Дифференциальные уравнения с синусом и косинусом как решать

Линейные дифференциальные уравнения с постоянными коэффициентами. Специальная часть cos(x),sin(x)

y» +4y’ — 12y = 8sin(2x)

Решение уравнения будем искать в виде y = e rx находим с помощью калькулятора. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами:
r 2 +4 r — 12 = 0
D = 4 2 — 4 • 1 • (-12) = 64
Дифференциальные уравнения с синусом и косинусом как решать
Дифференциальные уравнения с синусом и косинусом как решать
Корни характеристического уравнения:
r1 = 2
r2 = -6
Следовательно, фундаментальную систему решений составляют функции:
Дифференциальные уравнения с синусом и косинусом как решать
Дифференциальные уравнения с синусом и косинусом как решать
Общее решение однородного уравнения имеет вид:
Дифференциальные уравнения с синусом и косинусом как решать
Рассмотрим правую часть:
f(x) = 8•sin(2•x)
Поиск частного решения.
Линейное дифференциальное уравнение с постоянными коэффициентами и правой частью вида:
R(x) = e αx (P(x)cos(βx) + Q(x)sin(βx)), где P(x), Q(x) — некоторые полиномы
имеет частное решение
y(x) = x k e αx (R(x)cos(βx) + S(x)sin(βx))
где k — кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) — полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).
Здесь P(x) = 0, Q(x) = 8, α = 0, β = 2.
Следовательно, число α + βi = 0 + 2i не является корнем характеристического уравнения .
Уравнение имеет частное решение вида:
y * = Acos(2x) + Bsin(2x)
Вычисляем производные:
y’ = 2•B•cos(2x)-2•A•sin(2x)
y» = -4(A•cos(2x)+B•sin(2x))
которые подставляем в исходное дифференциальное уравнение:
y» + 4y’ -12y = (-4(A•cos(2x)+B•sin(2x))) + 4(2•B•cos(2x)-2•A•sin(2x)) -12(Acos(2x) + Bsin(2x)) = 8•sin(2•x)
или
-8•A•sin(2x)-16•A•cos(2x)-16•B•sin(2x)+8•B•cos(2x) = 8•sin(2•x)
Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:
-8A -16B = 8
-16A + 8B = 0
Решая ее, методом Гаусса находим:
A = -1 /5;B = -2 /5;
Частное решение имеет вид:
y * = — 1 /5cos(2x) — 2 /5sin(2x)
Таким образом, общее решение дифференциального уравнения имеет вид:
Дифференциальные уравнения с синусом и косинусом как решать

Пример 2.
4y’’ -8y’ + 5y = 5cos(x)
Решение уравнения будем искать в виде y = e rx . Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами:
4 r 2 -8 r + 5 = 0
D = (-8) 2 — 4 • 4 • 5 = -16
Дифференциальные уравнения с синусом и косинусом как решать
Дифференциальные уравнения с синусом и косинусом как решать
Корни характеристического уравнения:
(комплексные корни):
r1 = 1 + 1 /2i
r1 = 1 — 1 /2i
Следовательно, фундаментальную систему решений составляют функции:
y1 = e x cos( 1 /2x)
y2 = e x sin( 1 /2x)
Общее решение однородного уравнения имеет вид:
Дифференциальные уравнения с синусом и косинусом как решать
Рассмотрим правую часть:
f(x) = 5cos(x)
Поиск частного решения.
Линейное дифференциальное уравнение с постоянными коэффициентами и правой частью вида:
R(x) = e αx (P(x)cos(βx) + Q(x)sin(βx)), где P(x), Q(x) — некоторые полиномы
имеет частное решение
y(x) = x k e αx (R(x)cos(βx) + S(x)sin(βx))
где k — кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) — полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).
Здесь P(x) = 5, Q(x) = 0, α = 0, β = 1.
Следовательно, число α + βi = 0 + 1i не является корнем характеристического уравнения .
Уравнение имеет частное решение вида:
y * = Acos(x) + Bsin(x)
Вычисляем производные:
y’ = Bcos(x)-Asin(x)
y» = -Acos(x)-Bsin(x)
которые подставляем в исходное дифференциальное уравнение:
4y» -8y’ + 5y = 4(-Acos(x)-Bsin(x)) -8(Bcos(x)-Asin(x)) + 5(Acos(x) + Bsin(x)) = 5cos(x)
или
8Asin(x)+Acos(x)+Bsin(x)-8Bcos(x) = 5cos(x)
Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:
8A + B = 0
A -8B = 5
Решая ее методом Гаусса, находим:
A = 1 /13;B = -8 /13;
Частное решение имеет вид:
y * = 1 /13cos(x) + -8 /13sin(x)
Таким образом, общее решение дифференциального уравнения имеет вид:
Дифференциальные уравнения с синусом и косинусом как решать

Пример 3.
y»+3y’+2y=-24e -4x -20sin(2x)
Решаем в два этапа:
а) y»+3y’+2y=-24e -4x
б) y»+3y’+2y=-20sin(2x)
Затем объединяем полученные решения.

Видео:10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

10 класс, 23 урок, Методы решения тригонометрических уравнений

Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)

Порядок производной указывается штрихами — y»’ или числом после одного штриха — y’5

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Решение линейных дифференциальных уравнений с постоянными коэффициентами со специальной неоднородной частью

Дифференциальные уравнения с синусом и косинусом как решать

Видео:7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать

7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.

Определение общего решения по известному частному решению

Рассмотрим линейное неоднородное дифференциальное уравнение с постоянными коэффициентами n-го порядка:
(1) ,
где – действительные числа; – действительная функция. Если известно частное (любое) решение уравнения (1), то можно найти его общее решение по формуле:
,
где – общее решение однородного уравнения:
.

Если неоднородная часть может быть представлена в виде суммы функций:
,
то частное решение также может быть представлено в виде суммы частных решений:
,
каждое из которых удовлетворяет уравнению с правой частью в виде одной из функций :
.

Как правило, легче найти частные решения от более простых неоднородных частей, а затем получить частное решение для всего уравнения суммированием полученных частных решений.

Видео:Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать

Задача Коши ➜ Частное решение линейного однородного дифференциального уравнения

Метод решения линейных ДУ с постоянными коэффициентами со специальной неоднородной частью

Рассмотрим линейное неоднородное уравнение со специальной неоднородной частью в виде комбинации многочленов, экспоненты, синусов и косинусов:
(2) ,
где – многочлены степеней и , соответственно:
;
;
– известные коэффициенты.

Это уравнение можно решить общим методом понижения порядка. Однако существует более простой способ, основанный на том, что частное решение такого уравнения имеет определенный вид. Суть этого метода заключается в следующем.

Вначале ищем общее решение однородного уравнения:
(3) .

Далее устанавливаем вид частного решения исходного уравнения (2). Оно выражается через многочлены, экспоненту, синусы и косинусы, которые входят в частное решение с неизвестными коэффициентами. Установив вид частного решения, подставляем в уравнение (2). Приравнивая левую и правую части, находим неизвестные коэффициенты.

После этого общее решение исходного уравнения (2) равно сумме общего решения однородного уравнения плюс частное решение неоднородного:
.

Видео:ЛНДУ II п. со спец. правой ч. (sin, cos)Скачать

ЛНДУ II п.  со спец.  правой ч.  (sin, cos)

Установление вида частного решения

Установим вид частного решения уравнения (2). Для этого вначале ищем решение однородного уравнения (3) в виде . В результате, для k , получаем уравнение, которое называется характеристическим уравнением:
(4) .
Решаем это уравнение. Получаем n корней . Тогда характеристическое уравнение (4) можно представить в виде произведения множителей:
(5) .

Часть корней (или все) в (5) могут быть комплексными. Поэтому выразим корень через действительную и мнимую части:
.
Для действительного корня .

Некоторые корни в (5) могут быть кратными:
.
Здесь p – кратность корня. Кратный корень кратности p входит в произведение (5) в виде множителя .

Если среди корней характеристического уравнения (4) нет корня со значением
,
то частное решение уравнения (2) имеет вид:
,
где – наибольшее из и .
,

– многочлены степени s с неизвестными коэффициентами , которые подлежат определению подстановкой в уравнение (2).

Если среди корней характеристического уравнения (4) есть корень кратности p со значением

то частное решение уравнения (2) имеет вид:
,
где также – наибольшее из и .
,

– многочлены степени s с неизвестными коэффициентами .

Когда вид частного решения установлен, подставляем Y в уравнение (2) и находим неизвестные коэффициенты , приравнивая левую и правую части уравнения. После чего получаем общее решение уравнения (2):
.

Видео:2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.Скачать

2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.

Частные случаи

Неоднородность в виде многочлена

Теперь рассмотрим некоторые более простые виды специальной неоднородности. Начнем с неоднородной части в виде многочлена:
,
где – многочлен степени s . Этот случай принадлежит к общему виду специальной неоднородности (2), в котором . Основываясь на вышеизложенном, получаем следующие правила составления вида частного решения.

Если среди корней характеристического уравнения (4) нет нулевого корня
,
то частное решение имеет вид:
.
То есть оно является многочленом степени s с неопределенными коэффициентами .

Если характеристическое уравнение (4) имеет нулевой корень кратности p :
,
то частное решение имеет вид:
.

Неоднородность в виде произведения экспоненты и многочлена

Теперь рассмотрим неоднородную часть в виде произведения многочлена степени s и экспоненты:
.
Этот случай принадлежит к общему виду (2), в котором .

Если среди корней характеристического уравнения нет действительного корня со значением α :
,
то частное решение является произведением многочлена степени s и экспоненты:
.

Если характеристическое уравнение (4) имеет действительный корень α кратности p :
,
то частное решение имеет вид:
.

Неоднородность в виде суммы произведений многочленов на косинус и синус

Наконец рассмотрим неоднородную часть в виде суммы произведений многочленов степеней на косинус и синус:
.
Этот случай принадлежит к общему виду (2), в котором .

Если среди корней характеристического уравнения нет чисто мнимого корня со значением iβ :
,
то частное решение является суммой произведений многочленов, косинуса и синуса:
,
где – наибольшее из и .
,

– многочлены степени s с неизвестными коэффициентами .

Если характеристическое уравнение (4) имеет чисто мнимый корень iβ кратности p :
,
то частное решение имеет вид:
.
То есть частное решение как и в предыдущем случае, но умноженное на .

Автор: Олег Одинцов . Опубликовано: 30-07-2013 Изменено: 14-09-2020

🔍 Видео

16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентамиСкачать

16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами

Дифференциальные уравнения. 11 класс.Скачать

Дифференциальные уравнения. 11 класс.

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами

Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать

Математика| Преобразование тригонометрических выражений. Формулы и задачи

Дифференциальные уравнения, 6 урок, Уравнения в полных дифференциалахСкачать

Дифференциальные уравнения, 6 урок, Уравнения в полных дифференциалах

Дифференциальные уравнения, 8 урок, Линейные дифференциальные уравнения с const коэф-ами 2 порядкаСкачать

Дифференциальные уравнения, 8 урок, Линейные дифференциальные уравнения с const коэф-ами 2 порядка

Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.Скачать

Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.

Решение задачи Коши дифференциального уравнения #maths #calculus #differentialequation #algebraСкачать

Решение задачи Коши дифференциального уравнения #maths #calculus #differentialequation #algebra

Дифференциальные уравнения с разделяющими переменными. 11 класс.Скачать

Дифференциальные уравнения с разделяющими переменными. 11 класс.

ЛОДУ 2 порядка c постоянными коэффициентамиСкачать

ЛОДУ 2 порядка c постоянными коэффициентами

Частное решение дифференциального уравнения. 11 класс.Скачать

Частное решение дифференциального уравнения. 11 класс.

18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.

Дифференциальные уравнения, 2 урок, Дифференциальные уравнения с разделяющимися переменнымиСкачать

Дифференциальные уравнения, 2 урок, Дифференциальные уравнения с разделяющимися переменными
Поделиться или сохранить к себе: