Линейная алгебра возникла в процессе развития теории систем линейных уравнений. Идею общего метода решения таких систем высказал Лейбниц в 1693 году. Она была реализована швейцарским математиком Крамером (G. Cramer, 1704-1752) в 1752 году. Он сформулировал и обосновал правило, носящее теперь его имя, которое позволяет решать системы n линейных уравнений с n неизвестными и буквенными коэффициентами. По правилу Крамера каждая неизвестная равна отношению двух определителей. Крамер, фактически, заложил основы теории определителей, хотя и не предложил для них удобного обозначения (это сделал в 1841 году А. Кэли). В 1772 году Вандермонд (A.T. Vandermonde, 1735-1796) опубликовал обширное исследование определителей, один из которых носит теперь его имя. Систематическое изложение этой теории принадлежит Бине (J.F.M. Binet, 1786-1856) и Коши (A.L. Cauchy, 1789-1857). Их труды по теории определителей относятся к периоду 1812-1815 гг.
Просмотр содержимого документа
«Системы n линейных уравнений с n неизвестными»
Первые дошедшие до нас китайские письменные памятники относятся к эпохе Шан (XVIII—XII вв. до н. э.). И уже на гадальных костях XIV в. до н. э., найденных в Хэнани, сохранились обозначения цифр.
Развитие науки продолжилось после того, как в XI в. до н. э. династию Шан сменила династия Чжоу. В эти годы возникают китайская математика и астрономия. Появились первые точные календари и учебники математики. «Истребление книг» императором Цинь Ши Хуаном (Ши Хуанди) не позволило ранним книгам дойти до нас, однако они, скорее всего, легли в основу последующих трудов.
С воцарением династии Хань (208 до н. э. — 220 н. э.) древние знания стали восстанавливать и развивать. Во II в. до н. э. опубликованы наиболее древние из дошедших до нас сочинений — математико-астрономический «Трактат об измерительном шесте» и фундаментальный труд «Математика в девяти книгах» (Цзю чжан суань шу 《九章算术》). Толкование этого трактата было облегчено благодаря открытию текста «Суань шу шу» 筭數書 в 1983-84 гг. (Чжанцзяшань, пров. Хубэй), относящегося примерно к этому же периоду.
Математика в девяти книгах (начало)
Наиболее содержательное математическое сочинение древнего Китая — «Математика в девяти книгах». Это слабо согласованная компиляция более старых трудов разных авторов. Книга была окончательно отредактирована финансовым чиновником Чжан Цаном (умер в 150 г. до н. э.) и предназначена для землемеров, инженеров, чиновников и торговцев. В ней собраны 246 задач, изложенных в традиционном восточном духе, т.е рецептурно: формулируется задача, сообщается готовый ответ и (очень кратко и не всегда) указывается способ решения.
Цифры обозначались специальными иероглифами, которые появились во II тысячелетии до н. э., и начертание их окончательно установилось к III в. до н. э. Эти иероглифы применяются и в настоящее время. Китайский способ записи чисел изначально был мультипликативным. Например, запись числа 1946, используя вместо иероглифов римские цифры, можно условно представить как 1М9С4Х6. Однако на практике расчёты выполнялись на счётной доске суаньпань, где запись чисел была иной — позиционной, как в Индии, и, в отличие от вавилонян, десятичной. [1]
Китайские (вверху) и японские счёты
Китайская счётная доска по своей конструкции аналогична русским счётам. Нуль сначала обозначался пустым местом, специальный иероглиф появился около XII века н. э. Для запоминания таблицы умножения существовала специальная песня, которую ученики заучивали наизусть.
Престиж математики в Китае был высок. Каждый чиновник, чтобы получить назначение на пост, сдавал, помимо прочих, и экзамен по математике, где обязан был показать умение решать задачи из классических сборников.
В I—V вв. н. э. китайцы уточняют число π — сначала как 10 <displaystyle <sqrt >> , потом как 142/45 = 3,155…, а позже (V век) как 3,1415926, причём открывают для него известное рациональное приближение: 355/113.
В это время китайцам уже было известно многое, в том числе:
вся базовая арифметика (включая нахождение наибольшего общего делителя и наименьшего общего кратного);
действия с дробями и пропорции;
действия с отрицательными числами (фу), которые трактовали как долги;
решение квадратных уравнений.
Был даже разработан метод фан-чэн (方程) для решения систем произвольного числа линейных уравнений — аналог классического европейского метода Гаусса. [2] Численно решались уравнения любой степени — способом тянь-юань (天元术), напоминающим метод Руффини-Горнера для нахождения корней многочлена [3] .
В области геометрии им были известны точные формулы для определения площади и объёма основных фигур и тел, теорема Пифагора и алгоритм подбора пифагоровых троек.
В III веке н. э. под давлением традиционной десятичной системы мер появляются и десятичные дроби. Выходит «Математический трактат» Сунь-Цзы. В нём, помимо прочего, впервые появляется задача, которой позднее в Европе занимались крупнейшие математики, от Фибоначчи до Эйлера и Гаусса: найти число, которое при делении на 3, 5 и 7 даёт соответственно остатки 2, 3 и 2. Задачи такого типа нередки в теории календаря.
Другие темы исследования китайских математиков: алгоритмы интерполирования, суммирование рядов, триангуляция.
Видео:15. Однородная система линейных уравнений / фундаментальная система решенийСкачать
Древнекитайский метод решения n линейных уравнений с n неизвестными
Системой m линейных уравнений с n неизвестными называется система вида
где aij и bi (i=1,…,m; b=1,…,n) – некоторые известные числа, а x1,…,xn – неизвестные. В обозначении коэффициентов aij первый индекс iобозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент.
Коэффициенты при неизвестных будем записывать в виде матрицы , которую назовём матрицей системы.
Числа, стоящие в правых частях уравнений, b1,…,bm называются свободными членами.
Совокупность n чисел c1,…,cn называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c1,…,cn вместо соответствующих неизвестных x1,…,xn.
Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации:
- Система может иметь единственное решение.
- Система может иметь бесконечное множество решений. Например, . Решением этой системы является любая пара чисел, отличающихся знаком.
- И третий случай, когда система вообще не имеет решения. Например, , если бы решение существовало, то x1 + x2 равнялось бы одновременно нулю и единице.
Система линейных уравнений, имеющая хотя бы одно решение, называется совместной. В противном случае, т.е. если система не имеет решений, то она называется несовместной.
Рассмотрим способы нахождения решений системы.
МАТРИЧНЫЙ МЕТОД РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ
Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:
Рассмотрим матрицу системы и матрицы столбцы неизвестных и свободных членов
т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде
или короче A∙X=B.
Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением.
Пусть определитель матрицы отличен от нуля |A| ≠ 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A -1 , обратную матрице A: . Поскольку A -1 A = E и E∙X = X, то получаем решение матричного уравнения в виде X = A -1 B.
Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных. Однако, матричная запись системы возможна и в случае, когда число уравнений не равно числу неизвестных, тогда матрица A не будет квадратной и поэтому нельзя найти решение системы в виде X = A -1 B.
Примеры. Решить системы уравнений.
Найдем матрицу обратную матрице A.
,
Таким образом, x = 3, y = – 1.
Решите матричное уравнение: XA+B=C, где
Выразим искомую матрицу X из заданного уравнения.
Найдем матрицу А -1 .
Решите матричное уравнение AX+B=C, где
Из уравнения получаем .
Следовательно,
Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:
Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных,
называется определителем системы.
Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов
Тогда можно доказать следующий результат.
Теорема (правило Крамера). Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём
Доказательство. Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A11 элемента a11, 2-ое уравнение – на A21 и 3-е – на A31:
Сложим эти уравнения:
Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца
.
Далее рассмотрим коэффициенты при x2:
Аналогично можно показать, что и .
Наконец несложно заметить, что
Таким образом, получаем равенство: .
Следовательно, .
Аналогично выводятся равенства и , откуда и следует утверждение теоремы.
Таким образом, заметим, что если определитель системы Δ ≠ 0, то система имеет единственное решение и обратно. Если же определитель системы равен нулю, то система либо имеет бесконечное множество решений, либо не имеет решений, т.е. несовместна.
Примеры. Решить систему уравнений
Решите систему уравнений при различных значениях параметра p:
Система имеет единственное решение, если Δ ≠ 0.
. Поэтому .
- При
- При p = 30 получаем систему уравнений которая не имеет решений.
- При p = –30 система принимает вид и, следовательно, имеет бесконечное множество решений x=y,y Î R.
Ранее рассмотренные методы можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений. Он заключается в последовательном исключении неизвестных из уравнений системы.
Вновь рассмотрим систему из трёх уравнений с тремя неизвестными:
.
Первое уравнение оставим без изменения, а из 2-го и 3-го исключим слагаемые, содержащие x1. Для этого второе уравнение разделим на а21 и умножим на –а11, а затем сложим с 1-ым уравнением. Аналогично третье уравнение разделим на а31 и умножим на –а11, а затем сложим с первым. В результате исходная система примет вид:
Теперь из последнего уравнения исключим слагаемое, содержащее x2. Для этого третье уравнение разделим на , умножим на и сложим со вторым. Тогда будем иметь систему уравнений:
Отсюда из последнего уравнения легко найти x3, затем из 2-го уравнения x2 и, наконец, из 1-го – x1.
При использовании метода Гаусса уравнения при необходимости можно менять местами.
Часто вместо того, чтобы писать новую систему уравнений, ограничиваются тем, что выписывают расширенную матрицу системы:
и затем приводят её к треугольному или диагональному виду с помощью элементарных преобразований.
К элементарным преобразованиям матрицы относятся следующие преобразования:
- перестановка строк или столбцов;
- умножение строки на число, отличное от нуля;
- прибавление к одной строке другие строки.
Примеры: Решить системы уравнений методом Гаусса.
Вернувшись к системе уравнений, будем иметь
Выпишем расширенную матрицу системы и сведем ее к треугольному виду.
Вернувшись к системе уравнений, несложно заметить, что третье уравнения системы будет ложным, а значит, система решений не имеет.
Разделим вторую строку матрицы на 2 и поменяем местами первый и третий столбики. Тогда первый столбец будет соответствовать коэффициентам при неизвестной z, а третий – при x.
Вернемся к системе уравнений.
Из третьего уравнения выразим одну неизвестную через другую и подставим в первое.
Таким образом, система имеет бесконечное множество решений.
Видео:Математика без Ху!ни. Метод Гаусса.Скачать
Курсовая работа: «Решение систем n линейных уравнений с n неизвестными».
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Рабочие листы и материалы для учителей и воспитателей
Более 300 дидактических материалов для школьного и домашнего обучения
1. Решение систем n линейных уравнений с n неизвестными
1.1. Основные понятия
Системой m линейных уравнений с n неизвестными называется система уравнений вида (1):
Систему линейных уравнений (1) можно записать в матричной форме
Здесь A – матрица системы; X – матрица- столбец неизвестных; B – матрица-столбец свободных членов.
С системой линейных уравнений (1) связана ещё одна матрица ,
полученная из матриц A добавлением столбца B свободных членов, и называемая расширенной матрицей системы (1):
Если в системе линейных уравнений (1) все свободные члены равны нулю (т. е. B – нулевая матрица-столбец), то она называется однородной, в противном случае – неоднородной.
Решением системы линейных уравнение называется упорядоченная совокупность n чисел α1,α2,…,αn, которая при подстановке в систему обращает каждое уравнение в тождество.
Если система линейных уравнений имеет хотя бы одно решение, то она называется совместной, в противном случае – несовместной.
Две системы линейных уравнений называются равносильными (эквивалентными), если равны множества их решений.
1.2. Решение системы методом обратной матрицы
Пусть дана система n линейных уравнений с n неизвестными, у которой матрица A системы – невырожденная, т. е. | A |≠0. Запишем систему в матричной форме: AX=B .
Так как | A |≠0, то существует матрица А -1 . Умножим слева обе части матричного уравнения на А -1 : А -1 АХ = А -1 В или
Равенство (4) – матричная форма записи решения системы (1).
Для того чтобы найти элементы матрицы X неизвестных, нужно найти обратную матрицу А -1 и умножить её на столбец свободных членов B .
Решить систему уравнений матричным методом
Запишем систему в матричном виде:
Выясним, является ли матрица A системы невырожденной:
Следовательно, матрица A является невырожденной. Поэтому существует обратная матрица А -1 ; воспользуемся формулой:
Найдём произведение А -1 В :
Матрица неизвестных равна:
Ответ можно записать также в виде .
1.3. Решение системы методом Крамера
Система n линейных уравнений с n неизвестными называется крамеровской, если матрица A системы является невырожденной (т. е. | A |≠0).
Теорема (Крамера). Крамеровская система n линейных уравнений с n неизвестными имеет единственное решение, которое находится по формулам (5) :
где | A | − определитель матрицы системы, | Aij | − определитель матрицы, получаемый из матрицы A заменой j -го столбца столбцом свободных членов B .
Заметим, что способ решения системы линейных уравнений, основанный на формулах Крамера, называют методом или правилом Крамера.
Решить систему методом Крамера.
Данная система линейных уравнений является крамеровской (так как | A |≠0). Согласно формулам (5) имеем:
Замечание. Метод обратной матрицы и метод Крамера решения систем линейных уравнений становятся трудоёмкими при n ≥4.
1.4. Решение системы уравнений методом Гаусса
Методом Гаусса (методом последовательного исключения неизвестных) можно решить любую систему линейных уравнений. Процесс решения системы по методу Гаусса состоит из двух этапов. На первом этапе (прямой ход) систему с помощью элементарных преобразований приводят к ступенчатому виду (её расширенная матрица − ступенчатая). На втором этапе (обратный ход) из ступенчатой системы последовательно, начиная с последнего уравнения, определяются значения неизвестных.
Эквивалентными (равносильными) преобразованиями системы линейных уравнений называются следующие действия:
1) перестановка местами двух уравнений системы,
2) умножение любого уравнения на число, отличное от нуля,
3) прибавление к одному из уравнений другого уравнения, умноженного на любое число,
4) удаление (вписывание) уравнения вида 0 x 1+0 x 2+…+0 xn =0.
На практике проделывают эквивалентные преобразования не над системой, а над её расширенной матрицей.
Проиллюстрируем применение метода Гаусса.
Методом Гаусса решить систему уравнений:
Выпишем расширенную матрицу и с помощью эквивалентных преобразований приведем её к ступенчатому виду:
1-ю строку прибавим к 3-й, а затем умножим её на (−1) и прибавим к 4-й.
В дальнейшем 1-ю строку не трогаем, работаем со 2-й строкой.
Прибавим 2-ю строку к 3-й, а затем прибавим утроенную 2-ю строку к 4-й. Далее первые две строки не трогаем, работаем с 3-й.
Умножим 3-ю строку на 7 и прибавим к 4-й .
Таким образом, в результате проведённых преобразовании пришли к следующей системе линейных уравнений, равносильной данной:
🎦 Видео
Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать
10. Метод Крамера решения систем линейных уравнений.Скачать
Система линейных уравнений. Метод обратной матрицы. Матричный метод.Скачать
Решение системы уравнений методом ГауссаСкачать
Неоднородная система линейных уравненийСкачать
Матричный метод решения систем уравненийСкачать
12. Метод Гаусса решения систем линейных уравнений. Часть 1.Скачать
Решение системы уравнений методом Крамера.Скачать
9. Метод обратной матрицы для решения систем линейных уравнений / матричный методСкачать
Решение системы уравнений методом обратной матрицы - bezbotvyСкачать
Математика Без Ху!ни. Система линейных уравнений. Метод Крамера.Скачать
Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать
Система линейных уравнений. Общее решение. Метод ГауссаСкачать
Линейная алгебра, 7 урок, СЛАУ. Матричный методСкачать
Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать
Решение системы уравнений методом обратной матрицы.Скачать
Решение системы уравнений методом Крамера 2x2Скачать
2 минуты на формулы Крамера ➜ Решение систем уравнений методом КрамераСкачать