Инструкция . Для решения подобных задач в онлайн режиме заполните координаты вершин, нажмите Далее . см. также по координатам треугольника найти.
- Решение онлайн
- Видеоинструкция
- Оформление Word
Пример №1 . В пирамиде SABC : треугольник ABC – основание пирамиды, точка S – ее вершина. Даны координаты точек A, B, C, S . Сделать чертеж.
Решение: Координаты векторов находим по формуле: X = x2 – x1; Y = y2 – y1; Z = z2 – z1
Так, для вектора AB, это будут координаты: X = 0-2; Y = 3-0; Z = 0-0, или AB(-2;3;0).
AC(-2;0;1); AD(-2;2;3); BC(0;-3;1); BD(0;-1;3); CD(0;2;2) .
Длину вектора находим по формуле:
Пример №2 . В тетраэдре ABCD вычислить:
- объем тетраэдра ABCD;
- высоту тетраэдра, опущенную из вершины D на грань ABC.
A(2, 3, -2), B(3, 1, 0), C(-2, 2, 1), D(6, 1, -1)
Видео:Уравнения стороны треугольника и медианыСкачать
Ответ
Проверено экспертом
Даны вершины пирамиды A(3;-2;3)B(-1;0;2)C(-3;1;-1)D(-3;-3;1) .
Находим векторы АВ, АС и АД.
Вектор АВ = (-4; 2; -1 ), модуль равен √(16+4+1) = √21 ≈ 4,58258.
Определяем векторное произведение АВ х АС.
-6 3 -4 | -6 3 = -8i + 6j – 12k – 16j + 3i + 12k = -5i – 10j = (-5; -10; 0).
Далее находим смешанное произведение (АВ х АС) х АД.
(АВ х АС) = (-5; -10; 0),
(АВ х АС) х АД = 30 + 10 + 0 = 40.
Объем пирамиды равен (1/6) этого произведения:
V = (1/6)*40 = (20/3) куб.ед.
Высота h пирамиды ABCD, опущенная из вершины D на плоскость основания ABC, равна: h = 3V/S(ABC).
Площадь основания АВС равна половине модуля векторного произведения АВ х АС.
S(ABC) = (1/2)*√((-5)² + (-10)² + 0²) = (1/2)√(25 + 100) = (5/2)√5 кв.ед.
h = (3*20/3)/((5/2)√5) = 8/√5 = 8√5/5 ≈ 3,5777.
1) чертёж пирамиды по координатам её вершин;
2) длины и уравнения рёбер, медиан, апофем, высот;
3) площади и уравнения граней;
4) система линейных неравенств, определяющих пирамиду;
5) основания и точка пересечения медиан (центроид);
6) уравнения плоскостей, проходящих через вершины параллельно противолежащим граням;
7) объём пирамиды;
8) основания, площади и уравнения биссекторов;
9) углы между рёбрами, между рёбрами и гранями, двугранные (внутренние между гранями), телесные;
10) параметры и уравнения вписанной и описанной сфер;
Внимание! Этот сервис может не работать в браузере Internet Explorer.
Запишите координаты вершин пирамиды и нажмите кнопку.
C ( ; ; ), D ( ; ; )
Примечание: дробные числа записывайте
через точку, а не запятую.
Видео:Вычисляем высоту через координаты вершин 1Скачать
Длина и уравнение высоты опущенной из вершины d на плоскость abc
Внимание! Если вы делали заказ после 19.08.2021, вход в новый Личный кабинет — тут
Неправильный логин или пароль.
Укажите электронный адрес и пароль.
Пожалуйста, укажите электронный адрес или номер телефона, который вы использовали при регистрации. Вам будет отправлено письмо со ссылкой на форму изменения пароля или SMS сообщение с новым паролем.
Инструкция по изменению пароля отправлена на почту.
Чтобы зарегистрироваться, укажите ваш email и пароль
Нажимая кнопку «Зарегистрироваться» вы даете согласие на обработку персональных данных в соответствии с политикой конфеденциальности.
Видео:Даны вершины пирамиды A, B, C, D. Найдите объём пирамиды и высоту, опущенную на грань ACDСкачать
Длина и уравнение высоты опущенной из вершины d на плоскость abc
Даны координаты вершин пирамиды ABCD:
A(6;2;3); B(6;5;6); C(3;6;7); D(4;2;2).
Найти: 1) |AB|.
Вектор АВ= = (0; 3; 3).
Длина ребра АВ = √(0² + 3² + 3²) = √18 ≈ 4,242640687.
Скалярное произведение векторов АВ и АС равно:
a · b = ax · bx + ay · by + az · bz = 0 · (-3) + 3 · 4 + 3 · 4 = 0 + 12 + 12 = 24.
3) Проекция вектора AB на AC;
Решение: Пр ba = ( a · b)/ |b|.
Скалярное произведение векторов уже найдено и равно 24.
Найдем модуль вектора:
|b| = √(bx² + by ² + bz ²) = √((-3)² + 4² + 4²) = √(9 + 16 + 16) = √41.
Пр ba = 24/ √41 = 24√41/ 41 ≈ 3,7481703.
4) площадь грани ABC.
S = (1/2)*|AB|*|AC|*sin α = (1/2)*|AB|*|AC|*√(1 — cos²α) .
Найдем угол между ребрами AB(0;3;3) и AC(-3;4;4):
cos α = (0*(-3)+3*4+3*4)/(√18*√41) = 24/√738 = 4√82/41 ≈ 0,883452.
sin α = √(1 — 0,883452 ²) = 0,468521.
S(ABC) = (1/2)* √18*√41*0,468521 = 6,363961.
5) уравнение грани ABC.
Если точки A1(x1; y1; z1), A2(x2; y2; z2), A3(x3; y3; z3) не лежат на одной прямой, то проходящая через них плоскость представляется уравнением:
x-x1 y-y1 z-z1 x2-x1 y2-y1 z2-z1 x3-x1 y3-y1 z3-z1 = 0.
Уравнение плоскости ABC
x-6 y-2 z-3 0 3 3 -3 4 4 = 0. (x-6)(3*4-4*3) — (y-2)(0*4-(-3)*3) + (z-3)(0*4-(-3)*3) = — 9y + 9z-9 = 0.
Упростим выражение: — y + z — 1 = 0.
6) уравнение ребра AD.
Уравнение прямой AD(-2,0,-1)
AD: (x — 6)/(-2) = (y — 2)/0 = (z — 3)/(-1).
Параметрическое уравнение прямой:
x=6-2t
y=2+0t
z=3-t.
7) угол между ребром AD и гранью ABC.
Синус угла γ между прямой с направляющими коэффициентами (l; m; n) и плоскостью с нормальным вектором N(A; B; C) можно найти по формуле:
sin γ = |Al+Bm+Cn|/(√A²+B²+C²)*√(l²+m²+n²).
Уравнение плоскости ABC: — y + z-1 = 0
Уравнение прямой AD получено выше.
sin γ = |0*(-2)+(-1)*0+1*(-1)|/(√0²+1²+1²)*√(2²+0²+1²) = 1/(√2*√5) =
= 1/√10 ≈ 0,316228.
γ = arc sin 0,316228 = 0,321751 радиан = 18,43495 °.
8) смешанное произведение (AB, AC, AD) и V — объём пирамиды ABCD.
Произведение векторов a × b = .
Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен:
|X1 Y1 Z1|
V = (1/6) |X2 Y2 Z2|
|X3 Y3 Z3|
| 0 3 3|
V = (1/6) |-3 4 4| = 9/6 = 1,5.
|-2 0 -1|
где определитель матрицы равен:
∆ = 0*(4*(-1)-0*4)-(-3)*(3*(-1)-0*3)+(-2)*(3*4-4*3) = -9.
9) уравнение высоты,опущенной из вершины D на грань ABC и
ее длину.
Для вычисления расстояния от точки M(4, 2, 2) до плоскости — y +z -1 = 0 используем формулу:
d = |A·Mx + B·My + C·Mz + D|/√(A² + B² + C²)
Подставим в формулу данныеd = |0·4 + (-1)·2 + 1·2 + (-1)|/√((0² + (-1)² + 1²) =
= |0 — 2 + 2 — 1| /√(0² + (-1)² + 1²) = 1/√2 ≈ 0.70710678.
10) уравнение плоскости, проходящей через точку D параллельно грани ABC.
Плоскость, проходящая через точку M0(x0;y0;z0) и параллельная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется уравнением:
A(x-x0) + B(y-y0) + C(z-z0) = 0
Уравнение плоскости ABC: — y + z-1 = 0
0(x-4)-1(y-2)+1(z-2) = 0
или
0x-y+z+0 = 0.
Видео:№933. Найдите координаты вершины D параллелограмма ABCD, если А (0; 0), B (5; 0), С (12; -3.).Скачать
Онлайн решение Пирамиды по координатам вершин
1) чертёж пирамиды по координатам её вершин;
2) длины и уравнения рёбер, медиан, апофем, высот;
3) площади и уравнения граней;
4) система линейных неравенств, определяющих пирамиду;
5) основания и точка пересечения медиан (центроид);
6) уравнения плоскостей, проходящих через вершины параллельно противолежащим граням;
7) объём пирамиды;
8) основания, площади и уравнения биссекторов;
9) углы между рёбрами, между рёбрами и гранями, двугранные (внутренние между гранями), телесные;
10) параметры и уравнения вписанной и описанной сфер;
Внимание! Этот сервис может не работать в браузере Internet Explorer.
Запишите координаты вершин пирамиды и нажмите кнопку.
A ( ; ; ), B ( ; ; ), C ( ; ; ), D ( ; ; ) | Примечание: дробные числа записывайте Округлять до -го знака после запятой. 💥 ВидеоНайдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать Математика без Ху!ни. Уравнение плоскости.Скачать №973. Даны координаты вершин треугольника ABC: А (4; 6), В (-4; 0), С (-1; -4). Напишите уравнениеСкачать Задача 6. Вычислить объём тетраэдра с вершинами в точках и его высоту, опущенную из вершины на граньСкачать Математика без Ху!ни. Смешанное произведение векторовСкачать Основное уравнение динамики вращательного движения. 10 класс.Скачать Определение кратчайшей расстоянии от точки до плоскостиСкачать Лекция 25. Виды уравнений плоскости в пространстве.Скачать Вычисление медианы, высоты и угла по координатам вершинСкачать Аналитическая геометрия, 1 урок, Векторы в пространствеСкачать Уравнение прямой и треугольник. Задача про высотуСкачать Аналитическая геометрия, 5 урок, Уравнение плоскостиСкачать Стереометрия 10 класс. Часть 1 | МатематикаСкачать Уравнения прямой на плоскости | Векторная алгебраСкачать Аналитическая геометрия на плоскости. Решение задачСкачать №942. Найдите медиану AM треугольника ABC, вершины которого имеют координаты: А(0; 1), В(1; -4)Скачать |