Дифференциальное уравнение вынужденных электрических колебаний

Вынужденные колебания

Видео:Вынужденные электромагнитные колебания. Автоколебания. 11 класс.Скачать

Вынужденные электромагнитные колебания. Автоколебания. 11 класс.

Определение вынужденных колебаний

Для того чтобы в реально существующей колебательной системе получать незатухающие колебания, следует каким-либо образом компенсировать потери энергии, которые происходят в результате существования сил сопротивления. Самым простым способом реализации незатухающих колебаний является воздействие на систему при помощи внешней периодической силы. Работа внешней силы обеспечить приток энергии в систему извне. Эта энергия не даст колебаниям затухнуть, при действии сил трения.

Колебания, которые возникают под действием периодически меняющейся силы (периодически изменяющейся ЭДС), называют вынужденными механическими (электромагнитными) колебаниями.

Видео:71. Вынужденные колебанияСкачать

71. Вынужденные колебания

Дифференциальное уравнение вынужденных колебаний

Допустим, на механическую колебательную систему действует гармонически изменяющаяся внешняя сила:

Рассмотрим колебания груза на пружине (пружинный маятник). Уравнение незатухающих гармонических колебаний для этой системы можно записать как:

где $x$ — координата; $delta $ — коэффициент затухания; $_0$ — циклическая частота свободных незатухающих колебаний (если $delta $=0, то $_$называют собственной частотой колебаний).

Если рассматривается, например, электрический колебательный контур, то роль периодически действующей силы может играть внешняя ЭДС или переменное напряжение. Их подводят к контуру извне и изменяются они по гармоническому закону. Уравнение колебаний в электрическом контуре можно представить как:

где $q$ — заряд; $delta =frac$ — коэффициент затухания; $_0=frac<sqrt>$; $U=U_m$ — внешнее переменное напряжение.

Уравнения (2) и (3) можно свести к линейному неоднородному дифференциальному уравнению вида:

где $s$ — колеблющийся параметр; $x_0=frac$ если колебания механические ($x_0=frac— в случае электрических колебаний$).

Решением уравнения (4) является сумма общего решения однородного уравнения и частного решения неоднородного уравнения. Однородное уравнение при этом имеет вид:

Его общее решение:

где $A_0$ — начальная амплитуда колебаний.

Частное решение уравнения (4) в представлено выражением:

Слагаемое $s_1$ в решении уравнения (5) играет значительную роль в начальной стадии установления колебаний, пока амплитуда вынужденных колебаний не будет определяться выражением (8).

Установившись, вынужденные колебания происходят с частотой $omega $ и являются гармоническими. Амплитуда и фаза этих колебаний определяются равенствами (8) и (9), и они зависят от частоты $omega $.

Видео:Урок 347. Вынужденные колебания. Резонанс (часть 1)Скачать

Урок 347. Вынужденные колебания. Резонанс (часть 1)

Резонанс вынужденных колебаний

Если частота вынуждающей силы приближается к собственной частоте колебаний, то возникает резкое увеличение амплитуды колебаний. Такое явление называют резонансом.

Из выражения (8) видно, что амплитуда имеет максимум. Для нахождения резонансной частоты (частоты при которой $A=max$), следует найти максимум функции $A(omega )$. Взяв производную $frac$ и приравняв ее к нулю получим:

Равенство (10) справедливо при:

Получается, что резонансная частота ($_r$) равна:

При $^2ll ^2_0$ резонансная частота совпадает с собственной частотой колебаний $_0.$ Подставим вместо частоты правую часть выражения (11) в формулу (8), получим выражение для резонансной амплитуды вынужденных колебаний:

При небольшом затухании колебаний (если $^2ll ^2_0$) амплитуда при резонансе равна:

где $Q=frac<_0>$ — добротность колебательной системы, величина, характеризующая резонансные свойства колебательной системы. С увеличением добротности увеличивается амплитуда резонанса.

Видео:Свободные электромагнитные колебания. 11 класс.Скачать

Свободные электромагнитные колебания. 11 класс.

Примеры задач с решением

Задание. Какова добротность колебательного контура, представленного на рис.1?

Дифференциальное уравнение вынужденных электрических колебаний

Решение. Добротность электрического колебательного контура найдем как:

При этом собственная частота колебаний в таком контуре равна:

коэффициент затухания находим как:

Подставляет правые части выражений (1.2) (1.3) вместо соответствующих величин в (1.1), в результате, добротность представленного на рис. 1 контура найдем при помощи формулы:

Ответ. $Q=10$

Задание. Пружинный маятник выполняет вынужденные колебания в вязком веществе. Масса груза на пружине равна $m$, коэффициент упругости пружины $k$. Коэффициент сопротивления среды равен $r$. Систему заставляет совершать колебания сила $F=$Чему равна резонансная амплитуда заданных колебаний ($A_r$)?

Решение. Допустим, что груз совершает колебания вдоль прямой X, тогда уравнением данных механических колебаний будет выражение:

где коэффициент затухания равен $delta =frac$. Из функции, которая задает вынуждающую силу:

мы видим, что амплитуда силы равна единице:

Собственная частота колебаний груза на пружине:

Амплитуда при резонансе таких колебаний равна:

Видео:Уравнения и графики механических гармонических колебаний. 11 класс.Скачать

Уравнения и графики механических гармонических колебаний. 11 класс.

Вынужденные электрические колебания

Рассмотрим электромагнитный колебательный контур, в котором помимо ёмкости, индуктивности, сопротивления есть ещё и генератор переменного напряжения, то есть источник электрической энергии. Очевидно, что в таком контуре со временем (это время обычно мало) установятся вынужденные колебания тока с частотой генератора и с постоянной амплитудой; подвод энергии от генератора будет в точности компенсировать потери энергии на сопротивлении.

Дифференциальное уравнение вынужденных электрических колебаний

Не будем учитывать внутреннее сопротивление генератора (будем считать, что у нас хороший, «идеальный» генератор). Получим уравнение для колебаний заряда на обкладках конденсатора. Для этого нам необходимо в закон Ома , который мы писали для затухающих колебаний, добавить в левую часть э.д.с. генератора E(t).

Дифференциальное уравнение вынужденных колебаний заряда в электромагнитном контуре в стандартном (каноническом) виде получается следующим:

Дифференциальное уравнение вынужденных электрических колебанийили Дифференциальное уравнение вынужденных электрических колебаний

которое полностью аналогично уравнению вынужденных колебаний пружинного маятника . Э.д.с. генератора Дифференциальное уравнение вынужденных электрических колебаний. Поэтому сразу можем написать решение:

Дифференциальное уравнение вынужденных электрических колебаний

Дифференциальное уравнение вынужденных электрических колебаний

Дифференциальное уравнение вынужденных электрических колебаний

Резонансная частота колебаний заряда на обкладках конденсатора запишется также по аналогии с резонансной частотой механических колебаний маятника:

Дифференциальное уравнение вынужденных электрических колебаний

Напомню, что в электрическом контуре:

Дифференциальное уравнение вынужденных электрических колебанийи Дифференциальное уравнение вынужденных электрических колебаний

Обратите внимание, что резонансная частота для заряда зависит от коэффициента затухания, а, следовательно, от сопротивления.

Чаще нас интересуют не колебания заряда на конденсаторе, а колебания тока в цепи контура. Найдем эти колебания, продифференцировав заряд по времени:

Дифференциальное уравнение вынужденных электрических колебаний

В этом уравнении сделана подстановка — Дифференциальное уравнение вынужденных электрических колебаний

Напомню, что — j является сдвигом фазы между напряжением генератора Дифференциальное уравнение вынужденных электрических колебанийи током в цепи. В такой записи знак минус показывает, что напряжение первично, а ток отстает по фазе.

Формулы для амплитуды тока и сдвига фаз выглядят так:

Дифференциальное уравнение вынужденных электрических колебаний

Дифференциальное уравнение вынужденных электрических колебаний

Существенное отличие колебаний тока от колебаний заряда состоит в том, что резонансная частота для тока не зависит от сопротивления; она просто равна собственной частоте свободных колебаний в контуре:

Дифференциальное уравнение вынужденных электрических колебаний

Колебания тока в цепи имеют аналогом не колебания механического маятника, а колебания его скорости. Резонансные кривые для амплитуды тока и зависимость сдвига фаз от частоты для различных сопротивлений — на графиках. Обратите внимание, что при резонансе сдвиг фаз между током и напряжением на генераторе отсутствует.

Дифференциальное уравнение вынужденных электрических колебаний

Дифференциальное уравнение вынужденных электрических колебаний

Посмотрим ещё раз на формулу для амплитуды колебаний тока. В числителе стоит амплитудное напряжение на генераторе (мы пренебрегаем внутренним сопротивлением генератора, поэтому его э.д.с. равна напряжению на его клеммах); в знаменателе — величина, имеющая размерность сопротивления. Она включает в себя не только активное сопротивление R, но и составляющую, зависящую от ёмкости и индуктивности контура и от частоты генератора. Эта величина носит название полного сопротивления контура, или импеданса контура Z:

Дифференциальное уравнение вынужденных электрических колебаний

Величина Дифференциальное уравнение вынужденных электрических колебанийносит название реактивного сопротивления, а её составляющие: Дифференциальное уравнение вынужденных электрических колебанийиндуктивным сопротивлением; Дифференциальное уравнение вынужденных электрических колебанийёмкостным сопротивлением.

Посмотрим, как ведут себя колебания тока и напряжения на различных участках контура.

Ток в цепи устанавливается со скоростью распространения электрического поля, то есть со скоростью света с. Время установления тока в цепи

l/c, где l — длина контура. Это время в реальных контурах много-много меньше, чем период колебаний. Поэтому мы считаем, что в каждый момент времени значения тока на всех участках цепи одинаково; колебания тока на сопротивлении, индуктивности и ёмкости происходят синхронно.

Иначе обстоит дело с колебаниями напряжения. Вычислим напряжение на каждом элементе контура и посмотрим, как они отличаются по амплитуде и фазе.

Дифференциальное уравнение вынужденных электрических колебаний

Дифференциальное уравнение вынужденных электрических колебаний

Дифференциальное уравнение вынужденных электрических колебаний

Дифференциальное уравнение вынужденных электрических колебаний

Дифференциальное уравнение вынужденных электрических колебаний

Дифференциальное уравнение вынужденных электрических колебаний

Видно, что напряжение на конденсаторе отстает на четверть периода от напряжения на сопротивлении, а напряжение на индуктивности на столько же по фазе опережает его. Напряжение на ёмкости и индуктивности всегда отличаются по фазе на полпериода. Наглядно сдвиг фаз на элементах цепи можно посмотреть на векторной диаграмме; из неё, в частности, ясно, почему импеданс вычисляется таким образом.

Общее падение напряжения на всех трех элементах цепи равно напряжению на клеммах генератора; поэтому угол j на диаграмме дает сдвиг по фазе между током и напряжением на генераторе.

Видео:Колебания в электрической цепи и дифференциальные уравненияСкачать

Колебания в электрической цепи и дифференциальные уравнения

Вынужденные колебания. Переменный ток

Дадим определение понятию вынужденных колебаний.

Вынужденные колебания – это процессы, которые происходят в электрических цепях под воздействием периодического источника тока.

Основным отличием вынужденных колебаний по сравнению с собственными колебаниями в электрических цепях является то, что они являются незатухающими. Неизбежные потери энергии компенсируются за счет внешнего источника периодического воздействия, который не позволяет колебаниям затухать.

Видео:ЧК_МИФ ВЫВОД УРАВНЕНИЯ ВЫНУЖДЕННЫХ КОЛЕБАНИЙСкачать

ЧК_МИФ    ВЫВОД УРАВНЕНИЯ ВЫНУЖДЕННЫХ КОЛЕБАНИЙ

Что такое переменный ток?

Переменный ток — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным.

Рассмотрим случай, когда электрическая цепь способна совершать собственные свободные колебания с некоторой частотой ω 0 . Предположим, что к этой цепи подключен внешний источник, напряжение которого изменяется по гармоническому закону с частотой ω .

Частота свободных колебаний в электрической сети ω 0 будет определяться параметрами этой сети. Вынужденные колебания, которые установятся при подключении внешнего источника ω , будут происходить на частоте этого внешнего источника.

Частота вынужденных колебаний устанавливается не сразу после включения внешнего источника, а спустя некоторое время Δ t . По порядку величины это время будет равно времени затухания свободных колебаний в сети τ .

Видео:Физика 11 класс (Урок№7 - Свободные и вынужденные электромагнитные колебания. Колебательный контур.)Скачать

Физика 11 класс (Урок№7 - Свободные и вынужденные электромагнитные колебания. Колебательный контур.)

Цепи переменного тока

Цепи переменного тока – это такие электрические цепи, в которых под воздействием периодического источника тока происходят установившиеся вынужденные колебания.

Рассмотрим устройство колебательного контура, в который включен источник тока с напряжением, изменяющимся по периодическому закону:

e ( t ) = ε 0 cos ω t,

где ε 0 – амплитуда, ω – круговая частота.

Фактически, это будет R L C -цепь.

Дифференциальное уравнение вынужденных электрических колебаний

Рисунок 2 . 3 . 1 . Вынужденные колебания в контуре.

Будем считать, что для изображенной на этом рисунке электрической цепи выполняется условие квазистационарности. Это позволит нам записать закон Ома для мгновенных значений токов и напряжений:

R J + q C + L d J d t = ε 0 c o c ω t.

Величину L d J d t принято называть напряжением на катушке индуктивности. Фактически, это ЭДС самоиндукции катушки, которую мы для простоты вычислений перенесли с противоположным знаком в левую часть уравнения из правой.

Уравнение вынужденных колебаний можно записать в виде:

u R + u C + u L = e ( t ) = ε 0 cos ω t.

где u R ( t ) , u C ( t ) и u L ( t ) – мгновенные значения напряжений на резисторе, конденсаторе и катушке соответственно. Амплитуды этих напряжений будем обозначать буквами U R , U C и U L . Напряжения при установившихся вынужденных колебаниях изменяются с частотой внешнего источника переменного тока ω .

Видео:Урок 343. Затухающие колебания (часть 1)Скачать

Урок 343. Затухающие колебания (часть 1)

Векторная диаграмма токов и напряжений

Для решения уравнения вынужденных колебаний мы можем использовать достаточно наглядный метод векторных диаграмм. Для этого используем векторную диаграмму, на которой с помощью векторов изобразим колебания определенной заданной частоты ω .

Давайте посмотрим, как построить векторную диаграмму токов и напряжений.

Дифференциальное уравнение вынужденных электрических колебаний

Рисунок 2 . 3 . 2 . Векторная диаграмма, на которой с помощью векторов изображены гармонические колебания A cos ( ω t + φ 1 ) , B cos ( ω t + φ 2 ) и их суммы C cos ( ω t + φ ) .

Наклон векторов к горизонтальной оси определяется фазой колебаний φ 1 и φ 2 , а длины векторов соответствуют амплитудам колебаний A и B . Относительный фазовый сдвиг определяет взаимную ориентацию векторов: ∆ φ = φ 1 — φ 2 . Для того, чтобы построить вектор, изображающий суммарное колебание, нам необходимо использовать правило сложения векторов: C → = A → + B → .

При вынужденных колебаниях в электрической цепи для построения векторной диаграммы напряжений и токов нам необходимо знать соотношения между амплитудами токов и напряжений и фазовый сдвиг между ними для любого участка цепи.

Источник переменного тока может быть подключен к:

  • катушке индуктивности L ;
  • резистору с сопротивлением R ;
  • конденсатору с емкостью С .

Рассмотрим эти три примера подробнее. Будем считать, что напряжение на резисторе, катушке и конденсаторе во всех трех случаях равно напряжению внешнего источника переменного тока.

Резистор в цепи переменного тока

J R R = u R = U R cos ω t ; J R = U R R cos ω t = I R cos ω t

Мы обозначили амплитуду тока, который протекает через резистор, через I R . Соотношение R I R = U R выражает связь между амплитудами тока и напряжения на резисторе. Фазовый сдвиг в этом случае равен нулю. Физическая величина R – это активное сопротивление на резисторе.

Конденсатор в цепи переменного тока

u C = q C = U C cos ω t

J C = d q d t = C d u C d t = C U C ( — ω sin ω t ) = ω C U C cos ω t + π 2 = I C cos ω t + π 2 .

Соотношение между амплитудами тока I C и напряжения U C : 1 ω C I C = U C .

Ток опережает по фазе напряжение на угол π 2 .

Физическая величина X C = 1 ω C — это емкостное сопротивление конденсатора.

💥 Видео

ЧК_МИФ_3_3_8_1 _(L2)___ВЫВОД УРАВНЕНИЯ ВЫНУЖДЕННЫХ КОЛЕБАНИЙСкачать

ЧК_МИФ_3_3_8_1 _(L2)___ВЫВОД УРАВНЕНИЯ ВЫНУЖДЕННЫХ КОЛЕБАНИЙ

Урок 327. Гармонические колебанияСкачать

Урок 327. Гармонические колебания

Вынужденные колебания. Резонанс | Физика 11 класс #9 | ИнфоурокСкачать

Вынужденные колебания. Резонанс | Физика 11 класс #9 | Инфоурок

Урок 361. Вынужденные колебания в последовательном колебательном контуреСкачать

Урок 361. Вынужденные колебания в последовательном колебательном контуре

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ период колебаний частота колебанийСкачать

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ период колебаний частота колебаний

Билеты №45 "Вынужденные колебания в линейных системах"Скачать

Билеты №45 "Вынужденные колебания в линейных системах"

Затухающие колебания Лекция 11-1Скачать

Затухающие колебания Лекция 11-1

Свободные колебания и дифференциальное уравнениеСкачать

Свободные колебания и дифференциальное уравнение

70. Затухающие колебанияСкачать

70. Затухающие колебания
Поделиться или сохранить к себе: