Дифференциальные уравнения в прикладных задачах

III. Задачи на составление дифференциальных уравнений

Методика составления и решения прикладных задач теории обыкновенных дифференциальных уравнений

Составление дифференциального уравнения по условию за­дачи (механической, физической, химической или технической) состоит в определении математической зависимости между пе­ременными величинами и их приращениями.

В ряде случаев дифференциальное уравнение получается без рассмотрения приращений — за счет их предварительного учета. Например, представляя скорость выражением Дифференциальные уравнения в прикладных задачах, мы не привлекаем приращений ∆s и ∆t, хотя они фактически учтены в силу того, что

Дифференциальные уравнения в прикладных задачах.

Ускорение в какой-нибудь момент времени t выражается зависимостью:

Дифференциальные уравнения в прикладных задачах.

При составлении дифференциальных уравнений приращения сразу же заменяются соответствующими дифференциалами. Изучение любого процесса сводится:

1) к определению его отдельных моментов;

2) к установлению общего закона его хода.

Отдельный момент процесса (т. н. элементарный процесс) выражается уравнением, связывающим переменные величины процесса с их дифференциалами или производными — диффе­ренциальным уравнением; закон общего хода процесса выра­жается уравнением, связывающим переменные величины про­цесса, но уже без дифференциалов этих величии.

Исчерпывающих правил для составления дифференциальных уравнений нет. В большинстве случаев методика решения техни­ческих задач с применением теории обыкновенных дифферен­циальных уравнений сводится к следующему:

1.Подробный разбор условий задачи и составление чертежа, поясняющего ее суть.

2.Составление дифференциального уравнения рассматривае­мого процесса.

3.Интегрирование составленного дифференциального уравне­ния и определение общего решения этого уравнения.

4.Определение частного решения задачи на основании дан­ных начальных условий.

5.Определение, по мере необходимости, вспомогательных пара­
метров (например, коэффициента пропорциональности и др.),
используя для этой цели дополнительные условия задачи.

6. Вывод общего закона рассматриваемого процесса и число­
вое определение искомых величии.

7. Анализ ответа и проверка исходного положения задачи.
Некоторые из этих рекомендаций в зависимости от характера
задачи могут отсутствовать.

Как и при составлении алгебраических уравнений, при реше­нии прикладных задач по дифференциальным уравнениям многое зависит от навыков, приобретаемых упражнением. Однако здесь еще в большей степени требуется изобретательность и глубокое понимание сути изучаемых процессов.

Рассмотрим процесс решения следующих задач:

Температура вынутого из печи хлеба в течение 20 мин. падает от 100 0 до 60 0 (рис. 3.1). Температура воздуха равна 25 0 . Через сколько времени от момента начала охлаждения температура хлеба понизится до 30 0 ?

Дифференциальные уравнения в прикладных задачах

Решение:

В силу закона Ньютона скорость охлаждения тела пропорциональна разности температур тела и окружающей среды. Это – процесс неравномерный. С изменением разности температур в течение процесса меняется также и скорость охлаждения тела. Дифференциальное уравнение охлаждения хлеба будет:

Дифференциальные уравнения в прикладных задачах.

где Т – температура хлеба;

t – температура окружающего воздуха ( в нашем случае 25 0 );

k – коэффициент пропорциональности;

Дифференциальные уравнения в прикладных задачах— скорость охлаждения хлеба.

Пусть Дифференциальные уравнения в прикладных задачах— время охлаждения.

Тогда, разделяя переменные, получим:

Дифференциальные уравнения в прикладных задачах,

Видео:Решение физических задач с помощью дифференциальных уравнений. Часть 2Скачать

Решение  физических задач с помощью дифференциальных уравнений. Часть 2

или для условий данной задачи :

Дифференциальные уравнения в прикладных задачах.

Дифференциальные уравнения в прикладных задачах

Дифференциальные уравнения в прикладных задачах

Дифференциальные уравнения в прикладных задачах

Потенцируя обе части последнего равенства, имеем:

Дифференциальные уравнения в прикладных задачах

Дифференциальные уравнения в прикладных задачах,

Дифференциальные уравнения в прикладных задачах. (1)

Произвольную постоянную С определяем, исходя из начального условия: при Дифференциальные уравнения в прикладных задачахмин, Т=100 о .

Дифференциальные уравнения в прикладных задачахили С=75.

Величину Дифференциальные уравнения в прикладных задачахопределяем, исходя из данного дополнительного условия: при Дифференциальные уравнения в прикладных задачахмин, Т=60 о .

Дифференциальные уравнения в прикладных задачах

и Дифференциальные уравнения в прикладных задачах.

Таким образом, уравнение охлаждения хлеба при условиях нашей задачи примет вид:

Дифференциальные уравнения в прикладных задачах. (2)

Из уравнения (2) легко определяем искомое время Дифференциальные уравнения в прикладных задачахпри температуре хлеба Т=30 о :

Дифференциальные уравнения в прикладных задачах, илиДифференциальные уравнения в прикладных задачах.

Дифференциальные уравнения в прикладных задачахмин.

Итак, после 1 часа 11 мин. Хлеб охлаждается до температуры 30 о С.

Задача 3.2. Трубопровод тепловой магистрали (диаметр 20 см) защищен изоляцией толщиной 10 см; величина коэффициента теплопроводности k=1,00017. Температура трубы 160о; температура внешнего покрова 30о (рис.8). Найти распределение температуры внутри изоляции, а также количество теплоты, отдаваемого одним погонным метром трубы.

Решение. Если тело находится в стационарном тепловом состоянии и температура Т в каждой его точке есть функция только одной координаты х, то согласно закону теплопроводности Фурье количество теплоты, испускаемое в секунду:

Дифференциальные уравнения в прикладных задачах, (1)

где F(x)- площадь сечения тела на расстоянии х,

k – коэффициент теплопроводности.

Здесь Дифференциальные уравнения в прикладных задачах(2)

Дифференциальные уравнения в прикладных задачах

где l – длина трубы в см,

х – радиус трубопровода в см.

Таким образом, после разделения переменных дифференциальное уравнение примет вид:

Дифференциальные уравнения в прикладных задачах(3)

Интегрируя обе части равенства (3), находим:

Дифференциальные уравнения в прикладных задачах

или Дифференциальные уравнения в прикладных задачах(4)

Разделив почленно уравнения второе на первое, получим:

Дифференциальные уравнения в прикладных задачах.

Отсюда закон распределения температуры внутри изоляции:

Дифференциальные уравнения в прикладных задачах.

Из первого уравнения системы(4) при Дифференциальные уравнения в прикладных задачах=100 см имеем:

Дифференциальные уравнения в прикладных задачах

Количество теплоты, отдаваемое в течение суток, равно

Дифференциальные уравнения в прикладных задачахкал.

Занятие по математике (2 курс) Решение задач прикладного характера на составление дифференциальных уравнений

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Решение задач прикладного характера на составление дифференциальных уравнений.

Преподаватель математики Елена Геннадьевна Шерстнева

ЗАНЯТИЕ ПО МАТЕМАТИКЕ ( 2 КУРС)

Решение задач прикладного характера на составление дифференциальных уравнений .

Вид занятия: Применение знаний, умений и навыков полученных при изучении дифференциальных уравнений.

Учебные: показать алгоритм решения задач на составление дифференциальных уравнений, познакомить с математическими моделями в физике, биологии, экономике. Учащиеся должны понимать сущность приложения математики к решению технических задач, которая заключается в том, что задачу переводят на язык математики, решают ее, как принято в математике, и интерпретируют на языке исходных данных.

Воспитательные. Формировать научное мировоззрение. Продолжить знакомить учащихся с понятием математического моделирования, рассказать о том, что одними и теми же дифференциальными уравнениями можно описывать совершенно разные реальные процессы, например электротехнические, механические и другие, т.е. дифференциальные уравнения как математические модели обладают большой общностью и в этом их важное философское и познавательное значение.

Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.

Межпредметные связи. Рассматриваемые на занятии математические модели в физике, биологии, экономике помогут увидеть силу межпредметных связей, важную роль математики, дающей мощный аппарат для решения многих задач, которые выдвигаются и успешно решаются в различных областях науки и практики.

Мотивация познавательной деятельности учащихся. Показать практическую значимость изучаемого материала, его широкое применение в общетехнических и специальных дисциплинах. Многие производственные процессы описываются дифференциальными уравнениями. Поэтому важно не только уметь решать сами дифференциальные уравнения, но и уметь составлять эти уравнения исходя из практической потребности.

Основные знания и умения: иметь понятие о решении несложных задач на составление дифференциальных уравнений по физике, электротехнике, экономике.

Раздаточный материал: Опорный конспект с планом занятия и набором задач для решения.

Технические средства обучения: использование фрагментов из компьютерной программы обучения «Функции и графики», компьютерная презентация конструкторской задачи.

Литература: 1. Валуцэ И.И. Математика для техникумов

2. Соловейчик И.Л. Сборник задач по математике для техникумов

3. Баврин И.И. Начала анализа и математические модели в естествознании и

4. Филимонова Е.В. Математика (среднее профессиональное образование).

Вопросы и упражнения для выполнения на занятии

Какое уравнение называется дифференциальным?

Назовите виды дифференциальных уравнений.

Решите уравнение: dx = (1+ x ) dy . Найти уравнение интегральной кривой, проходящей через точку (1; 4). Задача Коши.

Скорость размножения некоторых бактерий пропорциональна их количеству М в рассматриваемый момент времени t . Найти зависимость количества бактерий от времени. Начальные условия М Дифференциальные уравнения в прикладных задачах при t =0

Скорость распада радия пропорциональна его начальному количеству R в данный момент времени t . Найти закон радиоактивного распада. Начальные условия R = R 0 при t =0.

Скорость изменения количества населения прямо пропорциональна этому количеству А на данный период времени. Построить математическую модель прироста (убыли) населения. Начальные условия А = А при t =0.

Решить уравнение: ху+ у = х Дифференциальные уравнения в прикладных задачах(х ≠ 0).

Инженерно-конструкторская задача. Найти форму автомобильной фары так, чтобы все лучи от зеркала фары шли цилиндрическим световым пучком.

Задача «Истощение ресурсов» В 1980 году для обеспечения пищей одного человека требовалась площадь 0,1 га и на земном шаре было 4000 млн га пахотной земли. Предположим, что с 1980 г эти условия по настоящее время не изменились и не изменятся в будущем, а также не появились и не появятся новые источники пищи. Тогда население Земли должно быть ограничено количеством 40 000 млн человек. Когда будет достигнут этот предел насыщения, если в 1980 году оно составляло 3600 млн человек и непрерывно растет со скоростью 1,7 % в год.

Дополнительные задачи: Скорость прямолинейного движения точки выражается формулой V = 3 + 4 t . Найдите уравнение движения точки, если S = 10 м при t =1 c

Подумайте, какая функция может являться решением уравнения: у » = — k 2 у (уравнение гармонических колебаний). Вторая производная функции равна самой функции с точностью до постоянного множителя.

Запишите домашнее задание №10, 107 учебник И.И. Валуцэ стр.351

«Скорость обесценивания оборудования вследствие его износа в данный момент времени пропорциональна его фактической стоимости ……»

Подведение итогов урока

Математическая модель, основанная на некотором упрощении, никогда не бывает тождественна рассматриваемому объекту, не передает всех его свойств и особенностей, а является его приближенным отражением. Однако, благодаря замене реального объекта соответствующей ему моделью появляется возможность математически сформулировать задачу его изучения и воспользоваться для анализа его свойств математическим аппаратом, который не зависит от конкретной природы данного объекта. Этот аппарат позволяет единообразно описать широкий круг фактов и наблюдений, провести их детальный количественный анализ, предсказать, как поведет себя объект в различных условиях, т.е. прогнозировать результаты будущих наблюдений.

В 1917 году Эйнштейн сделал первую попытку применить общую теорию относительности для описания пространственно временной структуры Вселенной. А основные уравнения теории относительности – это дифференциальные уравнения, имеющие множество решений. Отсюда множество моделей Вселенной.

Дифференциальные уравнения показательного роста (убывания).

Дифференциальные уравнения имеют большое прикладное значение, являясь мощным орудием исследования задач естествознания и техники, они широко используются в механике, астрономии, физике, во многих задачах химии, биологии. Это объясняется тем, что весьма часто объективные законы, которым подчиняются те или иные явления (процессы), записываются в форме дифференциальных уравнений, а сами эти уравнения являются средством для количественного выражения этих законов. Например, законы механики Ньютона позволяют механическую задачу описания движения системы материальных точек или твердого тела свести к математической задаче нахождения решений дифференциальных уравнений. Расчет радиотехнических схем и вычисление траектории спутников, исследование устойчивости самолета в полете и выяснение течения химических реакций – все это производится путем изучения и решения дифференциальных уравнений.

Видео:Решение физических задач с помощью дифференциальных уравненийСкачать

Решение  физических задач с помощью дифференциальных уравнений

Мы будем рассматривать дифференциальное уравнение вида:

где kconst , причем k может быть : k > 0 или k

Зная формулу производной показательной функции, легко догадаться, что решением этого уравнения, является любая функция вида:

т.к. C – произвольная постоянная, то уравнение имеет бесконечно много решений.

Смысл дифференциального уравнения заключается в том, что скорость изменения функции в точке x пропорциональна значению самой функции в этой точке .

Приведем примеры, в которых величины изменяются по указанному закону .

Если r ‘ ( t ) скорость радиоактивного распада в момент времени t, то скорость уменьшения массы пропорциональна его количеству.

Значит, решением уравнения, является функция r ‘ ( t ) = С e kt . Найдем из условия, что в начальный момент времени масса радиоактивного вещества была равна:

Промежуток времени T , через который масса радиоактивного вещества уменьшится в 2 раза называют “периодом полураспада”, зная Т , можно найти k :

Дифференциальные уравнения в прикладных задачахДифференциальные уравнения в прикладных задачах

Дифференциальные уравнения в прикладных задачах

Дифференциальные уравнения в прикладных задачах

Логарифмируя по основанию е , получаем — k T = – ln 2 ,

Дифференциальные уравнения в прикладных задачах

Например, для радия период полураспада Дифференциальные уравнения в прикладных задачах. Поэтому, Дифференциальные уравнения в прикладных задачах, следовательно, через 1 млн. лет от начальной массы r o останется.

Дифференциальные уравнения в прикладных задачах

Задача: Скорость размножения бактерий m (t) связана с массой m(t) бактерий в момент времени t уравнением:

где k > 0, зависящее от вида бактерий и внешних условий.

Решениями этого уравнения являются функции m ( t ) = C · e kt .

Постоянную C можно найти из условия, что в момент t = 0 масса m o бактерий известна, тогда

Задача. Два тела имеют одинаковую температуру – 100 0 . Они вынесены на воздух, его температура 0 0 . Через 10 мин. температура одного тела стала 80 0 , а второго – 64 0 . Через сколько минут после начала остывания разность их температур будет равна 25 0 .

Значит, 80 0 = 100 0 · e -10 k , e -10 k = 0,8

-10 k = ln 0,8, Дифференциальные уравнения в прикладных задачах

2) 64 0 = 100 0 · 100 0 · e -10 k , тогда e -10 k = 0,64, следовательно -10 k = ln 0,64, Дифференциальные уравнения в прикладных задачах

Следовательно Дифференциальные уравнения в прикладных задачах

Ответ: t = 31,06 мин .

Задача. Задача о гармонических колебаниях.

В практике часто встречаются процессы, которые периодически повторяются например, колебательные движения маятника, струны, пружины, процессы связанные с переменным электрическим током, магнитным полем и т.д. Решение многих таких задач сводится к решению дифференциальных уравнений

где k – заданное положительное число

Инженерно-конструкторская задача. Найти форму автомобильной фары так, чтобы все лучи от зеркала фары шли цилиндрическим световым пучком. (Демонстрация презентации).

1. Дифференциальные уравнения в прикладных задачах

2. Дифференциальные уравнения в прикладных задачах

3. Дифференциальные уравнения в прикладных задачах

4. Дифференциальные уравнения в прикладных задачах

5. Дифференциальные уравнения в прикладных задачах

Решаем квадратное уравнение относительно y’:

Дифференциальные уравнения в прикладных задачах

Дифференциальные уравнения в прикладных задачахследовательно Дифференциальные уравнения в прикладных задачахДифференциальные уравнения в прикладных задачах

Решим это уравнение, взяв + Дифференциальные уравнения в прикладных задачах Дифференциальные уравнения в прикладных задачахДифференциальные уравнения в прикладных задачах, заменяем Дифференциальные уравнения в прикладных задачахна Дифференциальные уравнения в прикладных задачахполучаем

Дифференциальные уравнения в прикладных задачах Дифференциальные уравнения в прикладных задачах,умножаем обе части на dx , отсюда Дифференциальные уравнения в прикладных задачах Дифференциальные уравнения в прикладных задачахэто однородное уравнение.

Сделаем замену y = z x и продифференцируем ее по x, получим dy = x dz + z dx , подставляем Дифференциальные уравнения в прикладных задачах

Обе части делим на x получаем Дифференциальные уравнения в прикладных задачах, раскрываем скобки и приводим подобные Дифференциальные уравнения в прикладных задачах, разделяем переменные Дифференциальные уравнения в прикладных задачах, интегрируем Дифференциальные уравнения в прикладных задачах, решением будет функция Дифференциальные уравнения в прикладных задачахдалее Дифференциальные уравнения в прикладных задачах, т.к Дифференциальные уравнения в прикладных задачах, то Дифференциальные уравнения в прикладных задачахраскрываем скобки Дифференциальные уравнения в прикладных задачахв итоге получаем Дифференциальные уравнения в прикладных задачах— это каноническое уравнение параболы с вершиной (Дифференциальные уравнения в прикладных задачах; 0) и фокусом в точке (0;0).

Задача «Истощение ресурсов» В 1980 году для обеспечения пищей одного человека требовалась площадь 0,1 га и на земном шаре было 4000 млн га пахотной земли. Предположим, что с 1980 г эти условия по настоящее время не изменились и не изменятся в будущем, а так же не появились и не появятся новые источники пищи. Тогда население Земли должно быть ограничено количеством 40 000 млн человек. Когда будет достигнут этот предел насыщения, если в 1980 году оно составляло 3600 млн человек и непрерывно растет со скоростью 1,7 % в год.

Решение. А = А0 e к t

А0 = 3,6 · 10 9 , А = 40 · 10 9 , k = 0,017

40 · 10 9 = 3,6 · 10 9 · e 0,017t , t = (2 ln 10/3) /0,017 ≈ 142 г.

Видео:Откуда появляются дифференциальные уравнения и как их решатьСкачать

Откуда появляются дифференциальные уравнения и как их решать

Ответ: В 2122 году наступит предел насыщения

Беседа о бережном отношении к природе и ее богатствам.

💡 Видео

Урок 323. Применение производной в задачах физики - 1Скачать

Урок 323. Применение производной в задачах физики - 1

Решение физических задач при помощи диффуров | Дифференциальные уравненияСкачать

Решение физических задач при помощи диффуров | Дифференциальные уравнения

2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.Скачать

2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.

Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать

Задача Коши ➜ Частное решение линейного однородного дифференциального уравнения

Дифференциальные уравнения в решениях физических задач БЕЗ ДЯДИ КОЛИ (100)Скачать

Дифференциальные уравнения в решениях физических задач БЕЗ ДЯДИ КОЛИ (100)

Операторный метод решения дифференциальных уравнений | Решение задачСкачать

Операторный метод решения дифференциальных уравнений | Решение задач

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами

Дифференциальные уравнения, 8 урок, Линейные дифференциальные уравнения с const коэф-ами 2 порядкаСкачать

Дифференциальные уравнения, 8 урок, Линейные дифференциальные уравнения с const коэф-ами 2 порядка

14. Дифференциальные уравнения второго порядка, допускающие понижение порядкаСкачать

14. Дифференциальные уравнения второго порядка, допускающие понижение порядка

Решение дифференциальных уравнений. Практическая часть. 11 класс.Скачать

Решение дифференциальных уравнений. Практическая часть. 11 класс.

Линейное неоднородное дифференциальное уравнение 2 способаСкачать

Линейное неоднородное дифференциальное уравнение 2 способа

Операционное исчисление. Решить неоднородное дифференциальное уравнение 2 порядкаСкачать

Операционное исчисление. Решить неоднородное дифференциальное уравнение 2 порядка
Поделиться или сохранить к себе: