формулу связи двух скоростей:
Теперь вычислим производную по времени от левой и правой частей равенства, получим:
В правой части равенства стоит произведение углового ускорения на радиус окружности. Левая же часть равенства — это изменение модуля скорости, то есть касательное ускорение.
Таким образом, тангенциальное ускорение и аналогичная угловая величина связаны равенством:
Если предположить, что вращается диск, то тангенциальное ускорение точки при постоянной величине α будет возрастать линейно с увеличением расстояния от этой точки до оси вращения r.
Далее, решим две задачи на применение записанных выше формул.
Видео:Нормальное и тангенциальное ускорение [Физзадачи #37]Скачать
Определение тангенциального ускорения по известной функции скорости
Известно, что скорость тела, которое перемещается по некоторой кривой траектории, описывается следующей функцией от времени:
Необходимо определить формулу касательного ускорения и найти его значение в момент времени t = 5 секунд.
Сначала запишем формулу для модуля тангенциального ускорения:
То есть для вычисления функции at(t) следует определить производную скорости по времени. Имеем:
at = d(2*t2 + 3*t + 5)/dt = 4*t + 3
Подставляя в полученное выражение время t = 5 секунд, приходим к ответу: at = 23 м/с2.
Заметим, что графиком скорости от времени в данной задаче является парабола, график же тангенциального ускорения — это прямая линия.
Видео:Уравнение движения тела дано в виде x=2−3t. ВычислиСкачать
Задача на определение тангенциального ускорения
Известно, что материальная точка начала равноускоренное вращение с нулевого момента времени. Через 10 секунд после начала вращения ее центростремительное ускорение стало равным 20 м/с2. Необходимо определить касательное ускорение точки через 10 секунд, если известно, что радиус вращения равен 1 метр.
Сначала запишем формулу для центростремительного или нормального ускорения ac:
Пользуясь формулой связи между линейной и угловой скоростью, получим:
При равноускоренном движении скорость с угловым ускорением связаны формулой:
Подставляя ω в равенство для ac, получим:
Линейное ускорение через тангенциальное выражается так:
Подставляем последнее равенство в предпоследнее, получаем:
ac = at2/r2*t2*r = at2/r*t2 =>
Последняя формула с учетом данных из условия задачи приводит к ответу: at = 0,447 м/с2.
Видео:11.3. Ускорение точки при поступательном переносном движении (2 из 3)Скачать
Тангенциальное ускорение — определение, формула и измерение
Видео:Нормальное и тангенциальное ускорениеСкачать
Общие сведения
Первая лекция для студентов, изучающих кинематику, начинается с рассмотрения тангенциального ускорения, характеризуемого произвольным движением. По сути, рассматривается неравномерное прямолинейное движение общего вида. Кинематика входит в механику и изучает перемещение объектов без учёта сил, вызвавших их движение. Под перемещением понимают изменение положения в пространстве по отношению к другому физическому телу, которое и считается точкой отсчёта. Если изменение положения связать с координатами и временем, то образуется система отсчёта. С её помощью можно определить положение объекта в любой момент.
В кинематике любые процессы принято рассматривать, приняв тело за материальную точку. То есть его размерами и формой пренебрегают. При изменении за какой-то промежуток времени точка проходит путь, описывающийся линией — траекторией. Она является скалярной величиной, а само перемещение — векторной. Движение материальной точки может происходить с разной скоростью и ускорением. Быстроту движения разделяют на среднюю и мгновенную. Вторая определяется как предел, к которому стремится скорость на бесконечно малом временном интервале: v = Δs / Δt (Δt → 0).
Перемещение может происходить с ускорением. Это физическая величина, определяющая изменение быстроты перемещения. Иными словами, показывает изменение положения за единицу времени. Измеряется она в метрах на секунду в квадрате. В кинематике существует три вида ускорения:
- Тангенциальное — направленное вдоль касательного пути точки в определённый момент. Из-за происхождения слова его часто называют касательным.
- Нормальное — совпадающее с нормалью траектории изменения положения.
- Полное — определяющееся суммой тангенциального и нормального ускорений.
Но также используется понятие «вектор среднего ускорения тела». Определяется он как приращение вектора скорости за промежуток времени: aср = Δv / Δt. При этом он будет совпадать по направлению с вектором скорости, то есть направлен в сторону вогнутости траектории.
Видео:Криволинейное, равномерное движение материальной точки по окружности. 9 класс.Скачать
Угловое ускорение
Если имеется какая-то точка, находящаяся на вращающемся теле, то скорость её направлена по касательной. Когда движение равномерное, то линейная скорость связана с угловой равенством: v = w * r. А вот ускорение тела будет направлено по радиусу к центру окружности, причём модуль вычисляется как a = v / r либо если это точка на вращающемся теле: a = w2 * r.
В момент, когда тело поворачивается за небольшой промежуток времени на угол дельта фи, угловую скорость можно связать с условием поворота через формулу: w = Δ φ / Δ t. Если тело вращается равномерно, то промежуток времени может быть любым. В ином случае эта величина будет равна мгновенной угловой скорости.
Можно представить, что материальная точка движется неравномерно, то есть изменяется угловая скорость тела. Линейная скорость не будет представлять собой постоянную величину, в отличие от равномерного перемещения. Угол поворота равняется: w = v / r. Так как скорость не может быть константой, то отсюда следует, что и угловая скорость не будет постоянной величиной. Её изменение обозначают Δw. Она равняется разности конечной угловой скорости и начальной: Δw = wк — wн.
Изменение угловой скорости можно разделить на промежуток времени, за который оно поменяло значение: (wк — wн) / Δt. По сути, получается ускорение. Обозначается характеристика буквой эпсилон E и называется угловым ускорением. Измеряется характеристика в радианах на секунду в квадрате. Её смысл заключается в описании физической величины через отношение изменения угловой скорости тела за небольшой промежуток времени к длительности этого промежутка.
Пусть есть дуга окружности с центром. В начальный момент времени у тела есть скорость, направленная по касательной к траектории v0. Через некоторое время точка переместится по окружности на небольшое расстояние. Так как движение неравномерное, модуль скорости изменится v ≠ v0. Для того чтобы найти ускорение тела, нужно воспользоваться следующей формулой: a = Δv / Δt, при этом Δv = v — v0.
Чтобы найти эту разность, нужно воспользоваться правилом треугольника. Для этого следует перенести вектор V0 к V и соединить их линией. Радиус от центра к материальной точке можно обозначить R. Дельта V можно представить, как сумму взаимно перпендикулярных векторов. Один из них будет направленных тангенциально к радиусу, в физике обозначают его Δ Vτ, а другой радиально Δ Vr. В итоге: ΔV = Δ Vτ + Δ Vr.
Видео:Кинематика точки Задание К1Скачать
Вывод формулы
Для доказательства формулы необходимо рассмотреть плоскую систему координат, в которой материальная точка изменяет своё положение по криволинейной траектории. В начальный момент её скорость будет равняться V0. Через некоторое время она изменится и станет V. На графике в плоском измерении это можно представить в виде синусоиды. В определённый момент времени скорость превышает начальную: V > V0. На схеме вектор нулевой скорости направлен из точки t0 вверх по касательной, а вектор V с нижней точки синусоиды параллельно оси ординаты.
Исходя из графика, можно сделать два вывода:
- Через промежуток времени Δt скорость изменяется как по направлению, так и по модулю: Δt = t — t0.
- Вектор изменения скорости, определяемый по правилу треугольника, будет равняться разности существующей скорости на данный момент и начальной: Δv = v — v0.
Для того чтобы построить вектор изменения Δv, нужно из конечной точки отрезка V0 провести линию к рассматриваемой точки, характеризующейся во времени скоростью V. Вершины полученного треугольника можно обозначить буквами ABD. Из верхнего угла B на сторону AD можно опустить медиану. Точка пересечения со стороной пусть будет C. Получается, что вектор Δv можно разложить на две составляющие — отрезки BC и СD. Причём медиана равняется Δvn, а изменение по оси ординаты Δvt.
Для разложения необходимо использовать вектор АС, длина которого совпадает с Vo по модулю: |AC| = |AB| = V0. Так как Δvn — результирующий вектор, то его можно вычислить через сумму: Δv = Δvn + Δvt. Причём первый член в равенстве характеризует изменение быстроты за промежуток времени по направлению, а второй — по модулю. Исходя из того, что t не равняется нулю, на него можно разделить левую и правую часть равенства: Δv / Δt = Δvn / Δt + Δvt / Δt. Если дельта-времени стремится к нулю, то формулу можно переписать в виде: lim Δv / Δt = lim Δvn / Δt + lim Δvt / Δt.
Учитывая связь между ускорениями и то, что полное значение состоит из суммы изменения быстроты движения по модулю и направлению, можно утверждать о верности формулы: a = at + an. Так как направление векторов ускорения и скорости всегда совпадают, то последний можно представить, как параметр, состоящий из двух взаимно перпендикулярных компонент:
- at — тангенциальной составляющей, совпадающей с отрезком V;
- an — перпендикулярным по отношению расположения V вектором.
Используя теорему Пифагора, можно сказать, что модуль полного ускорения равняется корню квадратному из суммы квадратов тангенциального и нормального ускорения: a = √at 2 + an 2 .
Видео:Траектория и уравнения движения точки. Задача 1Скачать
Решение простых примеров
В школьном курсе на уроках физики учащимся для закрепления материала предлагается решить определённый тип задач, используя определение тангенциального ускорения. Это типовые примеры, объясняющие суть характеристики и её применение в реальной практике. Вот некоторые из них.
- Вычислить все ускорения точки, лежащей на окружности, через десять секунд после воздействия на диск вращателя. При этом учесть, что радиус окружности составит 20 см, а угол между валом и радиус вектором тела соответствует закону: j =3-t+0.2t 3 . Для решения примера необходимо использовать формулы для нахождения угловой скорости и ускорения. Подставив заданные значения, можно получить: w = d φ / dt = -1 + 0,2 * 3t 2 и e = dw / dt = 0,6 * 2t. Применив формулу связи, легко найти ускорение: at = R * E * (0,6 * 2t) = 1,2 * Rt = 24 м 2 /с. Подставив в формулу нормального ускорения значения, можно вычислить и его an = V 2 / R = R * (0,6 * 10 2 — 1) 2 / 0,2 = 696 м/с 2 . Отсюда полное ускорение будет равняться: a = √ 24 2 + 696 2 = 697 м/с 2 .
- Материальное тело перемещается по окружности, имеющей радиус 20 см. При этом тангенциальное ускорение равняется 5 см на секунду в квадрате. Определить, сколько понадобится времени, чтобы ускорения сравнялись и нормальное стало больше тангенциального в два раза. Исходя из условия, можно утверждать, что движение является равноускоренным. Поэтому можно применить формулы: an = V2 / t; at = V / t. Отсюда: t = V / at, а V = √an * R. Подставив второе выражение в первое, получится: t = (√an * R) / at. При равенстве ускорений an = at, будет верной запись: t = √R / at = √20 / 5 = 2 с. Для второго случая an = 2at, поэтому: t = (√2 * 20) / 5 = 2,8 c.
Но не всегда решаемые задания можно решить, обойдясь одной формулой. При этом значения тех или иных величин могут быть довольно сложными для проведения вычислений. В таких случаях есть резон использовать так называемые онлайн-калькуляторы. Это специализированные сайты, выполняющие подсчёт в автоматическом режиме. Из таких сервисов можно выделить: сalc, widgety, webmath. Указанные интернет-решители работают на русском языке, так что вопросов, как с их помощью выполнять расчёты, возникнуть не должно.
Видео:Кинематика точки. Три способа задания движения. Скорость, ускорениеСкачать
Сложная задача
Пусть имеется физическое тело, которое движется, замедляясь по окружности радиусом R так, что в каждый момент времени её тангенциальное и нормальное убыстрение равны друг другу по модулю. Необходимо найти зависимость скорости и полного ускорения от времени и пройденного пути. В начальный момент скорость равняется V0.
Согласно условию, тангенциальное ускорение будет отрицательным, так как точка движется, замедляясь. Для понимания задачи можно изобразить схему движения. Для этого необходимо нарисовать окружность и указать на ней вектор начальной скорости, тангенциального и нормального ускорения. Изобразить вектор полного ускорения как сумму векторов.
Нормальное ускорение можно выразить через скорость и радиус: an = V 2 / R. Затем необходимо записать формулу для тангенциального ускорения: at = dV / dt. Так как они равны, то справедливым будет равенство: V 2 / R = dV / dt. Анализируя уравнение, можно сделать вывод, что так как скорость и радиус положительный, то слева будет стоять величина со знаком плюс. Но, с другой стороны, со временем скорость убывает, поэтому с правой стороны нужно поставить знак минус: V 2 / R = — dV / dt.
Полученное уравнение является дифференциальным и показывает зависимость скорости от времени. Равенство можно преобразовать, умножив на отношение dt / V 2 . В итоге должно получиться выражение: dV / V 2 = — dt / R. Это уравнение можно проинтегрировать. При этом пределами интеграла с левой стороны будет V0 и V, а с правой — 0 и t. Получился обыкновенный степенной интеграл, который будет равняться: 1 / V = dt / R.
Подставив пределы, можно получить равенство: (1 / V) — (1 / V0) = t / R. Из полученной формулы следует выразить скорость: V = (V0 * R) / (R + V0 * t). Поделив числитель и знаменатель на радиус, ответ примет вид: V (t) = V0 / (1 + (V0 * t / R)).
Теперь можно найти тангенциальное убыстрение, так как оно представляет производную от скорости. После взятия производной получится: at = dV / dt = — V02 / R (1 + V0 * t / R)2 = — V2 / R. Отсюда можно написать, что модуль полного ускорения будет равняться: a = √2 *|ar| = (√2 * V2) / R. Осталось найти путь. Он совпадает с длиной дуг и равняется интегралу модуля скорости от времени. После решения должно получиться равенство: S (t) = R * ln (1 + V0 * t / R). Задача решена.
💥 Видео
Урок 43. Криволинейное движение. Равномерное движение по окружности. Центростремительное ускорениеСкачать
Основное уравнение динамики вращательного движения. 10 класс.Скачать