Доказать что уравнение 3 степени не имеет корней

Видео:КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать

КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примере

Решение кубических уравнений

Кубическое уравнение, содержащее коэффициенты с действительным корнем, остальные два считаются комплексно-сопряженной парой. Будут рассмотрены уравнения с двучленами и возвратные, а также с поиском рациональных корней. Вся информация будет подкреплена примерами.

Видео:Доказать, что многочлен не может иметь целых корнейСкачать

Доказать, что многочлен не может иметь целых корней

Решение двучленного кубического уравнения вида A x 3 + B = 0

Кубическое уравнение, содержащее двучлен, имеет вид A x 3 + B = 0 . Его необходимо приводить к x 3 + B A = 0 с помощью деления на А , отличного от нуля. После чего можно применять формулу сокращенного умножения суммы кубов. Получаем, что

x 3 + B A = 0 x + B A 3 x 2 — B A 3 x + B A 2 3 = 0

Результат первой скобки примет вид x = — B A 3 , а квадратный трехчлен — x 2 — B A 3 x + B A 2 3 , причем только с комплексными корнями.

Найти корни кубического уравнения 2 x 3 — 3 = 0 .

Решение

Необходимо найти х из уравнения. Запишем:

2 x 3 — 3 = 0 x 3 — 3 2 = 0

Необходимо применить формулу сокращенного умножения. Тогда получим, что

x 3 — 3 2 = 0 x — 3 3 2 6 x 2 + 3 3 2 6 x + 9 2 3 = 0

Раскроем первую скобку и получим x = 3 3 2 6 . Вторая скобка не имеет действительных корней, потому как дискриминант меньше нуля.

Ответ: x = 3 3 2 6 .

Видео:Математика | Кубические уравнения по методу СталлонеСкачать

Математика | Кубические уравнения по методу Сталлоне

Решение возвратного кубического уравнения вида A x 3 + B x 2 + B x + A = 0

Вид квадратного уравнения — A x 3 + B x 2 + B x + A = 0 , где значения А и В являются коэффициентами. Необходимо произвести группировку. Получим, что

A x 3 + B x 2 + B x + A = A x 3 + 1 + B x 2 + x = = A x + 1 x 2 — x + 1 + B x x + 1 = x + 1 A x 2 + x B — A + A

Корень уравнения равен х = — 1 , тогда для получения корней квадратного трехчлена A x 2 + x B — A + A необходимо задействовать через нахождение дискриминанта.

Решить уравнение вида 5 x 3 — 8 x 2 — 8 x + 5 = 0 .

Решение

Уравнение является возвратным. Необходимо произвести группировку. Получим, что

5 x 3 — 8 x 2 — 8 x + 5 = 5 x 3 + 1 — 8 x 2 + x = = 5 x + 1 x 2 — x + 1 — 8 x x + 1 = x + 1 5 x 2 — 5 x + 5 — 8 x = = x + 1 5 x 2 — 13 x + 5 = 0

Если х = — 1 является корнем уравнения, тогда необходимо найти корни заданного трехчлена 5 x 2 — 13 x + 5 :

5 x 2 — 13 x + 5 = 0 D = ( — 13 ) 2 — 4 · 5 · 5 = 69 x 1 = 13 + 69 2 · 5 = 13 10 + 69 10 x 2 = 13 — 69 2 · 5 = 13 10 — 69 10

Ответ:

x 1 = 13 10 + 69 10 x 2 = 13 10 — 69 10 x 3 = — 1

Видео:КУБИЧЕСКИЕ УРАВНЕНИЯ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

КУБИЧЕСКИЕ УРАВНЕНИЯ 😉 #егэ #математика #профильныйегэ #shorts #огэ

Решение кубических уравнений с рациональными корнями

Если х = 0 , то он является корнем уравнения вида A x 3 + B x 2 + C x + D = 0 . При свободном члене D = 0 уравнение принимает вид A x 3 + B x 2 + C x = 0 . При вынесении х за скобки получим, что уравнение изменится. При решении через дискриминант или Виета оно примет вид x A x 2 + B x + C = 0 .

Найти корни заданного уравнения 3 x 3 + 4 x 2 + 2 x = 0 .

Решение

3 x 3 + 4 x 2 + 2 x = 0 x 3 x 2 + 4 x + 2 = 0

Х = 0 – это корень уравнения. Следует найти корни квадратного трехчлена вида 3 x 2 + 4 x + 2 . Для этого необходимо приравнять к нулю и продолжить решение при помощи дискриминанта. Получим, что

D = 4 2 — 4 · 3 · 2 = — 8 . Так как его значение отрицательное, то корней трехчлена нет.

Ответ: х = 0 .

Когда коэффициенты уравнения A x 3 + B x 2 + C x + D = 0 целые, то в ответе можно получить иррациональные корни. Если A ≠ 1 , тогда при умножении на A 2 обеих частей уравнения проводится замена переменных, то есть у = А х :

A x 3 + B x 2 + C x + D = 0 A 3 · x 3 + B · A 2 · x 2 + C · A · A · x + D · A 2 = 0 y = A · x ⇒ y 3 + B · y 2 + C · A · y + D · A 2

Приходим к виду кубического уравнения. Корни могут быть целыми или рациональными. Чтобы получить тождественное равенство, необходимо произвести подстановку делителей в полученное уравнение. Тогда полученный y 1 будет являться корнем. Значит и корнем исходного уравнения вида x 1 = y 1 A . Необходимо произвести деление многочлена A x 3 + B x 2 + C x + D на x — x 1 . Тогда сможем найти корни квадратного трехчлена.

Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .

Решение

Необходимо произвести преобразование с помощью умножения на 2 2 обеих частей, причем с заменой переменной типа у = 2 х . Получаем, что

2 x 3 — 11 x 2 + 12 x + 9 = 0 2 3 x 3 — 11 · 2 2 x 2 + 24 · 2 x + 36 = 0 y = 2 x ⇒ y 3 — 11 y 2 + 24 y + 36 = 0

Свободный член равняется 36 , тогда необходимо зафиксировать все его делители:

± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 9 , ± 12 , ± 36

Необходимо произвести подстановку y 3 — 11 y 2 + 24 y + 36 = 0 , чтобы получить тождество вида

1 3 — 11 · 1 2 + 24 · 1 + 36 = 50 ≠ 0 ( — 1 ) 3 — 11 · ( — 1 ) 2 + 24 · ( — 1 ) + 36 = 0

Отсюда видим, что у = — 1 – это корень. Значит, x = y 2 = — 1 2 .

Далее следует деление 2 x 3 — 11 x 2 + 12 x + 9 на x + 1 2 при помощи схемы Горнера:

x iКоэффициенты многочлена
2— 11129
— 0 . 52— 11 + 2 · ( — 0 . 5 ) = — 1212 — 12 · ( — 0 . 5 ) = 189 + 18 · ( — 0 . 5 ) = 0

2 x 3 — 11 x 2 + 12 x + 9 = x + 1 2 2 x 2 — 12 x + 18 = = 2 x + 1 2 x 2 — 6 x + 9

После чего необходимо найти корни квадратного уравнения вида x 2 — 6 x + 9 . Имеем, что уравнение следует привести к виду x 2 — 6 x + 9 = x — 3 2 , где х = 3 будет его корнем.

Ответ: x 1 = — 1 2 , x 2 , 3 = 3 .

Алгоритм можно применять для возвратных уравнений. Видно, что — 1 – это его корень, значит, левая часть может быть поделена на х + 1 . Только тогда можно будет найти корни квадратного трехчлена. При отсутствии рациональных корней применяются другие способы решения для разложения многочлена на множители.

Видео:7 класс. Учебник Макарычев. N526a. Докажите, что не имеет корней уравнение. а)х^2+1=0Скачать

7 класс. Учебник Макарычев. N526a. Докажите, что не имеет корней уравнение. а)х^2+1=0

Решение кубических уравнений по формуле Кардано

Нахождение кубических корней возможно при помощи формулы Кардано. При A 0 x 3 + A 1 x 2 + A 2 x + A 3 = 0 необходимо найти B 1 = A 1 A 0 , B 2 = A 2 A 0 , B 3 = A 3 A 0 .

После чего p = — B 1 2 3 + B 2 и q = 2 B 1 3 27 — B 1 B 2 3 + B 3 .

Полученные p и q в формулу Кардано. Получим, что

y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — q 2 4 + p 3 27 3

Подбор кубических корней должен удовлетворять на выходе значению — p 3 . Тогда корни исходного уравнения x = y — B 1 3 . Рассмотрим решение предыдущего примера, используя формулу Кардано.

Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .

Решение

Видно, что A 0 = 2 , A 1 = — 11 , A 2 = 12 , A 3 = 9 .

Необходимо найти B 1 = A 1 A 0 = — 11 2 , B 2 = A 2 A 0 = 12 2 = 6 , B 3 = A 3 A 0 = 9 2 .

Отсюда следует, что

p = — B 1 2 3 + B 2 = — — 11 2 2 3 + 6 = — 121 12 + 6 = — 49 12 q = 2 B 1 3 27 — B 1 B 2 3 + B 3 = 2 · — 11 2 3 27 — — 11 2 · 6 3 + 9 2 = 343 108

Производим подстановку в формулу Кордано и получим

y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — — q 2 4 + p 3 27 3 = = — 343 216 + 343 2 4 · 108 2 — 49 3 27 · 12 3 3 + — 343 216 — 343 2 4 · 108 2 — 49 3 27 · 12 3 3 = = — 343 216 3 + — 343 216 3

— 343 216 3 имеет три значения. Рассмотрим их ниже.

— 343 216 3 = 7 6 cos π + 2 π · k 3 + i · sin π + 2 π · k 3 , k = 0 , 1 , 2

Если k = 0 , тогда — 343 216 3 = 7 6 cos π 3 + i · sin π 3 = 7 6 1 2 + i · 3 2

Если k = 1 , тогда — 343 216 3 = 7 6 cosπ + i · sinπ = — 7 6

Если k = 2 , тогда — 343 216 3 = 7 6 cos 5 π 3 + i · sin 5 π 3 = 7 6 1 2 — i · 3 2

Необходимо произвести разбиение по парам, тогда получим — p 3 = 49 36 .

Тогда получим пары: 7 6 1 2 + i · 3 2 и 7 6 1 2 — i · 3 2 , — 7 6 и — 7 6 , 7 6 1 2 — i · 3 2 и 7 6 1 2 + i · 3 2 .

Преобразуем при помощи формулы Кордано:

y 1 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 + i · 3 2 + 7 6 1 2 — i · 3 2 = 7 6 1 4 + 3 4 = 7 6 y 2 = — 343 216 3 + — 343 216 3 = — 7 6 + — 7 6 = — 14 6 y 3 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 — i · 3 2 + 7 6 1 2 + i · 3 2 = 7 6 1 4 + 3 4 = 7 6

x 1 = y 1 — B 1 3 = 7 6 + 11 6 = 3 x 2 = y 2 — B 1 3 = — 14 6 + 11 6 = — 1 2 x 3 = y 3 — B 1 3 = 7 6 + 11 6 = 3

Ответ: x 1 = — 1 2 , x 2 , 3 = 3

При решении кубических уравнений можно встретить сведение к решению уравнений 4 степени методом Феррари.

Видео:Как решать кубические уравнения Решите уравнение 3 степени 9 класс Разложить на множители ДелениеСкачать

Как решать кубические уравнения Решите уравнение 3 степени 9 класс Разложить на множители Деление

«Решение уравнений высших степеней». 9-й класс

Разделы: Математика

Класс: 9

Учебная:

  • Углубить знания учащихся по теме “ Решение уравнений высших степеней” и обобщить учебный материал.
  • Познакомить учащихся с приёмами решения уравнений высших степеней.
  • Научить учащихся применять теорию делимости при решения уравнений высших степеней.
  • Научить учащихся выполнять деление “уголком” многочлена на многочлен.
  • Развивать умения и навыки работы с уравнениями высших степеней.
  • Развивающая:

    1. Развитие внимания учащихся.
    2. Развитие умения добиваться результатов труда.
    3. Развитие интереса к изучению алгебры и навыков самостоятельной работы.

    Воспитывающая:

  • Воспитание чувства коллективизма.
  • Формирование чувства ответственности за результат работы.
  • Формирование у учащихся адекватной самооценки при выборе отметки за работу на уроке.
  • Оборудование: компьютер, проектор.

    1 этап работы. Организационный момент.

    2 этап работы. Мотивация и выход на постановку проблемы

    Уравнение Доказать что уравнение 3 степени не имеет корнейодно из важнейших понятий математики. Развитие методов решения уравнений, начиная с зарождения математики как науки, долгое время было основным предметом изучения алгебры.

    В школьном курсе изучения математики очень много внимания уделяется решению различного вида уравнений. До девятого класса мы умели решать только линейные и квадратные уравнения. Уравнения третьей, четвёртой и т.д. степеней называются уравнениями высших степеней. В девятом классе мы познакомились с двумя основными приёмами решения некоторых уравнений третьей и четвёртой степеней: разложение многочлена на множители и использование замены переменной.

    А можно ли решить уравнения более высоких степеней? На этот вопрос мы постараемся сегодня найти ответ.

    3 этап работы. Повторить ранее изученный материал. Ввести понятие уравнения высших степеней.

    1) Решение линейного уравнения.

    Линейным называется уравнение вида Доказать что уравнение 3 степени не имеет корней, где Доказать что уравнение 3 степени не имеет корнейпо определению. Такое уравнение имеет единственный корень Доказать что уравнение 3 степени не имеет корней.

    2) Решение квадратного уравнения.

    Квадратным называется уравнение вида Доказать что уравнение 3 степени не имеет корней, где Доказать что уравнение 3 степени не имеет корней. Количество корней и сами корни определяются дискриминантом уравнения Доказать что уравнение 3 степени не имеет корней. Для Доказать что уравнение 3 степени не имеет корнейуравнение корней не имеет, для Доказать что уравнение 3 степени не имеет корнейимеет один корень (два одинаковых корня)

    Доказать что уравнение 3 степени не имеет корней, для Доказать что уравнение 3 степени не имеет корнейимеет два различных корня Доказать что уравнение 3 степени не имеет корней.

    Из рассмотренных линейных и квадратных уравнений видим, что количество корней уравнения не более его степени. В курсе высшей алгебры доказывается, что уравнение Доказать что уравнение 3 степени не имеет корней-й степени Доказать что уравнение 3 степени не имеет корнейимеет не более n корней. Что касается самих корней, то тут ситуация намного сложнее. Для уравнений третьей и четвёртой степеней известны формулы для нахождения корней. Однако эти формулы очень сложны и громоздки и практического применения не имеют. Для уравнений пятой и более высоких степеней общих формул не существует и существовать не может (как было доказано в XIX в. Н. Абелем и Э. Галуа).

    Будем называть уравнения третьей, четвёртой и т.д. степеней уравнениями высших степеней. Некоторые уравнения высоких степеней удаётся решить с помощью двух основных приёмов: разложением многочлена Доказать что уравнение 3 степени не имеет корнейна множители или с использованием замены переменной.

    3) Решение кубического уравнения.

    Решим кубическое уравнение Доказать что уравнение 3 степени не имеет корней

    Сгруппируем члены многочлена, стоящего в левой части уравнения, и разложим на множители. Получим:

    Доказать что уравнение 3 степени не имеет корней

    Произведение множителей равно нулю, если один из множителей равен нулю. Получаем три линейных уравнения:

    Доказать что уравнение 3 степени не имеет корней

    Итак, данное кубическое уравнение имеет три корня: Доказать что уравнение 3 степени не имеет корней; Доказать что уравнение 3 степени не имеет корней;Доказать что уравнение 3 степени не имеет корней.

    4) Решение биквадратного уравнения.

    Очень распространены биквадратные уравнения, которые имеют вид Доказать что уравнение 3 степени не имеет корней(т.е. уравнения, квадратные относительно Доказать что уравнение 3 степени не имеет корней). Для их решения вводят новую переменную Доказать что уравнение 3 степени не имеет корней.

    Решим биквадратное уравнение Доказать что уравнение 3 степени не имеет корней.

    Введём новую переменную Доказать что уравнение 3 степени не имеет корнейи получим квадратное уравнение Доказать что уравнение 3 степени не имеет корней, корнями которого являются числа Доказать что уравнение 3 степени не имеет корнейи 4.

    Вернёмся к старой переменной Доказать что уравнение 3 степени не имеет корнейи получим два простейших квадратных уравнения:

    Доказать что уравнение 3 степени не имеет корней(корни Доказать что уравнение 3 степени не имеет корнейи Доказать что уравнение 3 степени не имеет корней)

    Доказать что уравнение 3 степени не имеет корней(корни Доказать что уравнение 3 степени не имеет корнейи Доказать что уравнение 3 степени не имеет корней)

    Итак, данное биквадратное уравнение имеет четыре корня:

    Доказать что уравнение 3 степени не имеет корней; Доказать что уравнение 3 степени не имеет корней;Доказать что уравнение 3 степени не имеет корней.

    Попробуем решить уравнение Доказать что уравнение 3 степени не имеет корнейиспользуя выше изложенные приёмы.

    4 этап работы. Привести некоторые утверждения о корнях многочлена вида Доказать что уравнение 3 степени не имеет корней, где Доказать что уравнение 3 степени не имеет корнеймногочлен n-й степени

    Доказать что уравнение 3 степени не имеет корней

    Приведём некоторые утверждения о корнях многочлена вида Доказать что уравнение 3 степени не имеет корней:

    1) Многочлен Доказать что уравнение 3 степени не имеет корней-й степени Доказать что уравнение 3 степени не имеет корнейимеет не более Доказать что уравнение 3 степени не имеет корнейкорней (с учётом их кратностей). Например, многочлен третьей степени не может иметь четыре корня.

    2) Многочлен нечётной степени имеет хотя бы один корень. Например, многочлены первой, третьей, пятой и т.д. степени имеют хотя бы один корень. Многочлены чётной степени корней могут и не иметь.

    3) Если на концах отрезка Доказать что уравнение 3 степени не имеет корнейзначения многочлена имеют разные знаки (т.е. ,Доказать что уравнение 3 степени не имеет корней), то на интервале Доказать что уравнение 3 степени не имеет корнейнаходится хотя бы один корень. Это утверждение широко используется для приближенного вычисления корней многочлена.

    4) Если число Доказать что уравнение 3 степени не имеет корнейявляется корнем многочлена вида Доказать что уравнение 3 степени не имеет корней, то этот многочлен можно представить в виде произведения Доказать что уравнение 3 степени не имеет корней, где Доказать что уравнение 3 степени не имеет корнеймногочлен (Доказать что уравнение 3 степени не имеет корней-й степени. Другими словами, многочлена вида Доказать что уравнение 3 степени не имеет корнейможно разделить без остатка на двучлен Доказать что уравнение 3 степени не имеет корней. Это позволяет уравнение Доказать что уравнение 3 степени не имеет корней-й степени сводить к уравнению (Доказать что уравнение 3 степени не имеет корней-й степени (понижать степень уравнения).

    5) Если уравнение Доказать что уравнение 3 степени не имеет корнейсо всеми целыми коэффициентами (причём свободный член Доказать что уравнение 3 степени не имеет корней) имеет целый корень Доказать что уравнение 3 степени не имеет корней, то этот корень является делителем свободного члена Доказать что уравнение 3 степени не имеет корней. Такое утверждение позволяет подобрать целый корень многочлена (если он есть).

    5 этап работы. Показать как применяется теория делимости для решения уравнений высших степеней. Рассмотреть примеры решения уравнений высших степеней , в которых для разложения левой части на множители используется способ деления многочлена на многочлен “уголком”.

    Пример 1. Решим уравнение Доказать что уравнение 3 степени не имеет корней.

    Если это уравнение имеет целый корень, то он является делителем свободного члена (-1), т.е. равняется одному из чисел: Доказать что уравнение 3 степени не имеет корней. Проверка показывает, что корнем уравнения является число -1. Значит, многочлен Доказать что уравнение 3 степени не имеет корнейможно представить в виде произведения Доказать что уравнение 3 степени не имеет корней, т.е. многочлен Доказать что уравнение 3 степени не имеет корнейможно без остатка разделить на двучлен Доказать что уравнение 3 степени не имеет корней. Выполним такое деление “уголком”:

    Доказать что уравнение 3 степени не имеет корней

    Таким образом, мы фактически разложили левую часть уравнения на множители:

    Доказать что уравнение 3 степени не имеет корней

    Произведение множителей равно нулю, если один из множителей равен нулю. Получаем два уравнения:

    Доказать что уравнение 3 степени не имеет корней

    Итак, данное уравнение имеет три корня:

    Доказать что уравнение 3 степени не имеет корней

    Пример 2. Решим уравнение Доказать что уравнение 3 степени не имеет корней.

    Если это уравнение имеет целый корень, то он является делителем свободного члена (9),т.е. равняется одному из чисел: Доказать что уравнение 3 степени не имеет корней;Доказать что уравнение 3 степени не имеет корней. Проверим:

    Доказать что уравнение 3 степени не имеет корней

    Значит, многочлен Доказать что уравнение 3 степени не имеет корнейможно представить в виде произведения Доказать что уравнение 3 степени не имеет корней, т.е. многочлен Доказать что уравнение 3 степени не имеет корнейможно без остатка разделить на двучлен Доказать что уравнение 3 степени не имеет корней. Выполним такое деление “уголком”:

    Доказать что уравнение 3 степени не имеет корней

    Таким образом, мы разложили левую часть уравнения на множители:

    Доказать что уравнение 3 степени не имеет корней

    Аналогичным образом поступим и с многочленом Доказать что уравнение 3 степени не имеет корней.

    Если это уравнение Доказать что уравнение 3 степени не имеет корнейимеет целый корень, то он является делителем свободного члена (9), т.е. равняется одному из чисел: Доказать что уравнение 3 степени не имеет корней;Доказать что уравнение 3 степени не имеет корней. Проверим:

    Доказать что уравнение 3 степени не имеет корней

    Значит, многочлен Доказать что уравнение 3 степени не имеет корнейможно представить в виде

    произведения Доказать что уравнение 3 степени не имеет корней, т.е. многочлен Доказать что уравнение 3 степени не имеет корнейможно без остатка разделить на двучлен Доказать что уравнение 3 степени не имеет корней. Выполним такое деление “уголком”:

    Доказать что уравнение 3 степени не имеет корней

    Таким образом, мы разложили левую часть исходного уравнения на множители:

    Доказать что уравнение 3 степени не имеет корней

    Произведение множителей равно нулю, если один из множителей равен нулю. Получаем три уравнения:

    Доказать что уравнение 3 степени не имеет корней

    Итак, данное уравнение имеет четыре корня:

    Доказать что уравнение 3 степени не имеет корней

    6 этап работы. Закрепление изученного материала.

    Решите уравнения высших степеней, используя способ деления многочлена на многочлен “уголком”.

    Доказать что уравнение 3 степени не имеет корней

    7 этап работы. Вывод урока.

    Решить уравнения высших степеней можно следующим образом:

    • используя формулы для нахождения корней (если они известны);
    • используя замену переменной;
    • раскладывая многочлен в левой части уравнения на множители, используя способ деления многочлена на многочлен “уголком”.

    8 этап работы. Домашнее задание.

    Дома решить уравнения высших степеней, используя способ деления многочлена на многочлен “уголком” (раздать листы с заданиями).

    Видео:Решение уравнения третьей степени x³-9x-12=0Скачать

    Решение уравнения третьей степени x³-9x-12=0

    Какое уравнение не имеет корней? Примеры уравнений

    Доказать что уравнение 3 степени не имеет корней

    Решение уравнений в математике занимает особое место. Этому процессу предшествует множество часов изучения теории, в ходе которых ученик узнает способы решения уравнений, определения их вида и доводит навык до полного автоматизма. Однако далеко не всегда поиск корней имеет смысл, так как их может попросту не быть. Существуют особые приемы нахождения корней. В данной статье мы разберем основные функции, их области определения, а также случаи, когда их корни отсутствуют.

    Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

    Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnline

    Какое уравнение не имеет корней?

    Уравнение не имеет корней в том случае, если не существует таких действительных аргументов х, при которых уравнение тождественно верно. Для неспециалиста данная формулировка, как и большинство математических теорем и формул, выглядит очень размытой и абстрактной, однако это в теории. На практике все становится предельно просто. Например: уравнение 0 * х = -53 не имеет решения, так как не найдется такого числа х, произведение которого с нулем дало бы что-то, кроме нуля.

    Сейчас мы рассмотрим самые базовые типы уравнений.

    Видео:СЛОЖИТЕ ДВА КОРНЯСкачать

    СЛОЖИТЕ ДВА КОРНЯ

    1. Линейное уравнение

    Уравнение называется линейным, если его правая и левая части представлены в виде линейных функций: ax + b = cx + d или в обобщенном виде kx + b = 0. Где а, b, с, d — известные числа, а х — неизвестная величина. Какое уравнение не имеет корней? Примеры линейных уравнений представлены на иллюстрации ниже.

    Доказать что уравнение 3 степени не имеет корней

    В основном линейные уравнения решаются простым переносом числовой части в одну часть, а содержимого с х — в другую. Получается уравнение вида mx = n, где m и n — числа, а х — неизвестное. Чтобы найти х, достаточно разделить обе части на m. Тогда х = n/m. В основном линейные уравнения имеют только один корень, однако бывают случаи, когда корней либо бесконечно много, либо нет вовсе. При m = 0 и n = 0 уравнение принимает вид 0 * х = 0. Решением такого уравнения будет абсолютно любое число.

    Однако какое уравнение не имеет корней?

    При m = 0 и n = 0 уравнение не имеет корней из множества действительных чисел. 0 * х = -1; 0 * х = 200 — эти уравнения не имеют корней.

    Видео:Докажите, что уравнение не имеет положительных корней. №528 алгебра 7 класс МакарычевСкачать

    Докажите, что уравнение не имеет положительных корней. №528 алгебра 7 класс Макарычев

    2. Квадратное уравнение

    Квадратным уравнением называется уравнение вида ax 2 + bx + c = 0 при а = 0. Самым распространенным способом решения квадратного уравнения является решение через дискриминант. Формула нахождения дискриминанта квадратного уравнения: D = b 2 — 4 * a * c. Далее находится два корня х1,2= (-b ± √D) / 2 * a.

    При D > 0 уравнение имеет два корня, при D = 0 — корень один. Но какое квадратное уравнение не имеет корней? Пронаблюдать количество корней квадратного уравнения проще всего по графику функции, представляющем собой параболу. При а > 0 ветви направлены вверх, при а 2 – 8x + 72 = 0 не имеет корней, так как имеет отрицательный дискриминант D = (–8) 2 – 4 * 1 * 72 = -224. Это значит, что парабола не касается оси абсцисс и функция никогда не принимает значение 0, следовательно, уравнение не имеет действительных корней.

    Видео:Теорема Виета для многочлена 3 порядка. 10 класс.Скачать

    Теорема Виета для многочлена 3 порядка. 10 класс.

    3. Тригонометрические уравнения

    Тригонометрические функции рассматриваются на тригонометрической окружности, однако могут быть представлены и в декартовой системе координат. В данной статье мы рассмотрим две основные тригонометрические функции и их уравнения: sinx и cosx. Так как данные функции образуют тригонометрическую окружность с радиусом 1, |sinx| и |cosx| не могут быть больше 1. Итак, какое уравнение sinx не имеет корней? Рассмотрим график функции sinx, представленный на картинке ниже.

    Доказать что уравнение 3 степени не имеет корней

    Мы видим, что функция является симметричной и имеет период повторения 2pi. Исходя их этого, можно говорить, что максимальным значением этой функции может быть 1, а минимальным -1. Например, выражение cosx = 5 не будет иметь корней, так как по модулю оно больше единицы.

    Это самый простой пример тригонометрических уравнений. На самом деле их решение может занимать множество страниц, в конце которых вы осознаете, что использовали неправильную формулу и все нужно начинать сначала. Порой даже при правильном нахождении корней вы можете забыть учесть ограничения по ОДЗ, из-за чего в ответе появляется лишний корень или интервал, и весь ответ обращается в ошибочный. Поэтому строго следите за всеми ограничениями, ведь не все корни вписываются в рамки задачи.

    Видео:Рациональные корни многочлена с целым показателем. 10 класс.Скачать

    Рациональные корни многочлена с целым показателем. 10 класс.

    4. Системы уравнений

    Система уравнений представляет собой совокупность уравнений, объединенных фигурной или квадратной скобками. Фигурные скобки обозначают совместное выполнение всех уравнений. То есть если хотя бы одно из уравнений не имеет корней или противоречит другому, вся система не имеет решения. Квадратные скобки обозначают слово «или». Это значит, что если хотя бы одно из уравнений системы имеет решение, то вся система имеет решение.

    Доказать что уравнение 3 степени не имеет корней

    Ответом системы с квадратными скобками является совокупность всех корней отдельных уравнений. А системы с фигурным скобками имеют только общие корни. Системы уравнений могут включать абсолютно разнообразные функции, поэтому такая сложность не позволяет сказать сразу, какое уравнение не имеет корней.

    Видео:Формула Кардано. Решение уравнений третьей степени.Скачать

    Формула Кардано. Решение уравнений третьей степени.

    Обобщение и советы по нахождению корней уравнения

    В задачниках и учебниках встречаются разные типы уравнений: такие, которые имею корни, и не имеющие их. В первую очередь, если у вас не получается найти корни, не думайте, что их нет совсем. Возможно, вы совершили где-нибудь ошибку, тогда достаточно лишь внимательно перепроверить ваше решение.

    Мы рассмотрели самые базовые уравнения и их виды. Теперь вы можете сказать, какое уравнение не имеет корней. В большинстве случаев сделать это совсем не трудно. Для достижения успеха в решении уравнений требуется лишь внимание и сосредоточенность. Практикуйтесь больше, это поможет вам ориентироваться в материале гораздо лучше и быстрее.

    Итак, уравнение не имеет корней, если:

    • в линейном уравнении mx = n значение m = 0 и n = 0;
    • в квадратном уравнении, если дискриминант меньше нуля;
    • в тригонометрическом уравнении вида cosx = m / sinx = n, если |m| > 0, |n| > 0;
    • в системе уравнений с фигурными скобками, если хотя бы одно уравнение не имеет корней, и с квадратными скобками, если все уравнения не имеют корней.

    🎦 Видео

    5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

    5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

    11 класс, 3 урок, Уравнения высших степенейСкачать

    11 класс, 3 урок, Уравнения высших степеней

    Ещё один приём решения иррациональных уравнений с корнем третьей степениСкачать

    Ещё один приём решения иррациональных уравнений с корнем третьей степени

    Самый простой способ решить кубическое уравнениеСкачать

    Самый простой способ решить кубическое уравнение

    ОГЭ №21 Как решать кубическое уравнение x^3+4x^2-9x-36=0 Группировка Деление многочлена столбикомСкачать

    ОГЭ №21 Как решать кубическое уравнение x^3+4x^2-9x-36=0 Группировка Деление многочлена столбиком

    Быстрый способ решения квадратного уравненияСкачать

    Быстрый способ решения квадратного уравнения

    ✓ Как решать кубические уравнения. Формула Кардано | Ботай со мной #025 | Борис ТрушинСкачать

    ✓ Как решать кубические уравнения. Формула Кардано | Ботай со мной #025 | Борис Трушин
    Поделиться или сохранить к себе: