Дифференциальные уравнения ax by c

Дифференциальные уравнения, приводящиеся к уравнениям с разделяющимися переменными

Дифференциальные уравнения ax by c

Видео:2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.Скачать

2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.

Постановка задачи

Рассмотрим дифференциальное уравнение
(i) ,
где f – функция, a, b, c – постоянные, b ≠ 0 .
Это уравнение приводится к уравнению с разделяющимися переменными.

Видео:Дифференциальные уравнения. 11 класс.Скачать

Дифференциальные уравнения. 11 класс.

Метод решения

Делаем подстановку:
u = ax + by + c
Здесь y – функция от переменной x . Поэтому u – тоже функция от переменной x .
Дифференцируем по x
u′ = ( ax + by + c )′ = a + by′
Подставляем (i)
u′ = a + by′ = a +b f ( ax + by + c ) = a + b f ( u )
Или:
(ii)
Разделяем переменные. Умножаем на dx и делим на a + b f ( u ) . Если a + b f ( u ) ≠ 0 , то

Интегрируя, мы получаем общий интеграл исходного уравнения (i) в квадратурах:
(iii) .

В заключении рассмотрим случай
(iv) a + b f ( u ) = 0 .
Предположим, что это уравнение имеет n корней u = ri , a + b f ( ri ) = 0 , i = 1, 2, . n . Поскольку функция u = ri является постоянной, то ее производная по x равна нулю. Поэтому u = ri является решением уравнения (ii).
Однако, уравнение (ii) не совпадает с исходным уравнением (i) и, возможно, не все решения u = ri , выраженные через переменные x и y , удовлетворяют исходному уравнению (i).

Таким образом, решением исходного уравнения является общий интеграл (iii) и некоторые корни уравнения (iv).

Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.

Пример решения дифференциального уравнения, приводящегося к уравнению с разделяющимися переменными

Решить уравнение
(1)

Делаем подстановку:
u = x – y
Дифференцируем по x и выполняем преобразования:
;

Умножаем на dx и делим на u 2 .

Если u ≠ 0 , то получаем:

Интегрируем:

Применяем формулу из таблицы интегралов:

Вычисляем интеграл

Тогда
;
, или

Общее решение:
.

Теперь рассмотрим случай u = 0 , или u = x – y = 0 , или
y = x .
Поскольку y′ = ( x )′ = 1 , то y = x является решением исходного уравнения (1).

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Автор: Олег Одинцов . Опубликовано: 16-07-2012 Изменено: 22-02-2015

Видео:Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами

Как решать уравнения, приводимые к уравнениям с разделяющимися переменными

Рассмотрим, как решать уравнения вида y’=f(ax+by+c), где a,b,c — некоторые числа. Это — дифференциальные уравнения, приводимые к уравнениям с разделяющимися переменными.

Такие уравнения приводятся к уравнениям с разделяющимися переменными с помощью замены z=ax+by+c. Дифференцируем обе части этого равенства по иксу:

Дифференциальные уравнения ax by c

Поскольку x’=1, а так как y’=f(ax+by+c), то y’=f(z).

Соответственно, получаем, что

Дифференциальные уравнения ax by c

При условии a+bf(z)≠0 переменные можем разделить:

Дифференциальные уравнения ax by c

Интегрируем полученное уравнение

Дифференциальные уравнения ax by c

В полученном решении возвращаемся к исходным переменным z=ax+by+c.

Если a+bf(z)=0, то значит, и dz/dx=0, то ax+by+c=С.

Решить уравнение y’=(x+y+1)².

Решение: Замена z=x+y+1. Тогда dz/dx=1+dy/dx, а так как dy/dx=y’=(x+y+1)²=z², то dz/dx=1+z². Разделяем переменные, для этого обе части делим на 1+z² (это выражение не равно нулю при любом z) и умножаем на dx:

Дифференциальные уравнения ax by c

Дифференциальные уравнения ax by c

arctgz=x+C. Так как z=x+y+1, то общее решение arctg(x+y+1)=x+C, откуда arctg(x+y+1)-x=C.

Видео:Дифференциальные уравнения, 2 урок, Дифференциальные уравнения с разделяющимися переменнымиСкачать

Дифференциальные уравнения, 2 урок, Дифференциальные уравнения с разделяющимися переменными

Примеры решений дифференциальных уравнений с разделяющимися переменными (и сводящихся к ним)

Примеры решений дифференциальных уравнений с разделяющимися переменными (и сводящихся к ним)

1.Общий вид y’=f(x)*g(y), х∈ (a,b)

m(x)*n(y)dy+p(x)*q(y)dx=0, х∈ (a,b)

Для решения такого уравнения, надо обе части умножить или разделить на такое выражение чтобы в одну часть уравнения входил только х, в другую только y, а затем проинтегрировать обе части.

При этом при делении могут быть потряны решения.

Пример:

y’-xy 2 =2xy

y’=xy(y+2)

Делим на y(y+2)

Дифференциальные уравнения ax by c

Дифференциальные уравнения ax by c

Дифференциальные уравнения ax by c

При делении на y(y+2) потеряно решение у=0

2) Уравнение вида y’=f(ax+by) приводятся к уравнениям с разделяющимися переменными заменой z=ax+by или z=ax+by+c где с любая

Пример.

y’=cos(y-x)

замена z(x)=y(x)-x

y’=z’+1

z’+1=cosz

Дифференциальные уравнения ax by c

Дифференциальные уравнения ax by c

При делении на (cosz-1) потеряли решение cosz-1=0; z=2πk, k∈ z. y-x= 2πk

💥 Видео

Дифференциальные уравнения, 3 урок, Однородные уравненияСкачать

Дифференциальные уравнения, 3 урок, Однородные уравнения

1. Что такое дифференциальное уравнение?Скачать

1. Что такое дифференциальное уравнение?

Дифференциальные уравнения с разделяющими переменными. 11 класс.Скачать

Дифференциальные уравнения с разделяющими переменными. 11 класс.

Дифференциальные уравнения, 6 урок, Уравнения в полных дифференциалахСкачать

Дифференциальные уравнения, 6 урок, Уравнения в полных дифференциалах

Общее и частное решение дифференциального уравненияСкачать

Общее и частное решение дифференциального уравнения

Дифференциальные уравнения, 5 урок, Уравнение БернуллиСкачать

Дифференциальные уравнения, 5 урок, Уравнение Бернулли

Дифференциальные уравнения, 4 урок, Линейные дифференциальные уравнения первого порядкаСкачать

Дифференциальные уравнения, 4 урок, Линейные дифференциальные уравнения первого порядка

7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать

7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.

14. Дифференциальные уравнения второго порядка, допускающие понижение порядкаСкачать

14. Дифференциальные уравнения второго порядка, допускающие понижение порядка

Линейное неоднородное дифференциальное уравнение 2 способаСкачать

Линейное неоднородное дифференциальное уравнение 2 способа

Дифференциальные уравнения, 1 урок, Дифференциальные уравнения. Основные понятияСкачать

Дифференциальные уравнения, 1 урок, Дифференциальные уравнения. Основные понятия

Дифференциальные уравнения с разделенными переменными. 11 класс.Скачать

Дифференциальные уравнения с разделенными переменными. 11 класс.

Дифференциальные уравнения, 8 урок, Линейные дифференциальные уравнения с const коэф-ами 2 порядкаСкачать

Дифференциальные уравнения, 8 урок, Линейные дифференциальные уравнения с const коэф-ами 2 порядка
Поделиться или сохранить к себе: