Два уравнения называют равносильными если они имеют одинаковые корни или

Равносильные уравнения, преобразование уравнений

Некоторые преобразования позволяют нам перейти от решаемого уравнения к равносильным, а также к уравнениям-следствиям, благодаря чему упрощается решение первоначального уравнения. В данном материале мы расскажем, что из себя представляют эти уравнения, сформулируем основные определения, проиллюстрируем их наглядными примерами и поясним, как именно осуществляется вычисление корней исходного уравнения по корням уравнения-следствия или равносильного уравнения.

Видео:РАВНОСИЛЬНЫЕ УРАВНЕНИЯ #математика #егэ #огэ #формулы #профильныйегэ #уравненияСкачать

РАВНОСИЛЬНЫЕ УРАВНЕНИЯ #математика #егэ #огэ #формулы #профильныйегэ #уравнения

Понятие равносильных уравнений

Равносильными называются такие уравнения, имеющие одни и те же корни, или же те, в которых корней нет.

Определения такого типа часто встречаются в различных учебниках. Приведем несколько примеров.

Уравнение f ( x ) = g ( x ) считается равносильным уравнению r ( x ) = s ( x ) , если у них одинаковые корни или у них обоих нет корней.

Уравнения с одинаковыми корнями считаются равносильными. Также ими считаются два уравнения, одинаково не имеющие корней.

Если уравнение f ( x ) = g ( x ) имеет то же множество корней, что и уравнение p ( x ) = h ( x ) , то они считаются равносильными по отношению друг к другу.

Когда мы говорим о совпадающем множестве корней, то имеем в виду, что если определенное число будет корнем одного уравнения, то оно подойдет в качестве решения и другому уравнению. Ни одно из уравнений, являющихся равносильными, не может иметь такого корня, который не подходит для другого.

Приведем несколько примеров таких уравнений.

Например, равносильными будут 4 · x = 8 , 2 · x = 4 и x = 2 , поскольку каждое из них имеет только один корень – двойку. Также равносильными будут x · 0 = 0 и 2 + x = x + 2 , поскольку их корнями могут быть любые числа, то есть множества их решений совпадают. Также равносильными будут уравнения x = x + 5 и x 4 = − 1 , каждое из которых не имеет ни одного решения.

Для наглядности рассмотрим несколько примеров неравносильных уравнений.

К примеру, таковыми будут x = 2 и x 2 = 4 , поскольку их корни отличаются. То же относится и к уравнениям x x = 1 и x 2 + 5 x 2 + 5 , потому что во втором решением может быть любое число, а во втором корнем не может быть 0 .

Определения, данные выше, подойдут и для уравнений с несколькими переменными, однако в том случае, когда мы говорим о двух, трех и более корнях, более уместно выражение «решение уравнения». Таким образом, подытожим: равносильные уравнения – это те уравнения, у которых одни и те же решения или их совсем нет.

Возьмем примеры уравнений, которые содержат несколько переменных и являются равносильными друг другу. Так, x 2 + y 2 + z 2 = 0 и 5 · x 2 + x 2 · y 4 · z 8 = 0 включают в себя по три переменных и имеют только одно решение, равное 0 , во всех трех случаях. А пара уравнений x + y = 5 и x · y = 1 равносильной по отношению друг к другу не будет, поскольку, например, значения 5 и 3 подойдут для первого, но не будут решением второго: при подстановке их в первое уравнение мы получим верное равенство, а во второе – неверное.

Видео:11 класс, 26 урок, Равносильность уравненийСкачать

11 класс, 26 урок, Равносильность уравнений

Понятие уравнений-следствий

Процитируем несколько примеров определений уравнений-следствий, взятых из учебных пособий.

Следствием уравнения f ( x ) = g ( x ) будет уравнение p ( x ) = h ( x ) при условии, что каждый корень первого уравнения будет в то же время корнем второго.

Видео:Равносильные уравнения. Рациональные уравнения - 8 класс алгебраСкачать

Равносильные уравнения. Рациональные уравнения - 8 класс алгебра

Равносильные уравнения и уравнения-следствия

Существуют преобразования уравнений, позволяющие переходить от решаемого уравнения к так называемым равносильным уравнениям и уравнениям-следствиям, по решениям которых есть возможность определить решение исходного уравнения. В этой статье мы подробно разберем, какие уравнения называются равносильными, а какие – уравнениями-следствиями, дадим соответствующие определения, приведем поясняющие примеры и объясним, как найти корни уравнения по известным корням равносильного уравнения и уравнения-следствия.

Видео:Алгебра 10 класс (Урок№19 - Равносильные уравнения и неравенства.)Скачать

Алгебра 10 класс (Урок№19 - Равносильные уравнения и неравенства.)

Равносильные уравнения, определение, примеры

Дадим определение равносильных уравнений.

Равносильные уравнения – это уравнения, имеющие одни и те же корни или не имеющие корней.

Такие же по смыслу определения, но немного отличающиеся по формулировке, приводятся в различных учебниках математики, например,

Два уравнения f(x)=g(x) и r(x)=s(x) называют равносильными, если они имеют одинаковые корни (или, в частности, если оба уравнения не имеют корней) [1, с. 179].

Уравнения, имеющие одни и те же корни, называют равносильными уравнениями. Уравнения, не имеющие корней, также считают равносильными [2, с. 23].

Два уравнения с одной переменной f(x)=g(x) и p(x)=h(x) называют равносильными, если множества их корней совпадают [3, с. 201].

Уравнения, имеющие одно и то же множество корней, называются равносильными [4, с. 186].

Под одними и теми же корнями понимается следующее: если какое-то число является корнем одного из равносильных уравнений, то оно является и корнем любого другого из этих уравнений, и не одно из равносильных уравнений не может иметь корня, который не является корнем любого другого из этих уравнений.

Приведем примеры равносильных уравнений. Например, три уравнения 4·x=8 , 2·x=4 и x=2 – равносильные. Действительно, каждое из них имеет единственный корень 2 , поэтому они равносильны по определению. Еще пример: равносильными являются два уравнения x·0=0 и 2+x=x+2 , множества их решений совпадают: корнем и первого и второго из них является любое число. Два уравнения x=x+5 и x 4 =−1 также представляют собой пример равносильных уравнений, они оба не имеют действительных решений.

Для полноты картины стоит привести примеры не равносильных уравнений. Например, не равносильны уравнения x=2 и x 2 =4 , так как второе уравнение имеет корень −2 , который не является корнем первого уравнения. Уравнения Два уравнения называют равносильными если они имеют одинаковые корни илии Два уравнения называют равносильными если они имеют одинаковые корни илитакже не являются равносильными, так как корнями второго уравнения являются любые числа, а число нуль не является корнем первого уравнения.

Озвученное определение равносильных уравнений относится как к уравнениям с одной переменной, так и к уравнениям с большим числом переменных. Однако для уравнений с двумя, тремя и т.д. переменными слово «корни» в определении нужно заменить словом «решения». Итак,

Равносильные уравнения – это уравнения, имеющие одни и те же решения, или не имеющие их.

Покажем пример равносильных уравнений с несколькими переменными. x 2 +y 2 +z 2 =0 и 5·x 2 +x 2 ·y 4 ·z 8 =0 — вот пример равносильных уравнений с тремя переменными x , y и z , они оба имеют единственное решение (0, 0, 0) . А вот уравнения с двумя переменными x+y=5 и x·y=1 не являются равносильными, так как, например, пара значений x=2 , y=3 является решением первого уравнения (при подстановке этих значений в первое уравнение получаем верное равенство 2+3=5 ), но не является решением второго (при подстановке этих значений во второе уравнение получаем неверное равенство 2·3=1 ).

Видео:Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСС

Уравнения-следствия

Приведем определения уравнений-следствий из школьных учебников:

Если каждый корень уравнения f(x)=g(x) является в то же время корнем уравнения p(x)=h(x) , то уравнение p(x)=h(x) называют следствием уравнения f(x)=g(x) [3, с. 202].

Если все корни первого уравнения являются корнями второго уравнения, то второе уравнение называется следствием первого уравнения [4, с. 187].

Приведем пару примеров уравнений-следствий. Уравнение x 2 =3 2 является следствием уравнения x−3=0 . Действительно, второе уравнение имеет единственный корень x=3 , этот корень является и корнем уравнения x 2 =3 2 , поэтому по определению уравнение x 2 =3 2 – это следствие уравнения x−3=0 . Другой пример: уравнение (x−2)·(x−3)·(x−4)=0 – это следствие уравнения Два уравнения называют равносильными если они имеют одинаковые корни или, так как все корни второго уравнения (их два, это 2 и 3 ), очевидно, являются корнями первого уравнения.

Из определения уравнения-следствия вытекает, что абсолютно любое уравнение является следствием любого уравнения, не имеющего корней.

Стоит привести несколько довольно очевидных следствий из определения равносильных уравнений и определения уравнения-следствия:

  • Если два уравнения равносильны, то каждое из них является следствием другого.
  • Если каждое из двух уравнений является следствием другого, то эти уравнения равносильны.
  • Два уравнения равносильны тогда и только тогда, когда каждое из них является следствием другого.

Видео:РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ. §7 алгебра 8 классСкачать

РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ. §7 алгебра 8 класс

Нахождение корней уравнения по корням равносильного уравнения и уравнения-следствия

Из определения равносильных уравнений следует, что если известны все корни одного из равносильных уравнений, то можно считать известными все корни всех остальных уравнений этой группы: они будут такими же.

Когда известны все корни уравнения-следствия, то есть возможность определить все корни уравнения, следствием которого является данное уравнение. Для этого нужно лишь провести отсеивание посторонних корней.

Видео:Алгебра 7 класс (Урок№47 - Равносильность уравнений и систем уравнений.)Скачать

Алгебра 7 класс (Урок№47 - Равносильность уравнений и систем уравнений.)

Алгебра и начала математического анализа. 10 класс

Конспект урока

Алгебра и начала математического анализа, 10 класс

Урок №19. Равносильные уравнения и неравенства

Перечень вопросов, рассматриваемых в теме

1) понятие равносильного уравнения;

2) понятие равносильного неравенства;

3) понятие уравнения-следствия;

4) основные теоремы равносильности.

Глоссарий по теме

Два уравнения называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.

Если при переходе от одного уравнения к другому потери корней не происходит, то второе уравнение называет следствием первого уравнения. Иначе, если все корни первого уравнения являются корнями второго уравнения, то второе уравнения называется следствием первого уравнения.

Неравенства, имеющие одно и то же множество решений, называют равносильными. Неравенства, не имеющие решений, также являются равносильными.

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2014.

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

Определение. Два уравнения с одной переменной

f(х) = g(х) и р(х) = h(х) называют равносильными, если множества их корней совпадают.

Иными словами, два уравнения называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.

1) Уравнения Два уравнения называют равносильными если они имеют одинаковые корни илиравносильны, т.к. каждое из них имеет только один корень х=3.

2) Уравнения Два уравнения называют равносильными если они имеют одинаковые корни илитакже равносильны, т.к. у них одни и те же корни Два уравнения называют равносильными если они имеют одинаковые корни или.

3) А вот уравнения Два уравнения называют равносильными если они имеют одинаковые корни илине равносильны, потому что у первого уравнения корень х=2, а у второго уравнения два корня х=2 и х=-2.

Из определения равносильности следует, что два уравнения равносильны, если каждый корень первого уравнения является корнем второго уравнения, и наоборот.

Решение уравнения осуществляется в три этапа.

Первый этап — технический. На этом этапе осуществляют преобразования по схеме (1) → (2) → (3)→ (4) → . и находят корни последнего (самого простого) уравнения указанной цепочки.

Второй этап — анализ решения. На этом этапе, анализируя проведенные преобразования, отвечают на вопрос, все ли они были равносильными.

Третий этап — проверка. Если анализ, проведенный на втором этапе, показывает, что некоторые преобразования могли привести к уравнению-следствию, то обязательна проверка всех найденных корней их подстановкой в исходное уравнение.

Реализация этого плана связана с поисками ответов на четыре вопроса.

  • Как узнать, является ли переход от одного уравнения к другому равносильным преобразованием?
  • Какие преобразования могут перевести данное уравнение в уравнение-следствие?
  • Если мы в конечном итоге решили уравнение-следствие, то как сделать проверку в случае, когда она сопряжена со значительными вычислительными трудностями?
  • В каких случаях при переходе от одного уравнения к другому может произойти потеря корней и как этого не допустить?

Из курса средней школы мы знаем, что можно сделать следующие преобразования уравнений: любой член уравнения можно перенести из одной части в другую, изменив его знак на противоположный.

Обе части уравнения можно умножить или разделить на одной и то же число, не равное нулю.

Если при переходе от одного уравнения к другому потери корней не происходит, то второе уравнение называет следствием первого уравнения. Иначе, если все корни первого уравнения являются корнями второго уравнения, то второе уравнения называется следствием первого уравнения.

Из этого определения и определения равносильности уравнений следует, что:

  1. если ва уравнения равносильны, то каждое из них является следствием другого;
  2. если каждое из двух уравнений является следствием другого, то эти уравнения равносильны.

При решении уравнений главное- не потерять корни, а наличие посторонних корней можно установить проверкой. Поэтому важно следить за тем, чтобы при преобразовании уравнения каждое следующее уравнение было следствием предыдущего.

Стоит отметить, что посторонние корни могут получиться при умножении обеих частей уравнения на выражение, содержащее неизвестное; а вот потеря корней может произойти при делении обеих частей уравнения на выражение, содержащее неизвестное.

Итак, сформулируем основные теоремы, которые используются при решении равносильных уравнений:

Определение. Областью определения уравнения f(х) = g(х) или областью допустимых значений переменной (ОДЗ) называют множество тех значений переменной х, при которых одновременно имеют смысл выражения

Теорема 1. Если какой-либо член уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение, равносильное данному.

Теорема 2. Если обе части уравнения возвести в одну и туже нечетную степень, то получится уравнение, равносильное данному.

Теорема 3. Показательное уравнение Два уравнения называют равносильными если они имеют одинаковые корни или(где а > 0, a≠1)

равносильно уравнению f(x) = g(х).

Теорема 4. Если обе части уравнения f(x) = g(х) умножить на одно и то же выражение h(х), которое:

а) имеет смысл всюду в области определения (в области допустимых значений) уравнения f(x) = g(х)

б) нигде в этой области не обращается в 0, то получится уравнение f(x)h(x) = g(x)h(x), равносильное данному в его ОДЗ.

Следствием теоремы 4: если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Теорема 5. Если обе части уравнения f(x)=g(х) неотрицательны в ОДЗ уравнения, то после возведения обеих его частей в одну и ту же четную степень n получится уравнение Два уравнения называют равносильными если они имеют одинаковые корни илиравносильное данному в его ОДЗ.

Краткая запись теорем 4, 5.

4. f(x) = g(x) ⇔h(x)f(x) = h(x)g(x), где h(x) ≠0

и h(x) имеет смысл в ОДЗ данного уравнения.

5. f(x) = g(x) ⇔ Два уравнения называют равносильными если они имеют одинаковые корни или, где f(x)≥0, g(x)≥0

и n=2k (чётное число).

Например, х – 1 = 3; х = 4

Умножим обе части на (х – 2):

(х – 2)(х – 1) = 3(х – 2); х = 4 и х = 2 – посторонний корень⇒ проверка!

Равносильность неравенств с неизвестным определяется аналогично.

Неравенства, имеющие одно и то же множество решений, называют равносильными. Неравенства, не имеющие решений, также являются равносильными.

Разбор решения заданий тренировочного модуля

Решим уравнение: Два уравнения называют равносильными если они имеют одинаковые корни или

Возведем в квадрат обе части уравнения, получим:

Два уравнения называют равносильными если они имеют одинаковые корни или, которое не будет равносильно исходному уравнению, потому что у этого уравнения два корня Два уравнения называют равносильными если они имеют одинаковые корни или, а у первоначального уравнения только один корень х=4.

  1. Неравенства Два уравнения называют равносильными если они имеют одинаковые корни илии x-3 x-1 не равносильны, так как решениями первого являются числа x 1, а решениями второго- числа x>-1. При решении неравенств обычно данное неравенство преобразуется в ему равносильное.

📸 Видео

Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.

Равносильность уравнений и неравенств. Видеоурок 7. Алгебра 10 классСкачать

Равносильность уравнений и неравенств. Видеоурок 7. Алгебра 10 класс

Равносильные переходы в уравненияхСкачать

Равносильные переходы в уравнениях

Равносильные уравнения и неравенстваСкачать

Равносильные уравнения и неравенства

Равносильные преобразования в уравнениях. ПравилаСкачать

Равносильные преобразования в уравнениях.  Правила

Равносильные уравненияСкачать

Равносильные уравнения

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Равносильные уравнения. Совокупность уравнений. Подготовка к ГВЭ11 + ЕГЭ 2021 по математике #41Скачать

Равносильные уравнения. Совокупность уравнений. Подготовка к ГВЭ11 + ЕГЭ 2021 по математике #41

§8 Равносильные уравнения и неравенстваСкачать

§8 Равносильные уравнения и неравенства

Уравнение и его корни | Алгебра 7 класс #16 | ИнфоурокСкачать

Уравнение и его корни | Алгебра 7 класс #16 | Инфоурок

Равносильность уравнений. Уравнение – следствие | Алгебра 11 класс #24 | ИнфоурокСкачать

Равносильность уравнений. Уравнение – следствие | Алгебра 11 класс #24 | Инфоурок

Равносильность уравнений | Алгебра 11 класс #23 | ИнфоурокСкачать

Равносильность уравнений | Алгебра 11 класс #23 | Инфоурок

Алгебра 8. Урок 11 - Дробно-рациональные уравненияСкачать

Алгебра 8. Урок 11 - Дробно-рациональные уравнения
Поделиться или сохранить к себе: