В квадратных уравнениях существует целый ряд соотношений. Основными являются отношения между корнями и коэффициентами. Также в квадратных уравнениях работает ряд соотношений, которые задаются теоремой Виета.
В этой теме мы приведем саму теорему Виета и ее доказательство для квадратного уравнения, теорему, обратную теореме Виета, разберем ряд примеров решения задач. Особое внимание в материале мы уделим рассмотрению формул Виета, которые задают связь между действительными корнями алгебраического уравнения степени n и его коэффициентами.
- Формулировка и доказательство теоремы Виета
- Теорема, обратная теореме Виета
- Примеры использования теоремы Виета
- Формулы Виета
- Теорема Виета для квадратного уравнения
- Основные понятия
- Формула Виета
- Доказательство теоремы Виета
- Обратная теорема Виета
- Докажем теорему, обратную теореме Виета
- Примеры
- Неприведенное квадратное уравнение
- Разработка урока по теме «Квадратные уравнения (методы решения)»
- 📹 Видео
Видео:ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫСкачать
Формулировка и доказательство теоремы Виета
Формула корней квадратного уравнения a · x 2 + b · x + c = 0 вида x 1 = — b + D 2 · a , x 2 = — b — D 2 · a , где D = b 2 − 4 · a · c , устанавливает соотношения x 1 + x 2 = — b a , x 1 · x 2 = c a . Это подтверждает и теорема Виета.
В квадратном уравнении a · x 2 + b · x + c = 0 , где x 1 и x 2 – корни, сумма корней будет равна соотношению коэффициентов b и a , которое было взято с противоположным знаком, а произведение корней будет равно отношению коэффициентов c и a , т. е. x 1 + x 2 = — b a , x 1 · x 2 = c a .
Предлагаем вам следующую схему проведения доказательства: возьмем формулу корней, составим суму и произведение корней квадратного уравнения и затем преобразуем полученные выражения для того, чтобы убедиться, что они равны — b a и c a соответственно.
Составим сумму корней x 1 + x 2 = — b + D 2 · a + — b — D 2 · a . Приведем дроби к общему знаменателю — b + D 2 · a + — b — D 2 · a = — b + D + — b — D 2 · a . Раскроем скобки в числителе полученной дроби и приведем подобные слагаемые: — b + D + — b — D 2 · a = — b + D — b — D 2 · a = — 2 · b 2 · a . Сократим дробь на: 2 — b a = — b a .
Так мы доказали первое соотношение теоремы Виета, которое относится к сумме корней квадратного уравнения.
Теперь давайте перейдем ко второму соотношению.
Для этого нам необходимо составить произведение корней квадратного уравнения: x 1 · x 2 = — b + D 2 · a · — b — D 2 · a .
Вспомним правило умножения дробей и запишем последнее произведение следующим образом: — b + D · — b — D 4 · a 2 .
Проведем в числителе дроби умножение скобки на скобку или же воспользуемся формулой разности квадратов для того, чтобы преобразовать это произведение быстрее: — b + D · — b — D 4 · a 2 = — b 2 — D 2 4 · a 2 .
Воспользуемся определением квадратного корня для того, чтобы осуществить следующий переход: — b 2 — D 2 4 · a 2 = b 2 — D 4 · a 2 . Формула D = b 2 − 4 · a · c отвечает дискриминанту квадратного уравнения, следовательно, в дробь вместо D можно подставить b 2 − 4 · a · c :
b 2 — D 4 · a 2 = b 2 — ( b 2 — 4 · a · c ) 4 · a 2
Раскроем скобки, приведем подобные слагаемые и получим: 4 · a · c 4 · a 2 . Если сократить ее на 4 · a , то остается c a . Так мы доказали второе соотношение теоремы Виета для произведения корней.
Запись доказательства теоремы Виета может иметь весьма лаконичный вид, если опустить пояснения:
x 1 + x 2 = — b + D 2 · a + — b — D 2 · a = — b + D + — b — D 2 · a = — 2 · b 2 · a = — b a , x 1 · x 2 = — b + D 2 · a · — b — D 2 · a = — b + D · — b — D 4 · a 2 = — b 2 — D 2 4 · a 2 = b 2 — D 4 · a 2 = = D = b 2 — 4 · a · c = b 2 — b 2 — 4 · a · c 4 · a 2 = 4 · a · c 4 · a 2 = c a .
При дискриминанте квадратного уравнения равном нулю уравнение будет иметь только один корень. Чтобы иметь возможность применить к такому уравнению теорему Виета, мы можем предположить, что уравнение при дискриминанте, равном нулю, имеет два одинаковых корня. Действительно, при D = 0 корень квадратного уравнения равен: — b 2 · a , тогда x 1 + x 2 = — b 2 · a + — b 2 · a = — b + ( — b ) 2 · a = — 2 · b 2 · a = — b a и x 1 · x 2 = — b 2 · a · — b 2 · a = — b · — b 4 · a 2 = b 2 4 · a 2 , а так как D = 0 , то есть, b 2 — 4 · a · c = 0 , откуда b 2 = 4 · a · c , то b 2 4 · a 2 = 4 · a · c 4 · a 2 = c a .
Чаще всего на практике теорема Виета применяется по отношению к приведенному квадратному уравнению вида x 2 + p · x + q = 0 , где старший коэффициент a равен 1 . В связи с этим и формулируют теорему Виета именно для уравнений такого вида. Это не ограничивает общности в связи с тем, что любое квадратное уравнение может быть заменено равносильным уравнением. Для этого необходимо поделить обе его части на число a , отличное от нуля.
Приведем еще одну формулировку теоремы Виета.
Сумма корней в приведенном квадратном уравнении x 2 + p · x + q = 0 будет равна коэффициенту при x , который взят с противоположным знаком, произведение корней будет равно свободному члену, т.е. x 1 + x 2 = − p , x 1 · x 2 = q .
Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать
Теорема, обратная теореме Виета
Если внимательно посмотреть на вторую формулировку теоремы Виета, то можно увидеть, что для корней x 1 и x 2 приведенного квадратного уравнения x 2 + p · x + q = 0 будут справедливы соотношения x 1 + x 2 = − p , x 1 · x 2 = q . Из этих соотношений x 1 + x 2 = − p , x 1 · x 2 = q следует, что x 1 и x 2 – это корни квадратного уравнения x 2 + p · x + q = 0 . Так мы приходим к утверждению, которое является обратным теореме Виета.
Предлагаем теперь оформить это утверждение как теорему и провести ее доказательство.
Если числа x 1 и x 2 таковы, что x 1 + x 2 = − p и x 1 · x 2 = q , то x 1 и x 2 являются корнями приведенного квадратного уравнения x 2 + p · x + q = 0 .
Замена коэффициентов p и q на их выражение через x 1 и x 2 позволяет преобразовать уравнение x 2 + p · x + q = 0 в равносильное ему x 2 − ( x 1 + x 2 ) · x + x 1 · x 2 = 0 .
Если в полученное уравнение подставить число x 1 вместо x , то мы получим равенство x 1 2 − ( x 1 + x 2 ) · x 1 + x 1 · x 2 = 0 . Это равенство при любых x 1 и x 2 превращается в верное числовое равенство 0 = 0 , так как x 1 2 − ( x 1 + x 2 ) · x 1 + x 1 · x 2 = x 1 2 − x 1 2 − x 2 · x 1 + x 1 · x 2 = 0 . Это значит, что x 1 – корень уравнения x 2 − ( x 1 + x 2 ) · x + x 1 · x 2 = 0 , и что x 1 также является корнем равносильного ему уравнения x 2 + p · x + q = 0 .
Подстановка в уравнение x 2 − ( x 1 + x 2 ) · x + x 1 · x 2 = 0 числа x 2 вместо x позволяет получить равенство x 2 2 − ( x 1 + x 2 ) · x 2 + x 1 · x 2 = 0 . Это равенство можно считать верным, так как x 2 2 − ( x 1 + x 2 ) · x 2 + x 1 · x 2 = x 2 2 − x 1 · x 2 − x 2 2 + x 1 · x 2 = 0 . Получается, что x 2 является корнем уравнения x 2 − ( x 1 + x 2 ) · x + x 1 · x 2 = 0 , а значит, и уравнения x 2 + p · x + q = 0 .
Теорема, обратная теореме Виета, доказана.
Видео:Теорема Виета. 8 класс.Скачать
Примеры использования теоремы Виета
Давайте теперь приступим к разбору наиболее типичных примеров по теме. Начнем с разбора задач, которые требуют применения теоремы, обратной теореме Виета. Ее можно применять для проверки чисел, полученных в ходе вычислений, на предмет того, являются ли они корнями заданного квадратного уравнения. Для этого необходимо вычислить их сумму и разность, а затем проверить справедливость соотношений x 1 + x 2 = — b a , x 1 · x 2 = a c .
Выполнение обоих соотношений свидетельствует о том, что числа, полученные в ходе вычислений, являются корнями уравнения. Если же мы видим, что хотя бы одно из условий не выполняется, то данные числа не могут быть корнями квадратного уравнения, данного в условии задачи.
Какая из пар чисел 1 ) x 1 = − 5 , x 2 = 3 , или 2 ) x 1 = 1 — 3 , x 2 = 3 + 3 , или 3 ) x 1 = 2 + 7 2 , x 2 = 2 — 7 2 является парой корней квадратного уравнения 4 · x 2 − 16 · x + 9 = 0 ?
Решение
Найдем коэффициенты квадратного уравнения 4 · x 2 − 16 · x + 9 = 0 . Это a = 4 , b = − 16 , c = 9 . В соответствии с теоремой Виета сумма корней квадратного уравнения должна быть равна — b a , то есть, 16 4 = 4 , а произведение корней должно быть равно c a , то есть, 9 4 .
Проверим полученные числа, вычислив сумму и произведение чисел из трех заданных пар и сравнив их с полученными значениями.
В первом случае x 1 + x 2 = − 5 + 3 = − 2 . Это значение отлично от 4 , следовательно, проверку можно не продолжать. Согласно теореме, обратной теореме Виета, можно сразу сделать вывод о том, что первая пара чисел не является корнями данного квадратного уравнения.
Во втором случае x 1 + x 2 = 1 — 3 + 3 + 3 = 4 . Мы видим, что первое условие выполняется. А вот второе условие нет: x 1 · x 2 = 1 — 3 · 3 + 3 = 3 + 3 — 3 · 3 — 3 = — 2 · 3 . Значение, которое мы получили, отлично от 9 4 . Это значит, что вторая пара чисел не является корнями квадратного уравнения.
Перейдем к рассмотрению третьей пары. Здесь x 1 + x 2 = 2 + 7 2 + 2 — 7 2 = 4 и x 1 · x 2 = 2 + 7 2 · 2 — 7 2 = 2 2 — 7 2 2 = 4 — 7 4 = 16 4 — 7 4 = 9 4 . Выполняются оба условия, а это значит, что x 1 и x 2 являются корнями заданного квадратного уравнения.
Ответ: x 1 = 2 + 7 2 , x 2 = 2 — 7 2
Мы также можем использовать теорему, обратную теореме Виета, для подбора корней квадратного уравнения. Наиболее простой способ – это подбор целых корней приведенных квадратных уравнений с целыми коэффициентами. Можно рассматривать и другие варианты. Но это может существенно затруднить проведение вычислений.
Для подбора корней мы используем тот факт, что если сумма двух чисел равна второму коэффициенту квадратного уравнения, взятому со знаком минус, а произведение этих чисел равно свободному члену, то эти числа являются корнями данного квадратного уравнения.
В качестве примера используем квадратное уравнение x 2 − 5 · x + 6 = 0 . Числа x 1 и x 2 могут быть корнями этого уравнения в том случае, если выполняются два равенства x 1 + x 2 = 5 и x 1 · x 2 = 6 . Подберем такие числа. Это числа 2 и 3 , так как 2 + 3 = 5 и 2 · 3 = 6 . Получается, что 2 и 3 – корни данного квадратного уравнения.
Теорему, обратную теореме Виета, можно использовать для нахождения второго корня, когда первый известен или очевиден. Для этого мы можем использовать соотношения x 1 + x 2 = — b a , x 1 · x 2 = c a .
Рассмотрим квадратное уравнение 512 · x 2 − 509 · x − 3 = 0 . Необходимо найти корни данного уравнения.
Решение
Первым корнем уравнения является 1 , так как сумма коэффициентов этого квадратного уравнения равна нулю. Получается, что x 1 = 1 .
Теперь найдем второй корень. Для этого можно использовать соотношение x 1 · x 2 = c a . Получается, что 1 · x 2 = − 3 512 , откуда x 2 = — 3 512 .
Ответ: корни заданного в условии задачи квадратного уравнения 1 и — 3 512 .
Подбирать корни, используя теорему, обратную теореме Виета, можно лишь в простых случаях. В остальных случаях лучше проводить поиск с использованием формулы корней квадратного уравнения через дискриминант.
Благодаря теореме, обратной теореме Виета, мы также можем составлять квадратные уравнения по имеющимся корням x 1 и x 2 . Для этого нам необходимо вычислить сумму корней, которая дает коэффициент при x с противоположным знаком приведенного квадратного уравнения, и произведение корней, которое дает свободный член.
Напишите квадратное уравнение, корнями которого являются числа − 11 и 23 .
Решение
Примем, что x 1 = − 11 и x 2 = 23 . Сумма и произведение данных чисел будут равны: x 1 + x 2 = 12 и x 1 · x 2 = − 253 . Это значит, что второй коэффициент — 12 , свободный член − 253.
Составляем уравнение: x 2 − 12 · x − 253 = 0 .
Ответ: x 2 − 12 · x − 253 = 0 .
Мы можем использовать теорему Виета для решения заданий, которые связаны со знаками корней квадратных уравнений. Связь между теоремой Виета связана со знаками корней приведенного квадратного уравнения x 2 + p · x + q = 0 следующим образом:
- если квадратное уравнение имеет действительные корни и если свободный член q является положительным числом, то эти корни будут иметь одинаковый знак « + » или « — » ;
- если квадратное уравнение имеет корни и если свободный член q является отрицательным числом, то один корень будет « + » , а второй « — » .
Оба этих утверждения являются следствием формулы x 1 · x 2 = q и правила умножения положительных и отрицательных чисел, а также чисел с разными знаками.
Являются ли корни квадратного уравнения x 2 − 64 · x − 21 = 0 положительными?
Решение
По теореме Виета корни данного уравнения не могут быть оба положительными, так как для них должно выполняться равенство x 1 · x 2 = − 21 . Это невозможно при положительных x 1 и x 2 .
Ответ: Нет
При каких значениях параметра r квадратное уравнение x 2 + ( r + 2 ) · x + r − 1 = 0 будет иметь два действительных корня с разными знаками.
Решение
Начнем с того, что найдем значения каких r , при которых в уравнении будет два корня. Найдем дискриминант и посмотрим, при каких r он будет принимать положительные значения. D = ( r + 2 ) 2 − 4 · 1 · ( r − 1 ) = r 2 + 4 · r + 4 − 4 · r + 4 = r 2 + 8 . Значение выражения r 2 + 8 положительно при любых действительных r , следовательно, дискриминант будет больше нуля при любых действительных r . Это значит, что исходное квадратное уравнение будет иметь два корня при любых действительных значениях параметра r .
Теперь посмотрим, когда корни будут иметь разные знаки. Это возможно в том случае, если их произведение будет отрицательным. Согласно теореме Виета произведение корней приведенного квадратного уравнения равно свободному члену. Значит, правильным решением будут те значения r , при которых свободный член r − 1 отрицателен. Решим линейное неравенство r − 1 0 , получаем r 1 .
Ответ: при r 1 .
Видео:Теорема Виетта для корней приведённого квадратного уравнения.Скачать
Формулы Виета
Существует ряд формул, которые применимы для осуществления действий с корнями и коэффициентами не только квадратных, но также кубических и других видов уравнений. Их называют формулами Виета.
Для алгебраического уравнения степени n вида a 0 · x n + a 1 · x n — 1 + . . . + a n — 1 · x + a n = 0 считается, что уравнение имеет n действительных корней x 1 , x 2 , … , x n , среди которых могут быть совпадающие:
x 1 + x 2 + x 3 + . . . + x n = — a 1 a 0 , x 1 · x 2 + x 1 · x 3 + . . . + x n — 1 · x n = a 2 a 0 , x 1 · x 2 · x 3 + x 1 · x 2 · x 4 + . . . + x n — 2 · x n — 1 · x n = — a 3 a 0 , . . . x 1 · x 2 · x 3 · . . . · x n = ( — 1 ) n · a n a 0
Получить формулы Виета нам помогают:
- теорема о разложении многочлена на линейные множители;
- определение равных многочленов через равенство всех их соответствующих коэффициентов.
Так, многочлен a 0 · x n + a 1 · x n — 1 + . . . + a n — 1 · x + a n и его разложение на линейные множители вида a 0 · ( x — x 1 ) · ( x — x 2 ) · . . . · ( x — x n ) равны.
Если мы раскрываем скобки в последнем произведении и приравниваем соответствующие коэффициенты, то получаем формулы Виета. Приняв n = 2 , мы можем получить формулу Виета для квадратного уравнения: x 1 + x 2 = — a 1 a 0 , x 1 · x 2 = a 2 a 0 .
Формула Виета для кубического уравнения:
x 1 + x 2 + x 3 = — a 1 a 0 , x 1 · x 2 + x 1 · x 3 + x 2 · x 3 = a 2 a 0 , x 1 · x 2 · x 3 = — a 3 a 0
Левая часть записи формул Виета содержит так называемые элементарные симметрические многочлены.
Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать
Теорема Виета для квадратного уравнения
О чем эта статья:
Видео:ТЕОРЕМА ВИЕТА // Как решать Квадратные Уравнения по АЛГЕБРЕ 8 классСкачать
Основные понятия
Квадратное уравнение — это ax 2 + bx + c = 0, где a — первый коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.
Существует три вида квадратных уравнений:
- не имеют корней;
- имеют один корень;
- имеют два различных корня.
Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Формула для его поиска записывается так: D = b 2 − 4ac. Его свойства:
- если D 0, есть два различных корня.
В случае, когда второй коэффициент четный, можно воспользоваться формулой нахождения дискриминанта , где .
В математике теоремой принято называть утверждение, у которого ранее было сформулировано доказательство.
Видео:Алгебра 8 класс (Урок№30 - Решение приведённых квадратных уравнений. Теорема Виета.)Скачать
Формула Виета
Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:
Рассмотрим квадратное уравнение, в котором первый коэффициент равен 1: . Такие уравнения называют приведенными квадратными уравнениями. Сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.
Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:
Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.
Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.
Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:
Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:
Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>
Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>
Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>
Результат проделанных вычислений в том, что мы убедились в справедливости выражения:
Обучение на курсах по математике помогает быстрее разобраться в новых темах и подтянуть оценки в школе.
Видео:САМЫЙ ПРОСТОЙ СПОСОБ ПОНЯТЬ ТЕОРЕМУ ВИЕТА #shorts #математика #егэ #огэ #теорема #теоремавиетаСкачать
Доказательство теоремы Виета
Дано квадратное уравнение x 2 + bx + c = 0. Если его дискриминант больше нуля, то оно имеет два корня, сумма которых равна второму коэффициенту с противоположным знаком, а произведение корней равно свободному члену:
Докажем, что следующие равенства верны
- x₁ + x₂ = −b,
- x₁ * x₂ = c.
X | 1 | 2 | 3 |
Y | 1 | 4 | 9 |
Построим график функции y = x + 2
Линейная функция. Графиком является прямая.
X | 0 | -2 |
Y | 2 | 0 |
Точки пересечения: А(-1;1) и В(2;4)
Применяя графический метод в данном случае мы нашли точное значение корней, но так бывает не всегда. Однако, графический метод часто применяют не для нахождения корней уравнения, а для определения их количества.
Историческая справка
Посмотрите на многообразие методов решения. Как, когда, сразу ли появилось такое многообразие? Как много вопросов…
Безусловно, человечество “додумалось” до всего не сразу и в одночасье. Для этого потребовались долгие годы и даже столетия.
Обратимся к историческому путеводителю.
Первые упоминания о способах решения уравнений, которые мы сейчас называем квадратными относятся во второму тысячелетию до н.э. Это эпоха расцвета Вавилонии и Древнего Египта.
Первое тысячелетие н.э. – Римские завоевательные войны. К этому периоду относится творчество Диофанта. Его трактат “Арифметика” содержит ряд задач, решаемых при помощи квадратных уравнений. В IX веке узбекский математик Аль-Хорезми в Трактате “Алгебра” классифицирует квадратные уравнения. Для нас это время знаковое тем, что приблизительно в это время образуется древнерусское государство Киевская Русь.
Все это время отличные по записи уравнения считались различными. Не было единого подхода к их решению.
И только в XVI веке французский юрист, тайный советник короля Франции и математик Франсуа Виет впервые вводит в обращение буквенные обозначения не только для неизвестных величин, но и для данных, то есть коэффициентов уравнения. Тем самым заложил основы буквенной алгебры.
Более подробно с этапами развития методов решения квадратных уравнений, а так же личностью Виета и его вклада в развитие алгебры мы сможем познакомиться на конференции.
Подведение итогов.
Итак, подведем итог.
Решение квадратных уравнений, возможно, осуществлять разными методами. Для квадратных уравнений применимы не только традиционные и специальные методы решения, но и общие методы решения уравнений.
Сегодня мы обобщили опыт решения квадратных уравнений и посмотрим, как научились выбирать наиболее рациональный метод решения.
Попробуйте расшифровать высказывание из копилки “Золотых мыслей”.
Для этого проанализируйте представленные уравнения, выберите для каждого более рациональный метод решения и укажите номер этого метода. Затем согласно ключу расставьте в нижней таблице слоги и прочтите высказывание.
Итак, получили высказывание Ян Амос Коменского: “Учиться нелегко, но интересно”.
Я думаю, эти слова как нельзя, кстати, подходят для окончания нашей сегодняшней презентации.
Домашнее задание
- Решите уравнение х 2 +6х-16=0 по формуле, выделением квадрата двучлена и графическим методом
- Составьте уравнения на применение теорем (метод 9, 10).
- Решите уравнение 3х 2 +5х+2=0 пятью способами.
- Решите уравнение (х 2 -х) 2 -14(х 2 -х)+24=0 методом введения новой переменной.
📹 Видео
Математика| Разложение квадратного трехчлена на множители.Скачать
Формула корней квадратного уравнения. Алгебра, 8 классСкачать
Алгебра 8. Урок 10 - Теорема Виета и её применение в задачахСкачать
Обратная теорема Виета - ЛЕГКО!Скачать
Теорема, обратная к теореме Виета для решения приведённого (и не только) квадратного уравнения.Скачать
Теорема Виета для многочлена 3 порядка. 10 класс.Скачать
Теорема ВиетаСкачать