Разделы: Математика
Устный счет:
1. При каком значении Х , выражение принимает минимальное значение
а) ; б)
2. Зависимость y(x) выражается формулой y = 13x + 1 выразить x(y)
3. Не решая уравнения, определить, равносильны ли они:
4. Выделить полный квадрат:
5. Вычислить пары чисел , удовлетворяющих условиям
а) m + n = 4 mn = 4 | б) m + n = –3 mn = –18 |
- Какое уравнение называется полным?
- Что такое корни квадратного уравнения?
- Сколько корней может иметь квадратное уравнение?
Теорема. Квадратное уравнение не может иметь более двух различных корней.
Доказательство:
Предположим, что уравнение три различных корня:
Если уравнение имеет корень, то после подстановки его в уравнение получится верное числовое равенство:
(1)
(2)
(3)
из (2) отнимаем (1)
–
_____________________
В каком случае произведение равно 0?
Так как = > 0 = > a+ b = 0. (4)
–
_________________
= > a+ b = 0 (5)
–
________________
а0 = > = > ,
а по условию пришли к противоречию.
Давайте решим уравнение:
Самостоятельно:
a)
Вместе:
б)
Нравится ли этот способ? Нет! Тогда будем рассуждать иначе:
(формулу для нахождения корней квадратного уравнения учить проговаривать словами).
– дискриминант квадратного уравнения.
По теореме, доказанной нами , уравнение не может иметь более двух корней.
Количество корней зависит от D.
1). D > 0
2). D = 0
Видео:Алгебра 8 класс (Урок№19 - Уравнение х² = а.)Скачать
Квадратное уравнение. Дискриминант. Теорема Виета.
теория по математике 📈 уравнения
Уравнение вида ax 2 +bx+c=0, где a,b,c – любые числа, причем a≠0, называют квадратным уравнением. Числа a,b,c принято называть коэффициентами, при этом a – первый коэффициент, b – второй коэффициент, c – свободный член.
Квадратное уравнение может иметь не более двух корней. Решить такое уравнение – это значит найти все его корни или доказать, что их нет.
Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать
Дискриминант
Количество корней квадратного уравнения зависит от такого элемента, как дискриминант (обозначают его буквой D).
Нахождение корней квадратного уравнения
Дискриминант – это такой математический инструмент, который позволяет нам определять количество корней. Он выражается определенной формулой:
D=b 2 –4ac
- Если D>0, то уравнение имеет два различных
Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.
Пример №1. Решить уравнение х 2 –2х–3=0. Определяем коэффициенты: а=1, b=–2, c=–3. Находим дискриминант: D=b 2 –4ac=(–2) 2 –41(–3)=4+12=16. Видим, что дискриминант положительный, значит, уравнение имеет два различных корня, находим их:
Пример №2. Решить уравнение 5х 2 +2х+1=0. Определяем коэффициенты: а=5, b=2, c=1. D=b 2 –4ac=2 2 –4=4–20=–16, D 2 –6х+9=0. Определяем коэффициенты: а=1, b=–6, c=9.
D=b 2 –4ac=(–6) 2 –4=36–36=0, D=0, 1
Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.
Видео:Доказать, что уравнение не имеет положительных корнейСкачать
Теорема Виета
Среди квадратных уравнений встречаются такие, у которых первый коэффициент равен 1 (обратим внимание на пример 1 и 3), такие уравнения называются приведенными.
Приведенные квадратные уравнения можно решать не только с помощью дискриминанта, но и с помощью теоремы Виета.
Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком; произведение корней равно третьему коэффициенту.
Корни с помощью данной теоремы находятся устно способом подбора. Рассмотрим это на примерах.
Пример №4. Решить уравнение х 2 –10х+21=0. Выпишем коэффициенты: а=1, b=–10, c=21. Применим теорему Виета:
Начинаем с произведения корней, которое является положительным числом, значит оба корня либо отрицательные, либо положительные. Предполагаем, что это могут быть либо 3 и 7, либо противоположные им числа. Теперь смотрим на сумму, она является положительным числом, поэтому нам подходит пара чисел 3 и 7. Проверяем: 3+7=10, 37=21. Значит, корнями данного уравнения являются числа 3 и 7.
Пример №5. Решить уравнение: х 2 +5х+4=0. Выпишем коэффициенты: а=1, b=5, c=4. По теореме Виета:
Видим, что произведение корней равно 4, значит оба корня либо отрицательные, либо положительные. Видим, что сумма отрицательная, значит, будем брать два отрицательных числа, нам подходят –1 и –4. Проверим:
Данное уравнение является квадратным. Но в его условии присутствует квадратный
Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.
Записываем обязательно в начале решения, что подкоренное выражение может быть только равным нулю или положительным числом (правило извлечения квадратного
Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.
Решаем полученное неравенство: − х ≥ − 5 , отсюда х ≤ 5 . Следовательно, для ответа мы будем выбирать значения, которые меньше или равны 5.
Решаем наше квадратное уравнение, перенося все слагаемые из правой части в левую, изменяя при этом знаки на противоположные и приводя подобные слагаемые (выражения с квадратным корнем взаимоуничтожаются):
х 2 − 2 х + √ 5 − х − √ 5 − х − 24 = 0
Получим приведенное квадратное уравнение, корни которого можно найти подбором по теореме Виета:
х 2 − 2 х − 24 = 0
Итак, корнями уравнения х 2 − 2 х − 24 = 0 будут числа -4 и 6.
Теперь выбираем корень, обращая внимание на наше ограничение на х, т.е. корень должен быть меньше или равен 5. Таким образом, запишем, что 6 – это посторонний корень, так как 6 н е ≤ 5 , а число минус 4 записываем в ответ нашего уравнения, так как − 4 ≤ 5 .
pазбирался: Даниил Романович | обсудить разбор | оценить
Видео:Формула корней квадратного уравнения. Алгебра, 8 классСкачать
math4school.ru
Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать
Квадратный трёхчлен
Немного теории
В большинстве задач, сводящихся к исследованию квадратичной функции
полезно представить себе её график:
- если он пересекает ось Ох в двух точках (корнях) х1 и х2, то между корнями значения функции у = f(х) противоположны по знаку числу а, а вне отрезка [х1; х2] – совпадают по знаку с числом а;
- при этом вершина параболы у = f(х) (абсцисса которой равна полусумме корней) соответствует точке экстремума функции у = f(х): минимума, если а > 0, и максимума, если а
В ряде задач полезно использовать такой факт:
- если непрерывная на отрезке [а, b] функция у = f(х) принимает в концах этого отрезка значения разных знаков, то между точками a и b лежит хотя бы один корень уравнения f(х) = 0.
Задачи с решениями
1. Известно, что a + b + c 2 + bx + c = 0 не имеет действительных корней. Определить знак коэффициента с.
Квадратный трёхчлен f(x) = ax 2 + bx + c не имеет действительных корней, значит, он сохраняет один и тот же знак для всех значений аргумента х. Так как f(1) = a + b + c
2. Может ли квадратное уравнение ax 2 + bx + c = 0 с целыми коэффициентами иметь дискриминант равный 23?
Допустим, что дискриминант указанного уравнения равен числу 23. Тогда можно записать:
Заметим, что b – 5 и b + 5 – числа одинаковой чётности, поэтому их произведение, если оно чётно, делится на 4. Правая часть последнего равенства есть чётное число, не делящееся на 4. Полученно противоречие, значит, сделаное допущение ложно.
3. Найти все пары действительных чисел p, q, для которых многочлен x 4 + px 2 + q, имеет 4 действительных корня, образующих арифметическую прогрессию.
Многочлен x 4 + px 2 + q, имеет 4 действительных корня в том и только в том случае, если многочлен у 2 + pу + q (относительно у = x 2 ) имеет два неотрицательных корня, т.е. числа р и q удовлетворяют условиям
Если исходный многочлен имеет 4 действительных корня (а именно: –х1, –х2, х1, х2, где без ограничения общности считаем, что х1 > х2 > 0), то они образуют арифметическую прогрессию тогда и только тогда, когда совместна система
(смотрите теорему Виета и обратную к ней), т.е. когда q = 0,09 · р 2 . Таким образом, все искомые пары чисел р, q описываются условиями
(неравенства p 2 > 4q и q > 0,вытекают из последнего равенства).
4. Пусть a, b, c – действительные числа. Доказать, что уравнение
всегда имеет хотя бы один действительный корень. Выяснить, когда таких корня два.
Без ограничения общности рассуждений можно считать, что a b c. Рассмотрим все возможные случаи:
f ( a ) = ( a – b ) ( a – c ) > 0,
f ( c ) = ( c – a ) ( c – b ) > 0.
Так как f ( x ) – непрерывная квадратичная функция, принимающая значения разного знака на концах интервалов (a; b) и (b; c), то она имеет два различных действительных корня х 1 и х 2 . Более того
Решение задачи окончено.
5. Дан многочлен ax 2 + bx + c. За один ход разрешается заменить х на (х – k) или заменить многочлен целиком на многочлен
Можно ли после нескольких ходов из многочлена x 2 – 3x – 4 получить многочлен x 2 – 2x – 5?
Нетрудно убедиться, что при указанных заменах исходного многочлена его дискриминант не изменяется. Значит, если из многочлена x 2 – 3x – 4 можно получить многочлен x 2 – 2x – 5, то их дискриминанты должны быть равны. Однако это не так.
6. Найдите все значения a и b, такие, что для любого х из отрезка [–1; 1] будет выполняться неравенство
Пусть числа а и b такие, что для любого х из отрезка [–1; 1] выполняется данное неравенство, т. е,
Полагая здесь последовательно х = 0, х = 1, х = – 1, получаем, что а и b удовлетворяют следующей системе неравенств:
Сложив почленно два последних неравенства, подучим
Отсюда и из первого неравенства следует, что b = –1. Тогда а удовлетворяет следующим двум неравенствам:
и поэтому, а = 0. Таким образом, если существуют числа а и b, удовлетворяющие условию задачи, то
и других решений задача не имеет.
Чтобы доказать, что найденные значения а = 0, b = – 1 являются решением задачи, остается проверить, что для любого х из отрезка [–1; 1] верно двойное неравенство
А оно равносильно неравенству
которое, очевидно, справедливо на числовом промежутке [–1; 1].
7. По трём прямолинейным дорогам с постоянными скоростями идут три пешехода. В начальный момент времени они не находились на одной прямой. Докажите, что они могут оказаться на одной прямой не более двух раз.
Поставим каждому из пешеходов в соответствие точку в прямоугольной системе координат. Точки (х1; у1), (х2; у2), (х3; у3) лежат на одной прямой тогда и только тогда, когда
Так как скорости пешеходов постоянны, то х1(t), у1(t), х2 (t), у2(t), х3(t) и у3(t) – линейные функции от времени t и последнее равенство является квадратным уравнением относительно t, которое может иметь не более двух решений t1 и t2. Это и есть те два возможных момента времени, когда все три пешехода могут оказаться на одной прямой.
8. На координатной плоскости Oхy нарисован график функции y = x 2 . Потом оси координат стёрли, осталась только парабола. Как при помощи циркуля и линейки восстановить оси координат и единицу длины?
Докажем следующую лемму.
Лемма. Пусть M и N – середины двух параллельных хорд параболы. Тогда прямая MN параллельна оси параболы.
Доказательство. Пусть хорды AB и CD параболы лежат на параллельных прямых
тогда абсциссы точек A , B , C , D – это корни уравнений
а абсциссы точек M и N – полусуммы корней этих уравнений, то есть по теореме Виета равны k /2. Следовательно, точки M и N лежат на прямой х = k /2, которая параллельна оси Oy . Лемма доказана.
Вернёмся к исходной задаче.
Последовательно осуществляем следующие построения:
1) две параллельные прямые, каждая из которых пересекает параболу в двух точках;
2) прямую через середины получающихся отрезков;
3) перпендикуляр к этой прямой, пересекающий параболу в двух точках А и В;
4) серединный перпендикуляр к отрезку АВ – это ось Оу;
5) ось Ох перпендикулярна Оу в точке пересечения с параболой;
6) единичный отрезок – абсцисса пересечения прямой у = х с параболой.
9. Учитель написал на доске квадратный трехчлен х 2 + 10х + 20, после чего по очереди каждый из учеников увеличил или уменьшил на единицу либо коэффициент при х, либо свободный член, но не оба сразу. В результате на доске оказался написан квадратный трехчлен х 2 + 20х+10. Верно ли, что в некоторый момент на доске был написан квадратный трехчлен с целыми корнями?
Заметим, что при каждом изменении трехчлена его значение в точке х = – 1 изменяется на 1 (в ту или другую сторону). Значение первого трехчлена
в этой точке равно f(–1) = 11, а последнего,
— g(–1) = –9. Поэтому в какой-то промежуточный момент на доске был написан трехчлен
для которого h(–1)=0. Оба его корня – целые числа: один равен –1, другой по теореме Виета равен –q.
Каждому квадратному трёхчлену
поставим в соответствие точку координатной плоскости Оbc, где вдоль оси Оb будем откладывать значения второго коэффициента, а вдоль Ос – свободного члена. Многочленам
будут соответствовать точки
соответственно. Предложенные в условии операции предполагают перемещение от точки А к точке В вдоль узлов некоторой ломаной L. Узлы L – некоторые целочисленные точки плоскости Оbc, а длина каждого звена L равна 1 (соседние звенья могут лежать на одной прямой).
Так как точки А и В расположены в разных полуплоскостях относительно прямой
то ломаная L одним из своих узлов имеет точку этой прямой. Значит, одним из промежуточных многочленов будет многочлен вида
10. Какова вероятность того, что корни квадратного уравнения x 2 + 2bx + c = 0 действительны?
Для того чтобы вопрос задачи имел смысл, предположим, что точка (b; c) равномерно распределена на квадрате с центром в начале координат и стороной 2B. Решим задачу при фиксированном значении B, а затем устремим B к бесконечности, так что b и c могут принимать любые значения.
На рисунке более тёмная выделенная область отвечает случаю действительных корней,
более светлая – комплексных.
Для того чтобы уравнение имело действительные корни, необходимо и достаточно, чтобы
На приведенном рисунке изображена парабола с = b 2 и показана область, где наше уравнение имеет действительные корни для B = 4.
Нетрудно подсчитать, что площадь «комплексной» области равна (4 · B 3/2 )/3 (при B > 1), а площадь всего квадрата, конечно, равна 4B 2 . Следовательно, вероятность того, что корни комплексные, равна 1/(3 √ В ). При B = 4 она составляет 1/6. Действительно,
(4 · B 3/2 ) / 3 | = | 1 | = | 1 |
4 B 2 | 3 · √ В | 3 · √ 4 |
С ростом B значение дроби 1/ √ В стремится к нулю, так что вероятность того, что корни вещественные, стремится к 1.
Замечание. Рассмотренная задача отличается от такой же задачи, связанной с уравнением
Конечно, можно разделить на a, но если a, b и c были независимы и равномерно распределены в некотором кубе, то b/a и c/a уже зависимы и распределены неравномерно.
Задачи без решений
1. Корни уравнения х 2 + pх + q = 0, у которого p + q = 198, являются целыми числами. Найдите эти корни.
2. В квадратном уравнении х 2 + pх + q = 0 коэффициенты p и q независимо пробегают все значения от –1 до +1 включительно. Найти множество значений, которые при этом могут принимать действительные корни данного уравнения.
3. Квадратный трёхчлен f ( х ) = ax 2 + bx + c таков, что уравнение f ( х ) = x не имеет действительных корней. Докажите, что уравнение f ( f ( х )) = х так же не имеет вещественных корней.
4. Найдите уравнение общей касательной к параболам у = x 2 + 4x + 8 и у = x 2 + 8x + 4.
🔍 Видео
Математика это не ИсламСкачать
Комплексные корни квадратного уравненияСкачать
КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать
Натуральные числа, целые числа, рациональные числа, иррациональные числа и действительные числаСкачать
Неполные квадратные уравнения. Алгебра, 8 классСкачать
Как решать дробно-рациональные уравнения? | МатематикаСкачать
КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТСкачать
Математика| Разложение квадратного трехчлена на множители.Скачать
Решение квадратных уравнений. Дискриминант. 8 класс.Скачать
Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
Быстрый способ решения квадратного уравненияСкачать
Разложение квадратного трехчлена на множители. 8 класс.Скачать
Как решать квадратные уравнения. 8 класс. Вебинар | МатематикаСкачать