Стороны треугольника заданы уравнениями:
Найти координаты вершин треугольника.
Координаты вершины A найдем, решая систему, составленную из уравнений сторон AB и AC:
Систему двух линейных уравнений с двумя неизвестными решаем способами, известными из элементарной алгебры, и получаем
Вершина A имеет координаты
Координаты вершины B найдем, решая систему из уравнений сторон AB и BC:
получаем .
Координаты вершины C получим, решая систему из уравнений сторон BC и AC:
Вершина C имеет координаты .
Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать
Аналитическая геометрия Индивидуальные задания и методические указания по выполнению модуля (стр. 3 )
| Из за большого объема этот материал размещен на нескольких страницах: 1 2 3 4 5 6 7 8 9 |
Две стороны треугольника заданы уравнениями 2x + y – 1 = 0 и x – 3y + 14 = 0, а середина третьей стороны совпадает с началом координат. Составить уравнение третьей стороны
Даны уравнения сторон треугольника: (АВ) 7x – 2y + 32 = 0; (АС) x + y + 2 = 0; (ВС) 4x + y + 1 = 0. Найти точку пересечения его высот
Составьте уравнения катетов прямоугольного равнобедренного треугольника, если уравнение гипотенузы 3x – y + 11 = 0 и С(4;3) – вершина прямого угла
В равнобедренном треугольнике известны: уравнение основания 5x + 3y – 53 = 0, уравнение одной из боковых сторон x + 4y – 14 = 0 и точка на второй боковой стороне (3;7). Найдите уравнение второй боковой стороны
Одна из сторон квадрата лежит на прямой x – 5y + 32 = 0, а одна из вершин находится в точке (8;1). Найдите уравнения остальных сторон квадрата
Составить уравнения трех сторон квадрата, если известно, что четвертой стороной является отрезок прямой 4x – 7y + 28 = 0, концы которого лежат на осях координат
Точки К(1;3) и L(-1;1) являются серединами оснований равнобедренной трапеции, а точки Р(3;0) и Q(-3;5) лежат на ее боковых сторонах. Составить уравнения сторон трапеции
Даны стороны треугольника: (АС) 2x – 15y – 55 = 0; (AB) 4x – 3y + 25 = 0; (BC) 14x + 3y – 61 = 0. Составить уравнение прямой, проходящей через вершину С и через точку на стороне АВ, делящую ее (считая от вершины А) в отношении 1:4
Точки В(7;1) и D(9; -3) являются противоположными вершинами квадрата. Определить координаты двух других вершин
В треугольнике известны уравнения высоты x + y – 3 = 0 и медианы 11x – 4y + 10 = 0, проведенных из различных вершин. Написать уравнения сторон треугольника, зная одну его вершину (8;9).
Написать уравнение сторон треугольника, зная одну его вершину (6;3), уравнения высоты 11x – 9y + 75 = 0 и биссектрисы 11x – 13y + 79 = 0, проведенных из одной вершины
Точка А(2;0) является вершиной правильного треугольника, а противолежащая ей сторона лежит на прямой x + y – 1 =0. Составить уравнения двух других сторон
Длина стороны ромба с острым углом 60° равна 2. Диагонали ромба пересекаются в точке М(1;2), причем большая диагональ параллельна оси абсцисс. Составить уравнения сторон ромба
Точка А(1;2) является серединой одного из оснований прямоугольной трапеции, а точка В(3; -1) – серединой средней линии. Боковая сторона, перпендикулярная основаниям, лежит на прямой 4x – 3y + 10 = 0. Составить уравнения остальных сторон трапеции
Написать уравнения сторон треугольника, зная одну его вершину (9;2), уравнения биссектрисы x + y – 5 =0 и медианы x – y = 0, проведенных из различных вершин
Даны координаты двух вершин треугольника А(-1;3), В(2;5) и ортоцентр – точка Н(1;4). Найти координаты третьей вершины треугольника. (Ортоцентром треугольника называется точка пересечения его высот)
Точка Н(-3;2) является точкой пересечения высот треугольника, две стороны которого лежат на прямых 2x – y = 0 и x + y – 3 =0. Составить уравнение третьей стороны
Найти радиус и координаты центра окружности, проходящей через точку А(-1;3) и касающейся прямых 7x + y = 0 и x – y + 8 = 0
Окружность проходит через точки М(1;0) и N(2;1). Найдите центр этой окружности, если известно, что он лежит на прямой 5x – y – 4 = 0
Точки В(1;2) и С(3; -6) симметричны относительно некоторой прямой. Составить уравнение этой прямой
Диагонали параллелограмма пересекаются в точке К(-2;4). Составить уравнение диагонали, не проходящую через точку пересечения сторон 4x – y + 4 = 0 и 4x +3y +20 = 0
Площадь прямоугольного треугольника, катетами которого являются оси координат, равна 8. Составить уравнение гипотенузы, если известно, что она проходит через точку А (-4;8)
Составить уравнение прямой L1, параллельной прямой L2: 2x + 3y – 23 = 0, если середина отрезка прямой L3: 5x +2y +3 = 0, заключенного между параллельными прямыми L1 и L2 лежит на прямой L4: 5x – y + 24 = 0
Составить уравнение стороны треугольника, в котором известны точка пересечения медиан (-1;7) и уравнения двух других сторон x + 4y – 37 = 0; 2x – y + 16 = 0
Даны две стороны x – y + 5 = 0 и x – y + 10 = 0 и диагональ 3x + y – 10 = 0 ромба. Найти вершины ромба
В треугольнике известны две вершины А(-2;9), В(2; -3) и точка пересечения высот О(2;7). Написать уравнения сторон
Точка А(3; -2) является вершиной квадрата, а точка М(1;1) – точкой пересечения его диагоналей. Составить уравнения сторон квадрата
Даны уравнения одной из сторон ромба x + y – 39 = 0 и одной из его диагоналей x – 3y + 11 = 0. Найти уравнения остальных сторон ромба
Найти координаты вершин параллелограмма, в котором известны две стороны 2x – 5y – 5 = 0 и 2x + 5y – 15 = 0 и диагональ 6x + 5y – 35 = 0
Найти координаты точек С и D четырехугольника ABCD, в котором отрезки АВ и DC параллельны, BD и АС перпендикулярны друг другу и заданы вершины А(9; -1), В(5;5)
Даны две вершины (3; -1), (1;4) и центр тяжести (0;2) треугольника. Найти координаты третьей вершины треугольника и составить уравнения его сторон
Даны уравнения двух высот треугольника 3x + 4y – 23 = 0 и 12x – 5y – 24 = 0 и одна из его вершин (1;1). Составить уравнения сторон
Написать уравнения сторон треугольника, две медианы которого лежат на прямых x + y – 3 = 0 и 2x + 3y – 1 = 0, а точка А(1;1) является вершиной треугольника
Две стороны треугольника заданы уравнениями, x + 3y – 21 = 0 и 7x + y + 13 = 0, а середина третьей стороны – точка (2;3). Составить уравнение третьей стороны
Даны уравнения сторон треугольника: (MN) 3x – 5y + 17 = 0, (NP) 8x + 6y – 32 = 0, (МР) 5x + 11y + 9 = 0. Найти ортоцентр треугольника. (Ортоцентром треугольника называется точка пересечения его высот)
Гипотенуза прямоугольного треугольника лежит на прямой 2x + y – 2 = 0, а точка С(3; -1) является вершиной прямого угла. Площадь треугольника равна 9/4. Составить уравнения прямых, на которых лежат катеты
Основание равнобедренного треугольника лежит на прямой x + 2y – 2 = 0, а одна из боковых сторон – на прямой y + 2x – 1 =0. Составить уравнение другой боковой стороны треугольника, зная, что ее расстояние от точки пересечения данных прямых равно
Составить уравнения сторон квадрата, в котором одна из вершин – точка (8;7) и одна из сторон лежит на прямой 5x + 2y + 4 = 0
Составить уравнения трех сторон квадрата, если известно, что четвертой стороной является отрезок прямой 2x + y – 8 = 0, концы которого лежат на окружности (х – 3)2 + y2 = 4
Точки М(3;7) и N(2;3) являются серединами оснований равнобедренной трапеции. Точки К(1;7) и Р(4;6,5) лежат на ее боковых сторонах. Составить уравнения сторон трапеции
Даны стороны треугольника: (АВ) 4x + 3y – 10 = 0; (ВС) 3x + 2y – 8 = 0; (АС) 8x + 5y – 18 = 0. Составить уравнение прямой, проходящей через точку С и делящей сторону АВ в отношении 2:3 (считая от вершины А)
Противоположными вершинами квадрата являются точки
(-5;-3) и (3;17). Найти координаты двух других вершин
Написать уравнения сторон треугольника, зная одну его вершину (2;7), уравнения медианы 9x + y + 4 = 0 и высоты x + 5y – 11 = 0, проведенных из различных вершин
Написать уравнения сторон треугольника, зная одну его вершину (-5;4), уравнения высоты 6x + y – 61 = 0 и биссектрисы 4x – 3y + 7 = 0
Точка М(6;4) является вершиной правильного треугольника, а противолежащая ей сторона лежит на прямой 3x – y + 2 = 0. Найти уравнения остальных сторон треугольника
Длина стороны ромба с тупым углом 120є равна . Меньшая диагональ параллельна биссектрисе 2 и 4 координатных углов. Диагонали пересекаются в точке (-4;6). Составьте уравнения сторон ромба
Точка Р(8;1) является серединой одного из оснований прямоугольной трапеции, а точка N(2;3) – серединой средней линии. Боковая сторона, перпендикулярная основаниям, лежит на прямой 4x + 3y + 1 = 0. Составить уравнения сторон
Составьте уравнения трех сторон треугольника, в котором медиана 3x + 2y – 6 = 0 и биссектриса x – y = 0 проведены не из вершины (4;0), а из двух других вершин
Даны стороны треугольника: 4x – 3y + 26 = 0(АВ); x + 2y + 1 = 0(АС); 7x + 3y – 37 = 0(ВС). Найти точку пересечения медианы, проведенной из вершины В и высоты, проходящей через вершину С
Найти радиус и координаты центра окружности, проходящей через точку А(-1;8) и касающейся прямых х + 10 = 0 и 4x – 3y + 10 = 0
Точка отстоит на одинаковых расстояниях от точек Р(7;8) и Q(1;2). Найти координаты точки К, если известно, что она лежит на прямой 4x – 5y + 27 = 0
Видео:Найдите сторону треугольника, если другие его стороны равны 1 и 5Скачать
Задача 41259 Найти уравнение сторон треугольника.
Условие
Найти уравнение сторон треугольника, если известны одна из вершин В(-2;-4) и уравнение медианы 2х-5у+8=0 и высоты х+2у-14=0 проведеденных из этой вершины
Все решения
Найдем координаты точки пересечения медианы и высоты:
<2x-5y+8=0
<x+2y-14=0
Назовем ее точка К
Скорее всего дана точка В и два уравнения медианы и высоты,
проведенных из других вершин треугольника
Составим уравнение прямой ВК, как прямой проходящей через две точки:
х+2=y+4
[b]x-y-2=0 [/b]- уравнение ВК
высота x+2y-14=0 и ВК не перпендикулярны,так как произведение угловых коэффициентов взаимно перпендикулярных прямых должно быть равно (-1).
Значит высота перпендикулярна стороне ВМ.
Координату точки М требуется найти
Уравнение стороны ВМ, как прямой, перпендикулярной x+2y-14=0
и проходящей через точку В легко написать.
Произведение угловых коэффициентов взаимно перпендикулярных прямых равно (-1)
Значит, угловой коэффициент стороны ВМ
k_(BM)=2
Общий вид такой прямой
y=2x+b
Так как ВМ проходит через точку В, подставим ее координаты в уравнение
y=2x+b
и найдем b
уравнение BM: [b]y=2x[/b]
Найдем координаты точки пересечения ВМ и медианы.
Решаем систему уравнений:
<2х–5у+8=0
<y=2x
Пусть это точка Р(1;2)
Уравнение КМ, как уравнение прямой проходящей через две точки:
[m]frac<x-x_><x_-x_>=frac<y-y_><y_-y_>[/m]
[b]2х+у-8=0[/b] — уравнение МК
О т в е т. x-y-2=0; y=2x; 2х+у-8=0
🔥 Видео
Уравнения стороны треугольника и медианыСкачать
Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
Математика без Ху!ни. Уравнение плоскости.Скачать
Задача, которую исключили из экзамена в АмерикеСкачать
№470. Две стороны треугольника равны 7,5 см и 3,2 см. Высота, проведенная кСкачать
Составляем уравнение прямой по точкамСкачать
Записать уравнение прямой параллельной или перпендикулярной данной.Скачать
Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать
Аналитическая геометрия, 6 урок, Уравнение прямойСкачать
Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать
Аналитическая геометрия на плоскости. Решение задачСкачать
Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать
Уравнение прямой и треугольник. Задача про высотуСкачать
Аналитическая геометрия, 5 урок, Уравнение плоскостиСкачать
ОГЭ. Геометрия. 1 часть. Теорема косинусов.Скачать
Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать
№973. Даны координаты вершин треугольника ABC: А (4; 6), В (-4; 0), С (-1; -4). Напишите уравнениеСкачать