//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
- Калькулятор онлайн. Решение системы двух линейных уравнений с двумя переменными. Метод подстановки и сложения.
- Немного теории.
- Решение систем линейных уравнений. Способ подстановки
- Решение систем линейных уравнений способом сложения
- Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)
- Линейные дифференциальные уравнения с постоянными коэффициентами
- Дифференциальные уравнения по-шагам
- Результат
- Примеры дифференциальных уравнений
- Правила ввода
- 🌟 Видео
Видео:Решение системы дифференциальных уравнений методом ЭйлераСкачать
Калькулятор онлайн.
Решение системы двух линейных уравнений с двумя переменными.
Метод подстановки и сложения.
С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.
Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.
При вводе уравнений можно использовать скобки. При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2
В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.
Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55
Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p — 2&1/8q)
Решить систему уравнений
Видео:15. Однородная система линейных уравнений / фундаментальная система решенийСкачать
Немного теории.
Видео:Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1Скачать
Решение систем линейных уравнений. Способ подстановки
Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.
Пример. Решим систему уравнений:
$$ left< begin 3x+y=7 \ -5x+2y=3 end right. $$
Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ left< begin y = 7—3x \ -5x+2(7-3x)=3 end right. $$
Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 Rightarrow -5x+14-6x=3 Rightarrow -11x=-11 Rightarrow x=1 $$
Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 cdot 1 Rightarrow y=4 $$
Пара (1;4) — решение системы
Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.
Видео:Видеоурок "Системы дифференциальных уравнений"Скачать
Решение систем линейных уравнений способом сложения
Рассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.
Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.
Пример. Решим систему уравнений:
$$ left< begin 2x+3y=-5 \ x-3y=38 end right. $$
В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ left< begin 3x=33 \ x-3y=38 end right. $$
Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение ( x-3y=38 ) получим уравнение с переменной y: ( 11-3y=38 ). Решим это уравнение:
( -3y=27 Rightarrow y=-9 )
Таким образом мы нашли решение системмы уравнений способом сложения: ( x=11; y=-9 ) или ( (11; -9) )
Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.
Видео:13. Как решить дифференциальное уравнение первого порядка?Скачать
Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)
Порядок производной указывается штрихами — y»’ или числом после одного штриха — y’5
Ввод распознает различные синонимы функций, как asin , arsin , arcsin
Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)
Список математических функций и констант :
• ln(x) — натуральный логарифм
• sh(x) — гиперболический синус
• ch(x) — гиперболический косинус
• th(x) — гиперболический тангенс
• cth(x) — гиперболический котангенс
• sch(x) — гиперболический секанс
• csch(x) — гиперболический косеканс
• arsh(x) — обратный гиперболический синус
• arch(x) — обратный гиперболический косинус
• arth(x) — обратный гиперболический тангенс
• arcth(x) — обратный гиперболический котангенс
• arsch(x) — обратный гиперболический секанс
• arcsch(x) — обратный гиперболический косеканс
Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать
Линейные дифференциальные уравнения с постоянными коэффициентами
Линейное дифференциальное уравнение (*) назовём уравнением с постоянными коэффициентами, если в этом уравнении коэффициенты постоянны, то есть ai(x)=const. Тогда соответствующее однородное уравнение L(y)=0 будет иметь вид
. (6)
Решение уравнения (6) будем искать в виде y = e rx . Тогда y’ = r·e rx , y» = r 2 ·e rx ,…, y ( n ) = r n ·e rx . Подставляя в (6), получаем
Пример №1 . Для уравнения y»-3y’ + 2y=0 корни характеристического уравнения r 2 — 3r + 2 = 0 равны r1 = 1, r2 = 2 (корни были найдены через сервис нахождения дискриминанта). Следовательно, фундаментальную систему решений составляют функции y1 = e x , y2 = e 2 x , а общее решение записывается в виде y = C1e x + C2e 2 x .
2. Среди корней характеристического уравнения есть кратные. Предположим, что r1 имеет кратность α, а все остальные различны. Рассмотрим вначале случай r1 = 0. Тогда характеристическое уравнение имеет вид:
an(x)·r n +an-1(x)·r n-1 + . + an-α(x)·r α =0
так как в противном случае r не являлось бы корнем кратности α. Следовательно, дифференциальное уравнение имеет вид:
an(x)·y (n) +an-1(x)·y (n-1) + . + an-α(x)·y α =0
то есть не содержит производных порядка ниже α. Этому уравнению удовлетворяют все функции, у которых производные порядка α и выше равны нулю. В частности, таковыми являются все полиномы степени не выше α-1, например,
1, x, x 2 , …, x α-1 . (9)
Покажем, что данная система линейно независима. Составив определитель Вронского этой системы функций, получим
Пример №2 . Для уравнения y»’-4y»+4y’ = 0 характеристическое уравнение r 3 -4r 2 + 4r = 0 имеет корни r=0 кратности 1 и r=2 кратности 2, так как r 3 -4r 2 + 4r = r(r-2) 2 , поэтому фундаментальной системой решений исходного уравнения является система функций y1 = 1, y2 = e 2 x , y3 = xe 2 x , а общее решение имеет вид y = C1 + C2e 2 x + C3xe 2 x .
3. Среди корней характеристического уравнения есть комплексные корни. Можно рассматривать комплексные решения, но для уравнений с действительными коэффициентами это не очень удобно. Найдём действительные решения, соответствующие комплексным корням. Так как мы рассматриваем уравнение с действительными коэффициентами, то для каждого комплексного корня rj = a+bi кратности α характеристического уравнения комплексно сопряжённое ему число rk = a-bi также является корнем кратности α этого уравнения. Соответствующими этим корням парами решений являются функции yj l =x l ·e (a+b·i)x и yk l =x l ·e (a-b·i)x , l=0,1. α-1. Вместо этих решений рассмотрим их линейные комбинации
Видео:4. Однородные дифференциальные уравнения (часть 1)Скачать
Дифференциальные уравнения по-шагам
Видео:Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать
Результат
Примеры дифференциальных уравнений
- Простейшие дифференциальные ур-ния 1-порядка
- Дифференциальные ур-ния с разделяющимися переменными
- Линейные неоднородные дифференциальные ур-ния 1-го порядка
- Линейные однородные дифференциальные ур-ния 2-го порядка
- Уравнения в полных дифференциалах
- Решение дифференциального уравнения заменой
- Смена y(x) на x в уравнении
- Другие
Указанные выше примеры содержат также:
- квадратные корни sqrt(x),
кубические корни cbrt(x) - тригонометрические функции:
синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x) - показательные функции и экспоненты exp(x)
- обратные тригонометрические функции:
арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x) - натуральные логарифмы ln(x),
десятичные логарифмы log(x) - гиперболические функции:
гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x) - обратные гиперболические функции:
asinh(x), acosh(x), atanh(x), actanh(x) - число Пи pi
- комплексное число i
Правила ввода
Можно делать следующие операции
2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5
Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:
🌟 Видео
Решение дифференциальных уравнений. Практическая часть. 11 класс.Скачать
ЛОДУ 2 порядка c постоянными коэффициентамиСкачать
Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать
Линейные однородные дифференциальные уравнения n-го порядка с постоянными коэффициентамСкачать
Решение дифференциальных уравнений. Практическая часть. 11 класс.Скачать
Дифференциальные уравнения, 8 урок, Линейные дифференциальные уравнения с const коэф-ами 2 порядкаСкачать
Решение дифференциальных уравнений. Практическая часть. 11 класс.Скачать
16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентамиСкачать