Теория, применяемая для решения приведенной ниже задачи, излагается на странице “Сложное движение точки, теорема Кориолиса”.
- Условие задачи
- Решение задачи
- Определение положения точки
- Определение абсолютной скорости точки
- Определение относительной скорости точки
- Определение переносной скорости точки
- Определение абсолютной скорости точки
- Определение абсолютного ускорения точки
- Определение относительного ускорения
- Определение переносного ускорения
- Определение кориолисова ускорения
- Определение абсолютного ускорения
- Движение тела с неподвижной осью задано уравнением фи 2pi 6t 3t 2
- Заданы уравнения движения точки x=3t, y=t2. Определите скорость точки в момент времени t = 2c.
- 📺 Видео
Видео:Уравнение движения тела дано в виде x=2−3t. ВычислиСкачать
Условие задачи
Прямоугольная пластина вращается вокруг неподвижной оси по закону φ = 6 t 2 – 3 t 3 . Положительное направление отсчета угла φ показано на рисунках дуговой стрелкой. Ось вращения OO 1 лежит в плоскости пластины (пластина вращается в пространстве).
По пластине вдоль прямой BD движется точка M . Задан закон ее относительного движения, т. е. зависимость s = AM = 40( t – 2 t 3 ) – 40 ( s — в сантиметрах, t — в секундах). Расстояние b = 20 см . На рисунке точка M показана в положении, при котором s = AM > 0 (при s 0 точка M находится по другую сторону от точки A ).
Найти абсолютную скорость и абсолютное ускорение точки M в момент времени t 1 = 1 с .
Указания. Эта задача – на сложное движение точки. Для ее решения необходимо воспользоваться теоремами о сложении скоростей и о сложении ускорений (теорема Кориолиса). Прежде чем производить все расчеты, следует по условиям задачи определить, где находится точка M на пластине в момент времени t 1 = 1 с , и изобразить точку именно в этом положении (а не в произвольном, показанном на рисунке к задаче).
Видео:Урок 44. Вращение твердого тела. Линейная и угловая скорость. Период и частота вращения.Скачать
Решение задачи
Дано: b = 20 см , φ = 6 t 2 – 3 t 3 , s = |AM| = 40( t – 2 t 3 ) – 40 , t 1 = 1 c .
Определение положения точки
Определяем положение точки в момент времени t = t 1 = 1 c .
s = 40( t 1 – 2 t 1 3 ) – 40 = 40(1 – 2·1 3 ) – 40 = –80 см.
Поскольку s 0 , то точка M ближе к точке B, чем к D.
|AM| = |–80| = 80 см.
Делаем рисунок.
Определение абсолютной скорости точки
Согласно теореме о сложении скоростей, абсолютная скорость точки равна векторной сумме относительной и переносной скоростей:
.
Определение относительной скорости точки
Определяем относительную скорость . Для этого считаем, что пластина неподвижна, а точка M совершает заданное движение. То есть точка M движется по прямой BD . Дифференцируя s по времени t , находим проекцию скорости на направление BD :
.
В момент времени t = t 1 = 1 с ,
см/с.
Поскольку , то вектор направлен в направлении, противоположном BD . То есть от точки M к точке B . Модуль относительной скорости
vот = 200 см/с .
Изображаем вектор на рисунке.
Определение переносной скорости точки
Определяем переносную скорость . Для этого считаем, что точка M жестко связана с пластиной, а пластина совершает заданное движение. То есть пластина вращается вокруг оси OO1. Дифференцируя φ по времени t , находим угловую скорость вращения пластины:
.
В момент времени t = t 1 = 1 с ,
.
Поскольку 0″ style=»width:48px;height:18px;vertical-align:-10px;background-position:-583px -267px»> , то вектор угловой скорости направлен в сторону положительного угла поворота φ , то есть от точки O к точке O1. Модуль угловой скорости:
ω = 3 с -1 .
Изображаем вектор угловой скорости пластины на рисунке.
Из точки M опустим перпендикуляр HM на ось OO1.
При переносном движении точка M движется по окружности радиуса |HM| с центром в точке H .
|HM| = |HK| + |KM| = 3 b + |AM| sin 30° = 60 + 80·0,5 = 100 см ;
Переносная скорость:
vпер = ω|HM| = 3·100 = 300 см/с .
Вектор направлен по касательной к окружности в сторону вращения.
Определение абсолютной скорости точки
Определяем абсолютную скорость . Абсолютная скорость точки равна векторной сумме относительной и переносной скоростей:
.
Проводим оси неподвижной системы координат Oxyz . Ось z направим вдоль оси вращения пластины. Пусть в рассматриваемый момент времени ось x перпендикулярна пластине, ось y лежит в плоскости пластины. Тогда вектор относительной скорости лежит в плоскости yz . Вектор переносной скорости направлен противоположно оси x . Поскольку вектор перпендикулярен вектору , то по теореме Пифагора, модуль абсолютной скорости:
.
Определение абсолютного ускорения точки
Согласно теореме о сложении ускорений (теорема Кориолиса), абсолютное ускорение точки равно векторной сумме относительного, переносного и кориолисова ускорений:
,
где
– кориолисово ускорение.
Определение относительного ускорения
Определяем относительное ускорение . Для этого считаем, что пластина неподвижна, а точка M совершает заданное движение. То есть точка M движется по прямой BD . Дважды дифференцируя s по времени t , находим проекцию ускорения на направление BD :
.
В момент времени t = t 1 = 1 с ,
см/с 2 .
Поскольку , то вектор направлен в направлении, противоположном BD . То есть от точки M к точке B . Модуль относительного ускорения
aот = 480 см/с 2 .
Изображаем вектор на рисунке.
Определение переносного ускорения
Определяем переносное ускорение . При переносном движении точка M жестко связана с пластиной, то есть движется по окружности радиуса |HM| с центром в точке H . Разложим переносное ускорение на касательное к окружности и нормальное ускорения:
.
Дважды дифференцируя φ по времени t , находим проекцию углового ускорения пластины на ось OO 1 :
.
В момент времени t = t 1 = 1 с ,
с –2 .
Поскольку , то вектор углового ускорения направлен в сторону, противоположную положительного угла поворота φ , то есть от точки O1 к точке O. Модуль углового ускорения:
ε = 6 с -2 .
Изображаем вектор углового ускорения пластины на рисунке.
Переносное касательное ускорение:
a τ пер = ε |HM| = 6·100 = 600 см/с 2 .
Вектор направлен по касательной к окружности. Поскольку вектор углового ускорения направлен в сторону, противоположную положительного угла поворота φ , то направлен в сторону, противоположную положительному направлению поворота φ . То есть направлен в сторону оси x .
Переносное нормальное ускорение:
a n пер = ω 2 |HM| = 3 2 ·100 = 900 см/с 2 .
Вектор направлен к центру окружности. То есть в сторону, противоположную оси y .
Определение кориолисова ускорения
Кориолисово (поворотное) ускорение:
.
Вектор угловой скорости направлен вдоль оси z . Вектор относительной скорости направлен вдоль прямой |DB| . Угол между этими векторами равен 150° . По свойству векторного произведения,
.
Направление вектора определяется по правилу буравчика. Если ручку буравчика повернуть из положения в положение , то винт буравчика переместится в направлении, противоположном оси x .
Определение абсолютного ускорения
Абсолютное ускорение:
.
Спроектируем это векторное уравнение на оси xyz системы координат.
;
;
.
Модуль абсолютного ускорения:
.
Абсолютная скорость ;
абсолютное ускорение .
Автор: Олег Одинцов . Опубликовано: 10-01-2016
Видео:Скорость движения тела задана уравнениемСкачать
Движение тела с неподвижной осью задано уравнением фи 2pi 6t 3t 2
Вращение тела вокруг неподвижной оси задано уравнением `varphi = 2t — 4t^3` (`varphi`- в рад, t — в с). Начало вращения тела при `t = 0` Положительные углы отсчитываются в направлении стрелки (см. рис.) В каком направлении поворачивается тело в момент времени `t = 5с`?
Вращение тела вокруг неподвижной оси задано уравнением `varphi= Asin pit` (`varphi` — в рад, t — в с). Начало вращения тела при `t = 0` Положительные углы отсчитываются в направлении стрелки (см. рис.) В каком направлении поворачивается тело в момент времени` t = 1,25с`?
Тело вращается вокруг неподвижной оси с угловым ускорением `beta = 2t^2` В начальный момент времени тело покоится Определить закон изменения угловой скорости тела (`omega`- в рад/с, `beta` — в рад/`с^2` `t` — в с)
Движение точки по окружности описывается уравнением `s = 2t^3` (s — в м, t — в с). Как изменяется со временем угол между векторами полного и тангенциального ускорения точки?
Какие из перечисленных выражений совпадают в случае свободного падения тела с выражением `(dv)/(dt)` (`vectau` — единичный вектор, касательный к траектории и направленный по движению)
Применима ли для вычисления угла поворота тела формула `varphi = omega * t` в случаях: (`omega` — в рад/ с, t- в с)
Вращение тела вокруг неподвижной оси задано уравнением `varphi = 2pi(6t — 3t^2)` (`varphi` — в рад, t-вс). Начало вращения тела при `t = 0`. Сколько оборотов сделает тело до момента изменения направления вращения?
Человек шёл из деревни в город со скоростью `5(км)/ч`. Обратно он возвращался с покупками той же дорогой, но со скоростью `3(км)/ч` . Определите в `(км)/ч` среднюю скорость пешехода за всё время движения.
Движение точки М (см. рис.) задано уравнением `x = 2t^2 — 4t^3` (x — в м, t — в с). Начало движения точки при ` t = 0`. Указать направления движения точки в следующие моменты времени:
Математический маятник совершает гармонические колебания. Отличны ли от нуля в средней точке траектории маятника
Прямолинейное движение материальной точки задано уравнением `x = 3t — 4t^3` (x — в м, t — в с). Начало движения точки при `t = 0`. Как изменяется модуль скорости в следующие моменты времени:
Математический маятник совершает гармонические колебания. Отличны ли от нуля в крайней точке траектории маятника.
Прямолинейное движение материальной точки задано уравнением `x = 20t — 5t^2` (x-в м, t — в с). Начало движения точки при ` t = 0`. Совпадают ли координата и пройденный точкой путь в следующие моменты времени:
Два грузовика движутся по прямому участку дороги: первый — со скоростью `vecupsilon`, второй — со скоростью `-4vecupsilon`. Какова скорость второго грузовика относительно первого?
Два грузовика движутся по прямому участку дороги: первый — со скоростью `vecupsilon`. второй — со скоростью `3vecupsilon` Модуль скорости первого грузовика относительно второго равен .
Прямолинейное движение материальной точки задано уравнением `x = 3t — t^2` (x — в м, t — в с). Начало движения точки при `t = 0`. Достигнет ли точка следующих координат:
Точка движется равномерно по окружности. Начало её радиус-вектора `vectau` совпадает с центром окружности. Отличны ли от нуля выражения:
Какой знак связывает выражения `abs((dvecupsilon)/(dt))` и `abs((dupsilon)/(dt))` при произвольном движении точки?
Применима ли для вычисления углового ускорения тела формула `beta =omega/t` в случаях: (`omega` — в рад/с: t — в с)
Является ли движение точки обязательно прямолинейным в следующих случаях:
Можно ли утверждать, что точка движется без ускорения в случаях:
Вращение тела вокруг неподвижной оси задано уравнением `varphi = Asin((pit)/4)` — в рад, t — в с). Начало вращения тела при t = 0 Как изменяется величина угловой скорости в следующие моменты времени:
Видео:Урок 125. Работа, мощность и кинетическая энергия при вращательном движенииСкачать
Заданы уравнения движения точки x=3t, y=t2. Определите скорость точки в момент времени t = 2c.
X=3t, Y=t в квадрате, берем производные, получим
Vx=3, Vy=2t
Скорость равна V= квадратный корень из (Vx в квадрате+Vy в квадрате) = квадратный корень из (9+16)= 5.
Как это сложно. Здесь без академика не обойтись
x= 3*2c.
y= 2*2c.
x= 6
y= 4
как сложно 1 класс
📺 Видео
Уравнение движенияСкачать
8.4. Преобразование поступательного и вращательного движения тела в механизмахСкачать
Вращательное движение. 10 класс.Скачать
Физика - уравнения равноускоренного движенияСкачать
Урок 18 (осн). Координаты тела. График движения. График скоростиСкачать
Зобова А. А. - Теоретическая механика. Часть 1 - Движение тела вокруг неподвижной осиСкачать
Урок 93. Основное уравнение динамики вращательного движенияСкачать
Теория движение тела брошенного вертикально вверхСкачать
9 класс, 10 урок, Движение тела, брошенного вертикально вверхСкачать
§2.2. Вращение твердого тела вокруг неподвижной оси.Скачать
Движение тела, брошенного под углом к горизонтуСкачать
9 класс, 11 урок, Движение тела, брошенного горизонтальноСкачать
10 Класс - Физика - Кинематика вращательного движенияСкачать
Урок 37. Движение тела, брошенного под углом к горизонту (начало)Скачать
Кинематика точки Задание К1Скачать
Уравнения и графики механических гармонических колебаний. 11 класс.Скачать