Доказать совместимость системы линейных уравнений и решить ее двумя способами

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Содержание
  1. Калькулятор онлайн. Решение систем линейных алгебраических уравнений (СЛАУ) Метод Гаусса, матричный метод, метод Крамера, исследование на совместность (теорема Кронекера-Капелли), определение количества решений, нахождение нормальной фундаментальной системы решений.
  2. Немного теории.
  3. Системы линейных алгебраических уравнений
  4. Основные определения
  5. Формы записи СЛАУ
  6. Критерий совместности СЛАУ
  7. Формулы Крамера
  8. Однородные системы
  9. Неоднородные системы
  10. Теорема Кронекера-Капелли. Исследование систем линейных уравнений на совместность. Первая часть.
  11. Способ №1. Вычисление рангов по определению.
  12. Способ №2. Вычисление ранга методом элементарных преобразований.
  13. Исследование системы на совместимость и решение методом Крамера. Решение системы линейных алгебраических уравнений методом Гаусса
  14. Страницы работы
  15. Содержание работы
  16. 🎥 Видео

Видео:Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

Калькулятор онлайн.
Решение систем линейных алгебраических уравнений (СЛАУ)
Метод Гаусса, матричный метод, метод Крамера, исследование на совместность (теорема Кронекера-Капелли), определение количества решений, нахождение нормальной фундаментальной системы решений.

С помощью данной математической программы вы можете решить и исследовать систему линейных алгебраических уравнений (СЛАУ).

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Ввод дробного числа в виде десятичной дроби.
При вводе десятичной дроби, целую часть от дробной части можно отделять точкой или запятой :
Ввод: -2.34
Результат: ( -234 )

Ввод: -1,15
Результат: ( -115 )

Ввод дробного числа в виде обыкновенной дроби.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: -2/3
Результат: $$ -frac $$

Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 5&8/3
Результат: $$ 5frac $$
Помните, что на ноль делить нельзя!

RND CFracNum Fill RND int Fill Start MathJax
Сюда ввести строку с GET параметрами :

Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Немного теории.

Видео:Исследование систем линейных уравнений на совместностьСкачать

Исследование систем линейных уравнений на совместность

Системы линейных алгебраических уравнений

Основные определения

Система (m) линейных алгебраических уравнений с (n) неизвестными (сокращенно СЛАУ) представляет собой систему вида
( left< begin a_x_1 + a_x_2 + cdots + a_x_n = b_1 \ a_x_1 + a_x_2 + cdots + a_x_n = b_2 \ cdots \ a_x_1 + a_x_2 + cdots + a_x_n = b_m end right. tag )

Уравнения системы называют алгебраическими потому, что левая часть каждого из них есть многочлен от (n) переменных ( x_1 , ldots x_n ), а линейными потому, что эти многочлены имеют первую степень.

Числа (a_ in mathbb ) называют коэффициентами СЛАУ. Их нумеруют двумя индексами: номером уравнения (i) и номером неизвестного (j). Действительные числа ( b_1 , ldots b_m ) называют свободными членами уравнений.

СЛАУ называют однородной, если ( b_1 = b_2 = ldots = b_m = 0 ). Иначе её называют неоднородной.

Решением СЛАУ, да и вообще всякой системы уравнений, называют такой набор значений неизвестных ( x_1^circ, ldots , x_n^circ ), при подстановке которых каждое уравнение системы превращается в тождество. Любое конкретное решение СЛАУ также называют её частным решением.

Решить СЛАУ — значит решить две задачи:
— выяснить, имеет ли СЛАУ решения;
— найти все решения, если они существуют.

СЛАУ называют совместной, если она имеет какие-либо решения. В противном случае её называют несовместной. Однородная СЛАУ всегда совместна, поскольку нулевой набор значений её неизвестных всегда является решением.

Если СЛАУ (1) имеет решение, и притом единственное, то её называют определенной, а если решение неединственное — то неопределенной. При (m=n), т.е. когда количество уравнений совпадает с количеством неизвестных, СЛАУ называют квадратной.

Формы записи СЛАУ

Кроме координатной формы (1) записи СЛАУ часто используют и другие её представления.

Рассматривая коэффициенты (a_) СЛАУ при одном неизвестном (x_j) как элементы столбца, а (x_j) как коэффициент, на который умножается столбец, из (1) получаем новую форму записи СЛАУ:
( begin a_ \ a_ \ vdots \ a_ end x_1 + begin a_ \ a_ \ vdots \ a_ end x_2 + ldots + begin a_ \ a_ \ vdots \ a_ end x_n = begin b_1 \ b_2 \ vdots \ b_m end )
или, обозначая столбцы соответственно ( a_1 , ldots , a_n , b ),
( x_1 a_1 + x_2 a_2 + ldots + x_n a_n = b tag )

Таким образом, решение СЛАУ (1) можно трактовать как представление столбца (b) в виде линейной комбинации столбцов ( a_1, ldots, a_n ). Соотношение (2) называют векторной записью СЛАУ.

Поскольку (A ;,; X) и (B) являются матрицами, то запись СЛАУ (1) в виде (AX=B) называют матричной. Если (B=0), то СЛАУ является однородной и в матричной записи имеет вид (AX=0).

Приведенные рассуждения показывают, что задачи :
а) решения СЛАУ (1)
б) представления столбца в виде линейной комбинации данных столбцов
в) решения матричных уравнений вида (AX=B)
являются просто различной формой записи одной и той же задачи.

Критерий совместности СЛАУ

«Триединство» форм записи СЛАУ позволяет легко получить критерий совместности СЛАУ. Напомним, что содержательный смысл это понятие имеет для неоднородных СЛАУ (однородные СЛАУ всегда совместны).

Матрицу
( A = begin a_ & a_ & cdots & a_ \ a_ & a_ & cdots & a_ \ vdots & vdots & ddots & vdots \ a_ & a_ & cdots & a_ end )
называют матрицей (коэффициентов) СЛАУ (1), а матрицу
( (A|B) = left( begin a_ & a_ & cdots & a_ & b_1 \ a_ & a_ & cdots & a_ & b_2 \ vdots & vdots & ddots & vdots & vdots \ a_ & a_ & cdots & a_ & b_m end right) )
расширенной матрицей СЛАУ (1). Расширенная матрица полностью характеризует СЛАУ. Это означает, что по этой матрице однозначно (если сохранить обозначения для неизвестных) восстанавливается сама СЛАУ.

Теорема Кронекера-Капелли. Для совместности СЛАУ (AX=B) необходимо и достаточно, чтобы ранг её матрицы (A) был равен рангу её расширенной матрицы ( (A|B) ).

Формулы Крамера

Теорема. СЛАУ с квадратной невырожденной матрицей имеет решение, и притом единственное, которое определяется по формулам Крамера :
$$ x_i = frac ;,quad i=overline tag $$
где (Delta_i) — определитель матрицы, получающейся из матрицы (A) заменой (i)-го столбца на столбец свободных членов.

Следствие. Однородная СЛАУ с квадратной невырожденной матрицей имеет единственное решение — нулевое.

Если матрица СЛАУ не является квадратной невырожденной, то формулы Крамера не работают и приходится использовать другие методы нахождения решений.

Однородные системы

Теорема. Если столбцы ( X^, X^, ldots , X^ ) — решения однородной СЛАУ (AX=0), то любая их линейная комбинация также является решением этой системы.

Следствие. Если однородная СЛАУ имеет ненулевое решение, то она имеет бесконечно много решений.

Естественно попытаться найти такие решения ( X^, ldots , X^ ) системы (AX=0), чтобы любое другое решение этой системы представлялось в виде их линейной комбинации и притом единственным образом. Оказывается, что это всегда возможно и приводит к следующему определению.

Определение. Любой набор из (k=n-r) линейно независимых столбцов, являющихся решениями однородной СЛАУ (AX=0), где (n) — количество неизвестных в системе, а (r) — ранг её матрицы (A), называют фундаментальной системой решений этой однородной СЛАУ.

При исследовании и решении однородных систем линейных алгебраических уравнений будем использовать следующую терминологию. Если в матрице (A) однородной СЛАУ (AX=0) фиксировать базисный минор, то ему соответствуют базисные столбцы и, следовательно, набор неизвестных, отвечающих этим столбцам. Указанные неизвестные называют базисными, или зависимыми, а остальные неизвестные — свободными, или независимыми.

Теорема. Пусть дана однородная СЛАУ (AX=0) с (n) неизвестными и ( textA = r ). Тогда существует набор из (k=n-r) решений ( X^, ldots , X^ ) этой СЛАУ, образующих фундаментальную систему решений.

Если в фундаментальной системе решений все значения независимых неизвестных равны нулю, кроме одного, которое равно единице, то такую систему решений называют фундаментальной нормальной системой решений.

Следствие. С помощью нормальной фундаментальной системы решений однородной СЛАУ множество всех решений можно описать формулой :
$$ X = c_1X^ + ldots + c_kX^ $$
где постоянные ( c_i ;, quad i=overline ), принимают произвольные значения.

Следствие. Для существования ненулевого решения у однородной квадратной СЛАУ необходимо и достаточно, чтобы её матрица была вырождена.

Неоднородные системы

Рассмотрим произвольную СЛАУ (AX=B). Заменив столбец (B) свободных членов нулевым, получим однородную СЛАУ (AX=0), соответствующую неоднородной СЛАУ (AX=B). Справедливо следующее утверждение о структуре произвольного решения неоднородной СЛАУ.

Теорема. Пусть столбец (X^circ) — некоторое решение СЛАУ (AX=B). Произвольный столбец (X) является решением этой СЛАУ тогда и только тогда, когда он имеет представление (X = X^circ + Y ), где (Y) — решение соответствующей однородной СЛАУ (AY=0).

Следствие. Пусть (X’) и (X») — решения неоднородной системы (AX=B). Тогда их разность ( Y = X’ — X» ) является решением соответствующей однородной системы (AY=0).

Эта теорема сводит проблему решения СЛАУ к случаю однородной системы: чтобы описать все решения неоднородной СЛАУ, достаточно энать одно её решение (частное решение) и все решения соответствующей однородной СЛАУ.

Чтобы решить неоднородную систему, надо, во-первых, убедиться, что она совместна (например, по теореме Кронекера-Капелли), а во-вторых, найти частное решение (X^circ) этой системы, чтобы свести её к однородной системе.

Теорема о структуре общего решения СЛАУ. Пусть (X^circ) — частное решение СЛАУ (AX=B) и известна фундаментальная система решений ( X^, ldots , X^ ) соответствующей однородной системы (AX=0). Тогда любое решение СЛАУ (AX=B) можно представить в виде $$ X = X^circ + c_1 X^ + c_2 X^ + ldots + c_k X^ $$
где ( c_i in mathbb ;, quad i=overline ).
Эту формулу называют общим решением СЛАУ.

Видео:Система линейных уравнений. Общее решение. Метод ГауссаСкачать

Система линейных уравнений.  Общее решение. Метод Гаусса

Теорема Кронекера-Капелли. Исследование систем линейных уравнений на совместность. Первая часть.

Исследовать систему линейных агебраических уравнений (СЛАУ) на совместность означает выяснить, есть у этой системы решения, или же их нет. Ну и если решения есть, то указать сколько их.

Нам понадобятся сведения из темы «Система линейных алгебраических уравнений. Основные термины. Матричная форма записи». В частности, нужны такие понятия, как матрица системы и расширенная матрица системы, поскольку именно на них опирается формулировка теоремы Кронекера-Капелли. Как обычно, матрицу системы будем обозначать буквой $A$, а расширенную матрицу системы – буквой $widetilde$.

Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы системы, т.е. $rang A=rangwidetilde$.

Следствие из теоремы Кронекера-Капелли

Заметьте, что сформулированная теорема и следствие из неё не указывают, как найти решение СЛАУ. С их помощью можно лишь выяснить, существуют эти решения или нет, а если существуют – то сколько.

Исследовать СЛАУ $ left <begin& -3x_1+9x_2-7x_3=17;\ & -x_1+2x_2-4x_3=9;\ & 4x_1-2x_2+19x_3=-42. endright.$ на совместность. Если СЛАУ совместна, указать количество решений.

Чтобы выяснить наличие решений заданной СЛАУ, используем теорему Кронекера-Капелли. Нам понадобятся матрица системы $A$ и расширенная матрица системы $widetilde$, запишем их:

Видео:Лекция 13. Исследование систем линейных уравнений. Теорема Кронекера — Капелли.Скачать

Лекция 13. Исследование систем линейных уравнений. Теорема Кронекера — Капелли.

Способ №1. Вычисление рангов по определению.

Согласно определению, ранг – это наивысший порядок миноров матрицы, среди которых есть хоть один, отличный от нуля. Обычно исследование начинают с миноров первого порядка, но здесь удобнее приступить сразу к вычислению минора третьего порядка матрицы $A$. Элементы минора третьего порядка находятся на пересечении трёх строк и трёх столбцов рассматриваемой матрицы. Так как матрица $A$ содержит всего 3 строки и 3 столбца, то минор третьего порядка матрицы $A$ – это определитель матрицы $A$, т.е. $Delta A$. Для вычисления определителя применим формулу №2 из темы «Формулы для вычисления определителей второго и третьего порядков»:

$$ Delta A=left| begin -3 & 9 & -7 \ -1 & 2 & -4 \ 4 & -2 & 19 end right|=-21. $$

Итак, есть минор третьего порядка матрицы $A$, который не равен нулю. Минор четвёртого порядка составить невозможно, так как для него требуется 4 строки и 4 столбца, а в матрице $A$ всего 3 строки и 3 столбца. Итак, наивысший порядок миноров матрицы $A$, среди которых есть хотя бы один не равный нулю, равен 3. Следовательно, $rang A=3$.

Задача решена. Какие недостатки и преимущества имеет данный способ? Для начала поговорим о плюсах. Во-первых, нам понадобилось найти всего один определитель. После этого мы сразу сделали вывод о количестве решений. Обычно в стандартных типовых расчётах даются системы уравнений, которые содержат три неизвестных и имеют единственное решение. Для таких систем данный метод очень даже удобен, ибо мы заранее знаем, что решение есть (иначе примера не было бы в типовом расчёте). Т.е. нам остаётся только показать наличие решения наиболее быстрым способом. Во-вторых, вычисленное значение определителя матрицы системы (т.е. $Delta A$) пригодится после: когда станем решать заданную систему методом Крамера или с помощью обратной матрицы.

Однако метод вычисления ранга по определению нежелательно применять, если матрица системы $A$ является прямоугольной. В этом случае лучше применить второй метод, о котором пойдёт речь ниже. Кроме того, если $Delta A=0$, то мы ничего не сможем сказать о количестве решений заданной неоднородной СЛАУ. Может, СЛАУ имеет бесконечное количество решений, а может – ни одного. Если $Delta A=0$, то требуется дополнительное исследование, которое зачастую является громоздким.

Подводя итог сказанному, отмечу, что первый способ хорош для тех СЛАУ, у которых матрица системы квадратна. При этом сама СЛАУ содержит три или четыре неизвестных и взята из стандартных типовых расчетов или контрольных работ.

Видео:Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

Способ №2. Вычисление ранга методом элементарных преобразований.

Какие преимущества второго способа? Главное преимущество – это его универсальность. Нам совершенно неважно, является ли матрица системы квадратной или нет. Кроме того, мы фактически провели преобразования прямого хода метода Гаусса. Осталось лишь пару действий, и мы смогли бы получить решение данной СЛАУ. Честно говоря, второй способ нравится мне более первого, но выбор – это дело вкуса.

Ответ: Заданная СЛАУ совместна и определена.

$$ left( begin 1 & -1 & 2 & -1\ -1 & 2 & -3 & 3 \ 2 & -3 & 5 & -4 \ 3 & -2 & 5 & 1 \ 2 & -1 & 3 & 2 end right) begin phantom\r_2+r_1\r_3-2r_1\ r_4-3r_1\r_5-2r_1endrightarrow left( begin 1 & -1 & 2 & -1\ 0 & 1 & -1 & 2 \ 0 & -1 & 1 & -2 \ 0 & 1 & -1 & 4 \ 0 & 1 & -1 & 4 end right) begin phantom\phantom\r_3-r_2\ r_4-r_2\r_5+r_2endrightarrow\ $$ $$ rightarrowleft( begin 1 & -1 & 2 & -1\ 0 & 1 & -1 & 2 \ 0 & 0 & 0 & 2 \ 0 & 0 & 0 & 2 \ 0 & 0 & 0 & 0 end right) begin phantom\phantom\phantom\ r_4-r_3\phantomendrightarrow left( begin 1 & -1 & 2 & -1\ 0 & 1 & -1 & 2 \ 0 & 0 & 0 & 2 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 end right) $$

Расширенная матрица системы приведена к ступенчатому виду. Ранг ступенчатой матрицы равен количеству её ненулевых строк, поэтому $rangwidetilde=3$. Матрица $A$ (до черты) тоже приведена к ступенчатому виду, и ранг её равен 2, $rang=2$.

Ответ: система несовместна.

Приводим расширенную матрицу системы к ступенчатому виду:

$$ left( begin 2 & 0 & 7 & -5 & 11 & 42\ 1 & -2 & 3 & 0 & 2 & 17 \ -3 & 9 & -11 & 0 & -7 & -64 \ -5 & 17 & -16 & -5 & -4 & -90 \ 7 & -17 & 23 & 0 & 15 & 132 end right) overset<r_1leftrightarrow> $$ $$ rightarrowleft( begin 1 & -2 & 3 & 0 & 2 & 17\ 2 & 0 & 7 & -5 & 11 & 42\ -3 & 9 & -11 & 0 & -7 & -64\ -5 & 17 & -16 & -5 & -4 & -90 \ 7 & -17 & 23 & 0 & 15 & 132 end right) begin phantom\ r_2-2r_1 \r_3+3r_1 \ r_4+5r_1 \ r_5-7r_1 end rightarrow left( begin 1 & -2 & 3 & 0 & 2 & 17\ 0 & 4 & 1 & -5 & 7 & 8\ 0 & 3 & -2 & 0 & -1 & -13\ 0 & 7 & -1 & -5 & 6 & -5 \ 0 & -3 & 2 & 0 & 1 & 13 end right) begin phantom\ phantom\4r_3+3r_2 \ 4r_4-7r_2 \ 4r_5+3r_2 end rightarrow $$ $$ rightarrowleft( begin 1 & -2 & 3 & 0 & 2 & 17\ 0 & 4 & 1 & -5 & 7 & 8\ 0 & 0 & -11 & 15 & -25 & -76\ 0 & 0 & -11 & 15 & -25 & -76 \ 0 & 0 & 11 & -15 & 25 & 76 end right) begin phantom\ phantom\phantom \ r_4-r_3 \ r_5+r_2 end rightarrow left( begin 1 & -2 & 3 & 0 & 2 & 17\ 0 & 4 & 1 & -5 & 7 & 8\ 0 & 0 & -11 & 15 & -25 & -76\ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 end right) $$

Мы привели расширенную матрицу системы и саму матрицу системы к ступенчатому виду. Ранг расширенной матрицы системы равен трём, ранг матрицы системы также равен трём. Так как система содержит $n=5$ неизвестных, т.е. $rangwidetilde=ranglt$, то согласно пункту №2 следствия из теоремы Кронекера-Капелли данная система является неопределённой, т.е. имеет бесконечное количество решений.

Ответ: система является неопределённой.

Во второй части мы разберём примеры, которые нередко включают в типовые расчёты или контрольные работы по высшей математике: исследование на совместность и решение СЛАУ в зависимости от значений параметров, входящих в неё.

Видео:Исследовать систему уравнений на совместность и решить методом Гаусса и методом обратной матрицыСкачать

Исследовать систему уравнений на совместность и решить методом Гаусса и методом обратной матрицы

Исследование системы на совместимость и решение методом Крамера. Решение системы линейных алгебраических уравнений методом Гаусса

Страницы работы

Доказать совместимость системы линейных уравнений и решить ее двумя способами

Доказать совместимость системы линейных уравнений и решить ее двумя способами

Доказать совместимость системы линейных уравнений и решить ее двумя способами

Доказать совместимость системы линейных уравнений и решить ее двумя способами

Доказать совместимость системы линейных уравнений и решить ее двумя способами

Содержание работы

1. Исследовать систему на совместимость и решить методом Крамера.

Доказать совместимость системы линейных уравнений и решить ее двумя способами

Т-ма Крамера: крамеровская система имеет единственное решение.

Крамеровская система – это система, удовлетворяющая следующим 2-м условиям:

1) число уравнений системы = числу неизвестных

2) определитель, составленный из коэффициентов при неизвестных, отличен от 0

Доказать совместимость системы линейных уравнений и решить ее двумя способами

Система совместима, т.е. имеет хотя бы одно решение.

Доказать совместимость системы линейных уравнений и решить ее двумя способами

Доказать совместимость системы линейных уравнений и решить ее двумя способами

Доказать совместимость системы линейных уравнений и решить ее двумя способами

Доказать совместимость системы линейных уравнений и решить ее двумя способами

2. Решить систему линейных алгебраических уравнений методом Гаусса

Доказать совместимость системы линейных уравнений и решить ее двумя способамиДоказать совместимость системы линейных уравнений и решить ее двумя способами.

Решение:Выпишем расширенную матрицу системыДоказать совместимость системы линейных уравнений и решить ее двумя способами

Приведем эту матрицу к ступенчатому виду. Для этого мы можем делать элементарные преобразования строк.

Доказать совместимость системы линейных уравнений и решить ее двумя способамиДоказать совместимость системы линейных уравнений и решить ее двумя способамиДоказать совместимость системы линейных уравнений и решить ее двумя способамиДоказать совместимость системы линейных уравнений и решить ее двумя способамиДоказать совместимость системы линейных уравнений и решить ее двумя способами

Доказать совместимость системы линейных уравнений и решить ее двумя способами

Т-ма Кронекери-Копелли: СЛУ совместима Доказать совместимость системы линейных уравнений и решить ее двумя способами, когда ранг матрицы = рангу расширенной матрицы системы.

Ранг матрицы – число ненулевых строк в ступенчатом виде матрицы

С – расширенная матрица системы, А – матрица системы

r(A)=2 Доказать совместимость системы линейных уравнений и решить ее двумя способамиr(C)=r(A) и по теореме Кронекери-Копелли система совместима. От ступенчатой матрицы переходим к ступенчатой системе:

Доказать совместимость системы линейных уравнений и решить ее двумя способами

Т. к. число уравнений системы 4 на прямую сумму подпространств размерности 2.

R 4 – множество строк длины 4 (4-х мерное арифметическое пространство)

Если А и В – подпространства пространства V, то через А+В обозначают множество

В случае, если А∩В= – нулевое подпространство, то такая сумма V=A+B называется прямой и в этом случае пишут V=AДоказать совместимость системы линейных уравнений и решить ее двумя способами. В нашем случае Ø=(0,0,0,0)

Пусть теперь А= <(Доказать совместимость системы линейных уравнений и решить ее двумя способамиB=<(0,0,Доказать совместимость системы линейных уравнений и решить ее двумя способами

Проверим, что пространство задаётся в виде А+В

Пусть Доказать совместимость системы линейных уравнений и решить ее двумя способамиДоказать совместимость системы линейных уравнений и решить ее двумя способами

а=( Доказать совместимость системы линейных уравнений и решить ее двумя способамив==(0,0,Доказать совместимость системы линейных уравнений и решить ее двумя способами, значит R 4 =AДоказать совместимость системы линейных уравнений и решить ее двумя способами.

Ответ: R 4 =AДоказать совместимость системы линейных уравнений и решить ее двумя способами, где А= <(Доказать совместимость системы линейных уравнений и решить ее двумя способамиB=<(0,0,Доказать совместимость системы линейных уравнений и решить ее двумя способами

4. Докажите, что в пространстве M(2, R) система векторов Доказать совместимость системы линейных уравнений и решить ее двумя способамилинейно независима.

Система векторов а1234 линейно независима, если в любой системе вида

Доказать совместимость системы линейных уравнений и решить ее двумя способамиØ Доказать совместимость системы линейных уравнений и решить ее двумя способами

В нашем случае, пусть Доказать совместимость системы линейных уравнений и решить ее двумя способами

Доказать совместимость системы линейных уравнений и решить ее двумя способами

Доказать совместимость системы линейных уравнений и решить ее двумя способами

Значит, система векторов Е1, Е2, Е3, Е4 линейно независима.

5. Найдите жорданову нормальную форму матриц: Доказать совместимость системы линейных уравнений и решить ее двумя способами.

Жорданова нормальная форма матрицы состоит из клеток Жордана вдоль главной диагонали, а все остальные элементы такой матрицы нулевые.

Клетка Жордана – это матрица вида: Доказать совместимость системы линейных уравнений и решить ее двумя способами

Если размер клетки n*n, то она обозначается символом Yn(a).

Пример: Y1(a)=а, Y2(a)=Доказать совместимость системы линейных уравнений и решить ее двумя способами, Y3(a)=Доказать совместимость системы линейных уравнений и решить ее двумя способами

В искомой матрице записывают характеристический многочлен матрицы А и находят его корни.

Доказать совместимость системы линейных уравнений и решить ее двумя способами

Характеристический многочлен имеет единственный корень Доказать совместимость системы линейных уравнений и решить ее двумя способамикратности 3.

Надо выяснить, какой из 3-х случае нам подходит:

Y1=Доказать совместимость системы линейных уравнений и решить ее двумя способами, Y2=Доказать совместимость системы линейных уравнений и решить ее двумя способами, Y3=(1)Доказать совместимость системы линейных уравнений и решить ее двумя способами

Число всех клеток Жордана вычисляют по формуле:

Доказать совместимость системы линейных уравнений и решить ее двумя способами

A-E =Доказать совместимость системы линейных уравнений и решить ее двумя способами

Доказать совместимость системы линейных уравнений и решить ее двумя способами

Значит, Доказать совместимость системы линейных уравнений и решить ее двумя способами. Искомая матрица имеет вид: Y=Доказать совместимость системы линейных уравнений и решить ее двумя способами

Ответ: Y=Доказать совместимость системы линейных уравнений и решить ее двумя способами

6. Исследовать, являются ли векторы

Доказать совместимость системы линейных уравнений и решить ее двумя способами

векторного пространства Доказать совместимость системы линейных уравнений и решить ее двумя способамилинейно зависимыми.

Пусть Доказать совместимость системы линейных уравнений и решить ее двумя способами

Это приводит к системе:

Доказать совместимость системы линейных уравнений и решить ее двумя способами

Доказать совместимость системы линейных уравнений и решить ее двумя способами

Т. к. определитель системы ≠ 0, то система имеет единственное нулевое решение. Значит, система векторов f(x), g(x), h(x) являются линейно независимыми.

Ответ: линейно независимы.

7. Найти собственные значения и собственные векторы линейного оператора пространства R 2 , заданного в некотором базисе матрицей

Доказать совместимость системы линейных уравнений и решить ее двумя способами.

Доказать совместимость системы линейных уравнений и решить ее двумя способами

Характеристический многочлен имеет единственный корень Доказать совместимость системы линейных уравнений и решить ее двумя способамикратности 2.

Значит, Доказать совместимость системы линейных уравнений и решить ее двумя способами— собственное значение линейного оператора.

Найдем собственный вектор, отвечающий найденному собственному значению:

Пусть х = (х1, х2) Доказать совместимость системы линейных уравнений и решить ее двумя способамих(А-Доказать совместимость системы линейных уравнений и решить ее двумя способами

Доказать совместимость системы линейных уравнений и решить ее двумя способамиθ

Доказать совместимость системы линейных уравнений и решить ее двумя способами

Пусть х2=t →x1=-t, где t – любое число

Ответ: собственное значение λ = -1, собственный вектор (-t, t), t – любое число.

8. Найти все значения Доказать совместимость системы линейных уравнений и решить ее двумя способами, при которых вектор Доказать совместимость системы линейных уравнений и решить ее двумя способамилинейно выражается через векторы

Доказать совместимость системы линейных уравнений и решить ее двумя способами

Мы должны найти все λ, для которых уравнение Доказать совместимость системы линейных уравнений и решить ее двумя способами(1)

имеет решение Доказать совместимость системы линейных уравнений и решить ее двумя способами

что приводит к системе: Доказать совместимость системы линейных уравнений и решить ее двумя способами

Уравнение (1) имеет решение ↔, когда данная система имеет решение. А согласно теореме Кронекери-Копелли данная система совместима ↔ ранг матрицы системы совпадает с рангом расширенной матрицы.

🎥 Видео

Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Матричный метод решения систем уравненийСкачать

Матричный метод решения систем уравнений

15. Однородная система линейных уравнений / фундаментальная система решенийСкачать

15. Однородная система линейных уравнений / фундаментальная система решений

Система линейных уравнений. Метод обратной матрицы. Матричный метод.Скачать

Система линейных уравнений. Метод обратной матрицы. Матричный метод.

Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Неоднородная система линейных уравненийСкачать

Неоднородная система линейных уравнений

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

§32 Исследование на совместность СЛАУСкачать

§32 Исследование на совместность СЛАУ

Решение системы линейных уравнений методом ГауссаСкачать

Решение системы линейных уравнений методом Гаусса

Решение системы уравнений методом Крамера 2x2Скачать

Решение системы уравнений методом Крамера 2x2

Решение системы уравнений методом обратной матрицы - bezbotvyСкачать

Решение системы уравнений методом обратной матрицы - bezbotvy

Решение системы уравнений методом Гаусса. Бесконечное множество решенийСкачать

Решение системы уравнений методом Гаусса. Бесконечное множество решений
Поделиться или сохранить к себе: