Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид

Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид

Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид

Глава 13. Динамика точки.

13.4. Свободные незатухающие колебания.

13.4.1. Груз массой m = 25 кг подвешен к пружине с коэффициентом жесткости с = 800 Н/м и находится в свободном прямолинейном вертикальном колебательном движении. Определить модуль ускоре­ния груза в момент времени, когда центр тяжести груза находится на расстоянии 5 см от положения статического равновесия. (Ответ 1,6)

13.4.2. Груз массой m = 20 кг подвешен к пружине с коэффициентом жесткости с = 400 Н/м и находится в свободном прямолинейном вертикальном колебательном движении. Определить, на каком рас­стоянии от положения статического равновесия находится центр тяжести груза в момент времени, когда его ускорение равно 3 м/с. (Ответ 0,15)

13.4.3. Определить приведенный коэффициент жесткости в Н/см двух последовательно соединенных пружин с коэффициентами жесткости с1 = 2 Н/см и с2 = 18 Н/см. (Ответ 1,8)

13.4.4. Коэффициенты жесткости пружин с1 = 2 Н/м, с2 = 4 Н/м и с3 = 6 Н/м. Определить коэффициент жесткости пружинной подвески. (Ответ 1,09)

13.4.5. Дифференциальное уравнение колебательного движения груза массой m = 0,5 кг, подвешенного к пружине, имеет вид у + 60у = 0. Определить коэффициент жесткости пружины. (Ответ 30)

13.4.6. Определить максимальное удлинение пру­жины АВ в см при свободных вертикальных колебаниях груза, если он прикреплен в точ­ке В к недеформированной пружине и отпус­кается из состояния покоя. Статическая де­формация пружины под действием груза равна 2 см.
(Ответ 4)

13.4.7. Тело массой m = 10 кг подвешено к пружине и совершает свобод­ные вертикальные колебания с периодом Т = 0,8 с. Определить коэф­фициент жесткости пружины. (Ответ 617)

13.4.8. Материальная точка массой m = 5 кг под­вешена к пружине и находится в свободном вертикальном колебательном движении, закон которого задан графиком функции х = x(t). Определить коэффициент жесткости пружины. (Ответ 548)

13.4.9. Определить период свободных вертикальных колебаний груза массой m = 80 кг, который прикреплен к пружине с коэффициен­том жесткости с = 2 кН/м. (Ответ 1,26)

13.4.10. Определить период свободных вертикальных колебаний тела, подвешенного к пружине, если статическая деформация пружины λ = 20 см. (Ответ 0,897)

13.4.11. Тело подвешено к пружине и совершает свободные вертикаль­ные колебания с периодом Т = 0,5 с. Определить массу точки, если коэффициент жесткости пружины с = 200 Н/м (Ответ 1,27)

13.4.12. Тело, подвешенное к пружине, совершает свободные вертикальные колебания, заданные графиком функции у = у(t). Определить мас­су тела, если коэффициент жесткости пружины с = 300 H/м. (Ответ 122)

13.4.13. Период свободных вертикальных колебаний груза, подвешенного на пружине с коэффициентом жесткости с = 2 кН/м, равен Т = πс. Оп­ределить массу груза. (Ответ 500)

13.4.14. Дифференциальное уравнение колебательного движения груза, подвешенного к пружине, имеет вид х + 20х = 0. Определить массу груза, если коэффициент жесткости пружины с = 150 Н/м. (Ответ 7,5)

Видео:Уравнения и графики механических гармонических колебаний. 11 класс.Скачать

Уравнения и графики механических гармонических колебаний. 11 класс.

Свободные колебания пружинного маятника. Общие сведения

Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид

Цель работы. Ознакомиться с основными характеристиками незатухающих и затухающих свободных механических колебаний.

Задача. Определить период собственных колебаний пружинного маятника; проверить линейность зависимости квадрата периода от массы; определить жесткость пружины; определить период затухающих колебаний и логарифмический декремент затухания пружинного маятника.

Приборы и принадлежности. Штатив со шкалой, пружина, набор грузов различной массы, сосуд с водой, секундомер.

1. Свободные колебания пружинного маятника. Общие сведения

Колебаниями называются процессы, в которых периодически изменяется одна или несколько физических величин, описывающих эти процессы. Колебания могут быть описаны различными периодическими функциями времени. Простейшими колебаниями являются гармонические колебания – такие колебания, при которых колеблющаяся величина (например, смещение груза на пружине) изменяется со временем по закону косинуса или синуса. Колебания, возникающие после действия на систему внешней кратковременной силы, называются свободными.

Рассмотрим одну из простейших колебательных систем – пружинный маятник, представляющий собой груз массой m, подвешенный на абсолютно упругой пружине с коэффициентом жесткости k
(рис. 1). Пусть l0 – длина пружины без подвешенного к ней груза. При подвешивании груза под действием силы тяжести пружина растянется на x1 так, что маятник будет находиться в положении равновесия вследствие равенства модулей силы тяжести mg и упругой силы Fупр: mg = kx1, стремящейся вернуть груз в положение равновесия (полагается, что деформации пружины идеально упругие и подчиняются закону Гука).

Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет видДифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид

Если груз вывести из положения равновесия, отклонив на величину x, то сила упругости возрастает: Fупр = – kx2= – k(x1 + x). Дойдя до положения равновесия, груз будет обладать отличной от нуля скоростью и пройдет положение равновесия по инерции. По мере дальнейшего движения будет увеличиваться отклонение от положения равновесия, что приведет к возрастанию силы упругости, и процесс повторится в обратном направлении. Таким образом, колебательное движение системы обусловлено двумя причинами: 1) стремлением тела вернуться в положении равновесия и 2) инерцией, не позволяющей телу мгновенно остановиться в положении равновесия. В отсутствии сил трения колебания продолжались бы сколь угодно долго. Наличие силы трения приводит к тому, что часть энергии колебаний переходит во внутреннюю энергию и колебания постепенно затухают. Такие колебания называются затухающими.

Незатухающие свободные колебания

Сначала рассмотрим колебания пружинного маятника, на который не действуют силы трения – незатухающие свободные колебания. Согласно второму закону Ньютона c учетом знаков проекций на ось X

Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид(1)

Из условия равновесия смещение, вызываемое силой тяжести: Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид. Подставляя Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет видв уравнение (1), получим: Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид. Разделив правую и левую часть этого уравнения на m и принимая, что a = d2x/dt2, получим дифференциальное уравнение

Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид. (2)

Это уравнение называется дифференциальным уравнением гармонических колебаний пружинного маятника. Из этого уравнения следует, что после прекращения внешнего воздействия, приводящего к первоначальному отклонению системы от положения равновесия, движение груза обусловлено только действием упругой силы (сила тяжести вызывает постоянное смещение).

Общее решение однородного дифференциального уравнения второго порядка (2) имеет вид

Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид. (3)

Данное уравнение называется уравнением гармонических колебаний. Наибольшее отклонение груза от положения равновесия А0 называется амплитудой колебаний. Величина Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид, стоящая в аргументе косинуса, называется фазой колебания. Постоянная φ0 представляет собой значение фазы в начальный момент времени (t = 0) и называется начальной фазой колебаний. Величина

Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид(4)

есть круговая или циклическая частота собственных колебаний, связанная с периодом колебаний Т соотношением Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид. Период колебаний определяется

Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид. (5)

Рассмотрим свободные колебания пружинного маятника при наличии силы трения (затухающие колебания). В простейшем и вместе с тем наиболее часто встречающемся случае сила трения пропорциональна скорости υ движения:

где r – постоянная, называемая коэффициентом сопротивления. Знак минус показывает, что сила трения и скорость имеют противоположные направления. Уравнение второго закона Ньютона в проекции на ось Х при наличии упругой силы и силы трения

Данное дифференциальное уравнение с учетом υ = dx/dt можно записать

Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид, (8)

где Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет видкоэффициент затухания; Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид– циклическая частота свободных незатухающих колебаний данной колебательной системы, т. е. при отсутствии потерь энергии (β = 0). Уравнение (8) называют дифференциальным уравнением затухающих колебаний.

Чтобы получить зависимость смещения x от времени t, необходимо решить дифференциальное уравнение (8). В случае малых затуханий (Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид) решение уравнения можно записать следующим образом:

Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид, (9)

где А0 и φ0 – начальная амплитуда и начальная фаза колебаний;
Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид– циклическая частота затухающих колебаний при ω >> Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет видω ≈ ω0.

Движение груза в этом случае можно рассматривать как гармоническое колебание с частотой ω и переменной амплитудой, меняющейся по закону:

Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид. (10)

На графике функции (9), рис. 2, пунктирными линиями показано изменение амплитуды (10) затухающих колебаний.

Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид

Рис. 2. Зависимость смещения х груза от времени t при наличии силы трения

Для количественной характеристики степени затухания колебаний вводят величину, равную отношению амплитуд, отличающихся на период, и называемую декрементом затухания:

Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид. (11)

Часто используют натуральный логарифм этой величины. Такой параметр называется логарифмическим декрементом затухания:

Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид. (12)

Если за время t амплитуда уменьшается в n раз, то из уравнения (10) следует, что

Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид. (13)

Отсюда для логарифмического декремента получаем выражение

Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид. (14)

Если за время t амплитуда уменьшается в е раз (е = 2,71 – основание натурального логарифма), то система успеет совершить число колебаний

Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид. (15)

Следовательно, логарифмический декремент затухания – величина, обратная числу колебаний, совершаемых за то время, за которое амплитуда уменьшается в е раз. Чем больше θ, тем быстрее происходит затухание колебаний.

2. Методика эксперимента и экспериментальная установка

Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид

Рис. 3. Схема установки

Установка состоит из штатива 1 с измерительной шкалой 2. К штативу на пружине 3 подвешиваются грузы 4 различной массы. При изучении затухающих колебаний в задании 2 для усиления затухания используется кольцо 5, которое помещается в прозрачный сосуд 6 с водой.

В задании 1 (выполняется без сосуда с водой и кольца) в первом приближении затуханием колебаний можно пренебречь и считать гармоническими. Как следует из формулы (5) для гармонических колебаний зависимость T 2 = f (m) – линейная, из которой можно определить коэффициент жесткости пружины k по формуле

Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид, (16)

где Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид– угловой коэффициент наклона прямой T 2 от m.

Задание 1. Определение зависимости периода собственных колебаний пружинного маятника от массы груза.

1. Определить период колебаний пружинного маятника при различных значениях массы груза m. Для этого с помощью секундомера для каждого значения m трижды измерить время t полных n колебаний (n ≥10) и по среднему значению времени Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет видвычислить период Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид. Результаты занести в табл. 1.

2. По результатам измерений построить график зависимости квадрата периода T2 от массы m. Из углового коэффициента графика определить жесткость пружины k по формуле (16).

Результаты измерений для определения периода собственных колебаний

Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид, с

Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид, с

Видео:Урок 92 (осн). Колебательное движение. МаятникиСкачать

Урок 92 (осн). Колебательное движение. Маятники

Дифференциальное уравнение гармонических колебаний пружинного маятника и его решение

Пусть сила трения равна нулю. В этом случае, если тело вывести из положения равновесия и отпустить, то оно будет ускоренно двигаться под действием упругой силы пружины Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид.

Примеры решения задач

Пример № 1. Гармонические колебания материальной точки описываются уравнением Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет видм. Определите амплитуду А колебаний, циклическую частоту ω0, частоту ν и период Т колебаний.

Дано:

Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет видм.

Решение

Уравнение гармонических колебаний имеет вид: x(t)=A∙cos(ω0∙t+φ0) (1)

А — ? ω0 — ? ν0 — ? Т — ?Сравнение уравнения (1) с уравнением, приведённым в условии задачи, показывает,

что А=0,02 м, ω0=6∙π ≈18,8 рад/с.

Поскольку ω0=2∙π∙ν0, то Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид3 Гц.

Период колебаний Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид=0,33 с.

Ответ: А=0,02 м, ω0=6∙π ≈18,8 рад/с, ν0 =3 Гц, Т=0,33 с.

Пример № 2. Груз массой т=50 г, привязанный к пружине, удлиняет её на х0=4,9 см. Пружину дополнительно растянули на х=8 см и отпустили. Определите максимальную силу, действующую на груз.

Дано:

х=8 см

СИ:

8∙10 -2 м .

Решение

Максимальная сила определяется уравнением:

Fmax =т∙аmax. Ускорение есть вторая производная

Fmax — ?Нпеременной х по времени.

Таким образом, для решения задачи необходимо установить вид зависимости х(t)=А∙sin(ω0∙t+φ0). (1)

Амплитуду А можно определить из условия: А=х0=4,9∙10 -2 м.

Циклическая частота Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид. (2)

Сила тяжести груза компенсируется силой упругости пружины: m∙g=k∙x0, следовательно Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид= Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид. Подстановка данного равенства в формулу (2) позволяет выразить циклическую частоту: Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид.

Дифференцируя выражение (1) по времени, можно найти скорость колебательного движения: υ(t)=А∙ω0∙cos(ω0∙t+φ0). (3)

Ускорение – производная скорости по времени: а(t)=А∙ω0 2 ∙sin(ω0∙t+φ0).

Максимальное значение ускорение достигает при синусе равном единице:

Amax=А∙ω0 2 . Тогда действующая на груз максимальная сила Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид.

Подстановка численных значений даёт: Fmax =0,8 Н.

Пример № 3. Шарик массой т=10 г совершает гармонические колебания с амплитудой А=20 см и периодом T=4 с. В момент времени t0=0 координата шарика х0=А. Определите потенциальную и кинетическую энергию в момент времени t1=1 c.

Дано:

t1=1 c.

СИ:

Решение

Поскольку в момент времени t0=0 координата шарика х0=А гармонические колебания шарика удобно описывать функцией косинуса без начальной фазы:

x(t)=A∙cosωt. Здесь А=0,2 м, Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид, то есть ω=π/2, следовательно x(t)=0,2∙cos(π t/2) м.

Ек1 — ?

Еп1 — ?

ДжДифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид, где Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид

Подстановка численных значений даёт: Ек1=4,9∙10 -4 Дж.

Потенциальная энергия Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид. Еп1=0.

Задачи для самостоятельного решения

71. Запишите решение уравнения гармонического колебания с амплитудой А= =5 см, если за время t=1 мин совершается N=150 колебаний, а начальная фаза колебаний φ0=π/4.

72. Колебательное движение материальной точки задано уравнением: Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет видм. Определите амплитуду, начальную фазу, максимальную скорость и максимальное ускорение колебательного движения.

73. Материальная точка массой т=20 г совершает гармонические колебания с амплитудой А=5 см. Период колебаний Т=10 с. Определите значение скорости и ускорения материальной точки в момент времени, которому соответствует фаза φ=60°.

74. Движение материальной точки описывается уравнением: Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет вид. Определите моменты времени, когда скорость и ускорение достигают максимальных значений.

75. Тело массой т=10 г совершает гармонические колебания по закону: Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет видм. Определите максимальные значения возвращающей силы и кинетической энергии.

76. Материальная точка массой т=50 г совершает гармонические колебания по закону: Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет видм. Определите возвращающую силу F в момент времени t=0,5 c и полную энергию материальной точки.

77. Материальная точка массой т=20 г совершает гармонические колебания по закону: Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет видм. Определите полную энергию материальной точки.

78. Полная энергия материальной точки, совершающей гармонические колебания Е=10 мкДж, а максимальная возвращающая сила Fmax=0,5 мH. Запишите кинематическое уравнение движения материальной точки, если период колебаний Т=4 с, а начальная фаза колебаний φ0=π/6.

79. К пружине, имеющей коэффициент упругости k=800 Н/м, подвешен груз и приведён в колебательное движение. Максимальная кинетическая энергия груза Е=2,5 Дж. Определите амплитуду колебаний.

80. Уравнение колебаний материальной точки массой т=10 г имеет вид: Дифференциальные уравнения колебательного движения груза подвешенного к пружине имеет видсм. Определите максимальную силу Fmax, действующую на материальную точку и её полную энергию Е.

Затухающие механические колебания и их характеристики

💡 Видео

Превращение энергии при колебаниях. Уравнение колебательного движения. 1 часть. 9 класс.Скачать

Превращение энергии при колебаниях. Уравнение колебательного движения. 1 часть. 9 класс.

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ период колебаний частота колебанийСкачать

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ период колебаний частота колебаний

Уравнения и графики механических гармонических колебаний. Практ. часть - решение задачи. 11 класс.Скачать

Уравнения и графики механических гармонических колебаний. Практ. часть - решение задачи. 11 класс.

5.4 Уравнение гармонических колебанийСкачать

5.4 Уравнение гармонических колебаний

Выполнялка 53.Гармонические колебания.Скачать

Выполнялка 53.Гармонические колебания.

Урок 325. Колебательное движение и его характеристикиСкачать

Урок 325. Колебательное движение и его характеристики

Урок 326. Динамика колебательного движенияСкачать

Урок 326. Динамика колебательного движения

Физика 11 класс (Урок№1 - Механические колебания.)Скачать

Физика 11 класс (Урок№1 - Механические колебания.)

Физика 9 класс (Урок№9 - Механические колебания.)Скачать

Физика 9 класс (Урок№9 - Механические колебания.)

Математические и пружинные маятники. 11 класс.Скачать

Математические и пружинные маятники. 11 класс.

18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.

Дифференциальные уравнения. 11 класс.Скачать

Дифференциальные уравнения. 11 класс.

Колебательное движение. Свободные колебания | Физика 9 класс #23 | ИнфоурокСкачать

Колебательное движение. Свободные колебания | Физика 9 класс #23 | Инфоурок

Откуда появляются дифференциальные уравнения и как их решатьСкачать

Откуда появляются дифференциальные уравнения и как их решать

Решение дифференциальных уравнений. Практическая часть. 11 класс.Скачать

Решение дифференциальных уравнений. Практическая часть. 11 класс.

66. Простейшие колебательные системыСкачать

66. Простейшие колебательные системы

Свободные колебания материальной точки 2Скачать

Свободные колебания материальной точки 2
Поделиться или сохранить к себе: