Дифференциальное уравнение теплопроводности в прямоугольных координатах

Дифференциальное уравнение теплопроводности и его частные случаи

В трехмерной системе координат дифференциальное уравнение теплопроводности имеет вид

Дифференциальное уравнение теплопроводности в прямоугольных координатах

где а=λ/(сγ) – температуропроводность твердого тела,м 2 /с.

Выражение в круглых скобках правой части называется оператором Лапласа и обозначается Дифференциальное уравнение теплопроводности в прямоугольных координатах

Рассмотрим частные случаи этого уравнения:

1) тепловой поток распространяется только вдоль оси х, тогда

Дифференциальное уравнение теплопроводности в прямоугольных координатах

2) в выделенном элементарном объеме твердого тела температура во времени не изменяется, т.е.

Дифференциальное уравнение теплопроводности в прямоугольных координатахДифференциальное уравнение теплопроводности в прямоугольных координатах

Называемое уравнением Лапласа, оно характеризует собой распределение температуры в элементарном объеме твердого тела при стационарном процессе переноса тепла (когда температура во времени во всех точках выделенного объема твердого тела остается постоянной).

3) внутренняя энергии выделенного элементарного объема твердого тела в точке с координатами х, yи zсуществует внутренний источник, выделяющий (или поглощающий) в единице объема за единицу времени количество тепла, равное А(х, y, z, τ), то дифференциальное уравнение теплопроводности имеет вид

Дифференциальное уравнение теплопроводности в прямоугольных координатах

4) теплопроводность твердого тела изменяется в рассматриваемом диапазоне температур, тогда

Дифференциальное уравнение теплопроводности в прямоугольных координатах

5) когда источник тепла перемещается со скоростью, компоненты которой равны Vx, Vy, Vz, тогда

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Представленные уравнения относятся к прямоугольной системе координат.

Дифференциальные уравнения теплопроводности в сферических и цилиндрических координатах имеют следующий вид:

Дифференциальное уравнение теплопроводности в прямоугольных координатахи Дифференциальное уравнение теплопроводности в прямоугольных координатах

Краевые условия

Под краевыми условиями понимается совокупность начальных и граничных условий.

Начальным условием называется температурное поле в твердом теле в тот момент, с которого ведется отсчет времени температурного воздействия.

Граничным условием называется условие, определяющее процесс теплообмена на границе. Понятие «граница» включает в себя внешние поверхности, подверженные тепловому воздействию, и внутренние, расположенные на некотором удалении от внешних. Граничные условия складываются из сведений об условиях теплообмена на границе и сведений об изменении параметров источника теплового воздействия.

Различают четыре рода граничных условий:

1) если известен закон изменения температуры нагреваемой поверхности во времени

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Частным случаем является постоянства температуры на поверхности, подверженной тепловому воздействию

Дифференциальное уравнение теплопроводности в прямоугольных координатах

2) если известна закономерность изменения во времени удельного теплового потока, поступающего к поверхности твердого тела

Дифференциальное уравнение теплопроводности в прямоугольных координатахили Дифференциальное уравнение теплопроводности в прямоугольных координатах

Индекс х=+0 указывает на то, что градиент температуры относится к точке тела, расположенной в непосредственной близости от поверхности.

Частным случаем имеет место при постоянстве удельного теплового потока

Дифференциальное уравнение теплопроводности в прямоугольных координатах

3) Если заданы температура источника теплового воздействия и интенсивность теплообмена на поверхности (теплоносителями являются жидкости и газы).

Дифференциальное уравнение теплопроводности в прямоугольных координатах

где α– коэффициент теплоотдачи, Вт/(м 2 К)

При установившемся режиме теплообмена коэффициент теплоотдачи можно принять постоянным.

Если нагрев твердого тела происходит за счет лучеиспускания, тогда

Дифференциальное уравнение теплопроводности в прямоугольных координатах

где Дифференциальное уравнение теплопроводности в прямоугольных координатах, Вт/(м 2 К)

b(T) – коэффициент, зависящий от температуры источника и приемника лучистой энергии, К 3

Дифференциальное уравнение теплопроводности в прямоугольных координатах— приведенный коэффициент лучеиспускания, Вт/м 2 ∙(К) 4

ϭ – постоянная Стефана-Больцмана, равная 5,67∙10 -8 Вт/м 2 К 4

ε – относительная излучательная способность (степень черноты) твердого тела.

4) при соприкосновении двух твердых тел с разными теплофизическими свойствами.

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Во всех этих уравнениях в правых частях удельный тепловой поток, отводимый внутрь твердого тела от нагреваемой поверхности, в правой — математически сформулирована закономерность поступления тепла от источника к поверхности твердого тела.

Дата добавления: 2018-05-10 ; просмотров: 1860 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Видео:Уравнение теплопроводности в цилиндрических координатахСкачать

Уравнение теплопроводности в цилиндрических координатах

Дифференциальное уравнение теплопроводности

В учебниках по теплопередаче, в том числе и в [1], приводится вывод дифференциального уравнения температурного поля движущейся жидкости, уравнение энергии

Дифференциальное уравнение теплопроводности в прямоугольных координатах(1.12)

где ср, Дж/(кг×К) – изобарная теплоемкость; r, кг/м 3 – плотность; l, Вт/(м×К) – коэффициент теплопроводности; wх, wy, wz – проекции вектора скорости движения жидкости; qv , Вт/м 3 – объемная плотность внутреннего тепловыделения жидкости.

Уравнение (1.12) записано для случая l=const.

Дифференциальное уравнение температурного поля для твердых тел называется дифференциальным уравнением теплопроводности и может быть получено из (1.12) при условии wх= wy= wz=0, ср= сv=с:

Дифференциальное уравнение теплопроводности в прямоугольных координатах,

где Дифференциальное уравнение теплопроводности в прямоугольных координатах— коэффициент температуропроводности, характеризует скорость изменения температуры в теле. Значения а = f (t) для различных тел приводятся в справочниках.

Дифференциальное уравнение теплопроводности

Дифференциальное уравнение теплопроводности в прямоугольных координатах(1.13)

описывает нестационарное температурное поле твердых тел с внутренним тепловыделением (с внутренними источниками тепла). Такими источниками тепла могут быть: джоулева теплота, выделяемая при прохождении электрического тока по проводникам; теплота, выделяемая ТВЭЛами ядерных реакторов и т.д.

Дифференциальное уравнение теплопроводности (1.13), записанное в декартовых координатах, можно представить в цилиндрических (r, z, φ) и сферических (r, φ, ψ).

В частности, в цилиндрических координатах (r –радиус; φ – полярный угол; z — аппликата) дифференциальное уравнение теплопроводности имеет вид

Дифференциальное уравнение теплопроводности в прямоугольных координатах(1.14)

Условия однозначности

Дифференциальное уравнение описывает множество процессов теплопроводности. Чтобы выделить из этого множества конкретный процесс, необходимо сформулировать особенности этого процесса, которые называются условиями однозначности и включают в себя:

· геометрические условия, характеризующие форму и размеры тела;

· физические условия, характеризующие свойства участвующих в теплообмене тел;

· граничные условия, характеризующие условия протекания процесса на границе тела;

· начальные условия, характеризующие начальное состояние системы при нестационарных процессах.

При решении задач теплопроводности различают:

· граничные условия первого рода, когда задается распределение температуры на поверхности тела:

· граничные условия второго рода, когда задается плотность теплового потока на поверхности тела:

· граничные условия третьего рода, когда задается температура среды tж и коэффициент теплоотдачи между поверхностью и средой.

В соответствии с законом Ньютона-Рихмана тепловой поток, передаваемый с 1м 2 поверхности в среду с температурой tж,

Дифференциальное уравнение теплопроводности в прямоугольных координатах

В то же время этот тепловой поток подводится к 1м 2 поверхности из глубинных слоев тела теплопроводностью

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Тогда уравнение теплового баланса для поверхности тела запишется в виде

Дифференциальное уравнение теплопроводности в прямоугольных координатах(1.15)

Уравнение (1.15) является математической формулировкой граничных условий третьего рода.

Система дифференциальных уравнений совместно с условиями однозначности представляет собой математическую формулировку задачи. Решения дифференциальных уравнений содержат константы интегрирования, которые определяются с помощью условий однозначности.

Контрольные вопросы и задания

1. Проанализируйте, какими способами передается теплота от горячей воды к воздуху через стенку батареи отопления: от воды к внутренней поверхности, через стенку, от наружной поверхности к воздуху.

2. Почему в правой части уравнения (1.3) стоит минус?

3. Проанализируйте с помощью справочной литературы зависимость λ(t) для металлов, сплавов, теплоизоляционных материалов, газов, жидкостей и ответьте на вопрос: как изменяется коэффициент теплопроводности с изменением температуры для этих материалов?

4. Как определяется тепловой поток (Q, Вт) при конвективной теплоотдаче, теплопроводности, тепловом излучении?

5. Запишите дифференциальное уравнение теплопроводности в декартовых координатах, описывающее трехмерное стационарное температурное поле без внутренних источников теплоты.

6. Запишите дифференциальное уравнение температурного поля проволоки, которая длительное время находится под напряжением при постоянной электрической нагрузке.

2. ТЕПЛОПРОВОДНОСТЬ И ТЕПЛОПЕРЕДАЧА
ПРИ СТАЦИОНАРНОМ РЕЖИМЕ

2.1. Теплопроводность плоской стенки
при граничных условиях первого рода

Дано:плоская однородная стенка толщиной δ (рис. 2.1) с постоянным коэффициентом теплопроводности λ и постоянными температурами t1 и t2 на поверхностях.

Дифференциальное уравнение теплопроводности в прямоугольных координатахОпределить:уравнение температурного поля t=f (x) и плотность теплового потока q, Вт/м 2 .

Температурное поле стенки описывается дифференциальным уравнением теплопроводности (1.3) при следующих условиях:

· Дифференциальное уравнение теплопроводности в прямоугольных координатахт. к. режим стационарный;

· Дифференциальное уравнение теплопроводности в прямоугольных координатахт.к. отсутствуют внутренние источники теплоты;

· Дифференциальное уравнение теплопроводности в прямоугольных координатахт.к. температуры t1 и t2 на поверхностях стенки постоянны.

Температура стенки является функцией только одной координаты х и уравнение (1.13) принимает вид

Дифференциальное уравнение теплопроводности в прямоугольных координатах(2.1)

т.к. коэффициент температуропроводности стенки а ≠ 0.

Граничные условия первого рода:

при х=0 t= t1 ,(2.2)
при х= δ t= t2.(2.3)

Выражения (2.1), (2.2), (2.3) являются математической постановкой задачи, решение которой позволит получить искомое уравнение температурного поля t= f (x).

Интегрирование уравнения (2.1) дает

Дифференциальное уравнение теплопроводности в прямоугольных координатах

При повторном интегрировании получим решение дифференциального уравнения в виде

t=с1х+с2.(2.4)

Из уравнения (2.4) при условии (2.2) получим

а при условии (2.3)

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Подстановка констант интегрирования с1 и с2 в уравнение (2.4) дает уравнение температурного поля

Дифференциальное уравнение теплопроводности в прямоугольных координатах(2.5)

по которому можно рассчитать температуру по толщине стенки на любой координате 0 2 ; t2, t3.

При стационарном режиме и постоянных температурах поверхностей стенки тепловой поток, передаваемый через трехслойную стенку, можно представить системой уравнений:

Дифференциальное уравнение теплопроводности в прямоугольных координатах(2.8)
Дифференциальное уравнение теплопроводности в прямоугольных координатах(2.9)
Дифференциальное уравнение теплопроводности в прямоугольных координатах(2.10)
Дифференциальное уравнение теплопроводности в прямоугольных координатах(2.11)

Сложив левые и правые части уравнений (2.11), получим расчетную формулу для плотности теплового потока, передаваемого через трехслойную стенку

Дифференциальное уравнение теплопроводности в прямоугольных координатах(2.12)

Температуры на границах слоев t2 и t3 можно рассчитать по уравнениям (2.8) – (2.10) после того, как найдена плотность теплового потока (q) по (2.12).

Общий вид уравнения (2.12) для многослойной плоской стенки, состоящей из п однородных слоев с постоянными температурами на наружных поверхностях Дифференциальное уравнение теплопроводности в прямоугольных координатахи Дифференциальное уравнение теплопроводности в прямоугольных координатах, имеет вид

Дифференциальное уравнение теплопроводности в прямоугольных координатах(2.13)

Средний коэффициент теплопроводности многослойной стенки называют эффективным (λэф). Он равен коэффициенту теплопроводности однородной стенки, толщина и термическое сопротивление которой равны толщине и термическому сопротивлению многослойной стенки

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Дифференциальное уравнение теплопроводности в прямоугольных координатах(2.14)

2.2. Теплопроводность цилиндрической стенки
при граничных условиях первого рода

Дифференциальное уравнение теплопроводности в прямоугольных координатахДано:Однородная цилиндрическая стенка (стенка трубы) с внутренним радиусом r1, наружным – r2, длиной Дифференциальное уравнение теплопроводности в прямоугольных координатах, с постоянным коэффициентом теплопроводности λ, с постоянными температурами на поверхностях t1 и t2.
(рис. 2.3).

Определить: уравнение температурного поля
t = f (r), тепловой поток, передаваемый через стенку
Q, Вт.

Дифференциальное уравнение теплопроводности в цилиндрических координатах (1.14) для условий данной задачи:

Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах

Дифференциальное уравнение теплопроводности в прямоугольных координатах(2.15)

Граничные условия первого рода:

при r=r1 t=t1 ,(2.16)
при r=r2 t=t2 .(2.17)

Порядок решения системы уравнений (2.15) – (2.17) тот же, что и в случае плоской стенки: находится общий интеграл дифференциального уравнения второго порядка (2.15), который содержит две константы интегрирования
с1 и с2 . Последние определяются с помощью граничных условий (2.16) и (2.17) и после подстановки их значений в решение дифференциального уравнения (общий интеграл) получаем уравнение температурного поля цилиндрической стенки t = f (r) в виде

Дифференциальное уравнение теплопроводности в прямоугольных координатах(2.18)

где r1 Дифференциальное уравнение теплопроводности в прямоугольных координатахr Дифференциальное уравнение теплопроводности в прямоугольных координатахr2 – текущий радиус.

Нетрудно убедиться, что при подстановке в (2.18) r= r1 получим t=t1 , при r=r2 получим t=t2. Распределение температуры по толщине цилиндрической стенки, в соответствии с (2.18) подчиняется логарифмическому закону (рис. 2.3).

Для определения теплового потока воспользуемся законом Фурье:

Дифференциальное уравнение теплопроводности в прямоугольных координатах(2.19)

Если взять производную Дифференциальное уравнение теплопроводности в прямоугольных координатахот правой части уравнения (2.18) и подставить в (2.19), получим расчетную формулу для теплового потока цилиндрической стенки

Дифференциальное уравнение теплопроводности в прямоугольных координатах(2.20)

В технических расчетах часто тепловой поток вычисляется для 1 м длины трубы:

Дифференциальное уравнение теплопроводности в прямоугольных координатах

и называется линейной плотностью теплового потока.

Запишем уравнение (2.20) в виде

Дифференциальное уравнение теплопроводности в прямоугольных координатах

где Дифференциальное уравнение теплопроводности в прямоугольных координатахтермическое сопротивление теплопроводности цилиндрической стенки.

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Для трехслойной цилиндрической стенки (трубы, покрытой двумя слоями тепловой изоляции) с известными постоянными температурами поверхностей (t1 и t4), с известными геометрическими размерами (r1 , r2, r3, r4 , Дифференциальное уравнение теплопроводности в прямоугольных координатах) и коэффициентами теплопроводности слоев (λ1, λ2, λ3) (рис. 2.4) можно записать следующие уравнения для теплового потока Q:

Дифференциальное уравнение теплопроводности в прямоугольных координатах(2.21)

Совместное решение системы уравнений (2.21) дает расчетную формулу для теплового потока, передаваемого через трехслойную стенку при заданных температурах на поверхностях,

Дифференциальное уравнение теплопроводности в прямоугольных координатах(2.22)

Температуры на границах слоев (t2, t3) можно рассчитать по уравнениям (2.21).

Для многослойной цилиндрической стенки, состоящей из п слоев, формулу (2.22) можно записать в общем виде

Дифференциальное уравнение теплопроводности в прямоугольных координатах(2.23)

Эффективный коэффициент теплопроводности для многослойной цилиндрической стенки, как и для многослойной плоской стенки, определяется из равенства суммы термических сопротивлений многослойной стенки термическому сопротивлению однородной стенки той же толщины, что и многослойная. Так, для двухслойной тепловой изоляции трубы
(рис. 2.4) эффективный коэффициент теплопроводности эф) определ ится из равенства

Дифференциальное уравнение теплопроводности в прямоугольных координатах

2.3. Теплопроводность плоской и цилиндрической стенок
при граничных условиях третьего рода (теплопередача)

Граничные условия третьего рода состоят в задании температуры жидкости (tж) и коэффициента теплоотдачи ( Дифференциальное уравнение теплопроводности в прямоугольных координатах) между поверхностью стенки и жидкостью.

Передача тепла от одной жидкости к другой через разделяющую их стенку называется теплопередачей.

Примерами теплопередачи служит перенос теплоты от дымовых газов к воде через стенку трубы парового котла, перенос тепла от горячей воды к окружающему воздуху через стенку батареи отопления и т.д.

Теплообмен между поверхностью и средой (теплоносителем) может быть конвективным, если теплоноситель – жидкость (вода, нефть и т.д.) или радиационно-конвективным, когда теплота передается путем конвективного теплообмена и излучением, если теплоноситель – газ (дымовые газы, воздух и т.д.).

Рассмотрим теплопередачу через плоскую и цилиндрическую стенки при условии только конвективного теплообмена на поверхностях. Теплопередача с радиационно-конвективным теплообменом (сложным теплообменом) на поверхностях будет рассмотрена позже.

Плоская стенка(рис. 2.5)

Дифференциальное уравнение теплопроводности в прямоугольных координатахДано: Дифференциальное уравнение теплопроводности в прямоугольных координатах

Плотность теплового потока q описывается следующими уравнениями в зависимости от способа передачи теплоты:

– от горячей жидкости к стенке

Дифференциальное уравнение теплопроводности в прямоугольных координатах(2.24)
Дифференциальное уравнение теплопроводности в прямоугольных координатах(2.25)

– от стенки к холодной жидкости

Дифференциальное уравнение теплопроводности в прямоугольных координатах(2.26)

Записав уравнения (2.24) – (2.26) в виде

Дифференциальное уравнение теплопроводности в прямоугольных координатах(2.27)

и сложив почленно правые и левые части уравнений (2.27), получим формулу для расчета теплопередачи (q, Вт/м 2 ) через плоскую стенку в виде

Дифференциальное уравнение теплопроводности в прямоугольных координатах(2.28)

Величины Дифференциальное уравнение теплопроводности в прямоугольных координатахназываются термическими сопротивлениями теплоотдачи. Они прямо пропорциональны перепадам температур Дифференциальное уравнение теплопроводности в прямоугольных координатах.

Температуры на поверхностях стенки t1 и t2 можно рассчитать по уравнениям (2.24) – (2.26) после того, как определена плотность теплового потока (q) по уравнению (2.28).

Формулу (2.28) можно записать в виде

Дифференциальное уравнение теплопроводности в прямоугольных координатах(2.29)

где Дифференциальное уравнение теплопроводности в прямоугольных координатахкоэффициент теплопередачи плоской стенки,характеризует интенсивность процесса теплопередачи.

Теплопередача через многослойную плоскую стенку рассчитывается по формуле

Дифференциальное уравнение теплопроводности в прямоугольных координатах(2.30)

Цилиндрическая стенка(рис. 2.6)

Дифференциальное уравнение теплопроводности в прямоугольных координатахДано: Дифференциальное уравнение теплопроводности в прямоугольных координатах

Для цилиндрической стенки, по аналогии с плоской стенкой, можно записать следующую систему уравнений:

Дифференциальное уравнение теплопроводности в прямоугольных координатах(2.31)
Дифференциальное уравнение теплопроводности в прямоугольных координатах(2.32)
Дифференциальное уравнение теплопроводности в прямоугольных координатах(2.33)

где Дифференциальное уравнение теплопроводности в прямоугольных координатах— площади внутренней и наружной поверхностей трубы.

Записав уравнения (2.31) – (2.33) относительно разностей температур, а затем сложив правые и левые части уравнений, получим формулу для расчета теплопередачи (Q, Вт) через цилиндрическую стенку в виде

Дифференциальное уравнение теплопроводности в прямоугольных координатах(2.34)

Температуры на поверхностях стенки t1 и t2 рассчитываются по уравнениям (2.31) – (2.33).

Формулу (2.34) также можно представить в виде

Дифференциальное уравнение теплопроводности в прямоугольных координатах

где Дифференциальное уравнение теплопроводности в прямоугольных координатах– коэффициент теплопередачи цилиндрической стенки.

Для металлических труб с Дифференциальное уравнение теплопроводности в прямоугольных координатахможно пренебречь кривизной стенки и теплопередачу рассчитать по формулам для плоской стенки:

Дифференциальное уравнение теплопроводности в прямоугольных координатах,

Дифференциальное уравнение теплопроводности в прямоугольных координатах.

Видео:Уравнение в частных производных Уравнение теплопроводностиСкачать

Уравнение в частных производных  Уравнение теплопроводности

Теплопроводность при стационарном режиме

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Видео:Уравнение теплопроводности в цилиндрических координатахСкачать

Уравнение теплопроводности в цилиндрических координатах

Теплопроводность при стационарном режиме

  • В установившемся состоянии температурное поле T (x, yₜr, t) не зависит от времени. То есть,^ = 0.Дифференциальное уравнение теплопроводности (II-55)^ = aV2T (IV-I) DX is (П-56 И Р-57) Eh2du * Ldz2(IV-2)для решения конкретной задачи в Формулу (IV-2) необходимо добавить соответствующее граничное условие. Рассмотрим несколько простых случаев Определение стационарного температурного поля для объектов различной формы. § 1.

To рассмотрим теплопроводность тела плоская стенка неограниченная плоская стенка с подходящим температурным полем Его толщина равна 6, его поверхность параллельна плоскостям Y, z декартовой системы координат и находится при x = 0 и x = 6(рис. IV-1).Давайте поддержим его этими поверхностями Соответственно, задаются температуры 7 и Т₂, то есть граничные условия типа 1(Глава 2,§ 5).

Выражение (IV-3) немедленно интегрируется. Людмила Фирмаль

Если Γ и T₂ не зависят от координат y и z, то, очевидно, искомое температурное поле Уравнение (IV-2), которое зависит от этих координат и определяет температуру T (x), принимает вид

= 0 (IV-3) dx2V ’при граничном условии. Г= 7 при x-0 (IV-4) T-X Tn-6.Общая форма решения T (x)=C₁X4-C₂,(1V-5).Где C. И C₂-произвольная константа, определяемая из граничного условия. (IV-4).фактически, если вы установите x = 0 в(IV-5)и используете первую формулу (IV-4), вы получите 2-е условие (IV-4) и (на основе) Л=С₂, (IV-6), x = 6. (IV-6) есть фига IV -!.

Теплопроводность плоской стенки т = С.6+С₂ = С.6+ 7 ′., (IV-7) где C = ^, 16 наконец, решение уравнения (IV-3) при граничном условии(1V-4) видно из (IV-8)(1V-8 T(x)линейно зависит от x, и эта зависимость T (x)= f (x)показана на рисунке вдоль толщины стенки. IV-1.Тепловой поток q можно определить по закону Фурье (1-3): q = — XgradГ, или В нашем случае, дифференцируя распределение температуры по толщине стенки (IV-8), мы видим, что dxowhence (IV-9) получается из Формулы (IV-9), которая равна 7′. > Flux тепловой поток положительный, то есть он направлен вдоль положительного направления оси X. В 7 7 ′ 2 он направлен в противоположную сторону.

Этот результат является результатом второго закона термодинамики. В частности, тепло передается от нагретого тела к неотапливаемому. Количество тепла, проходящего через стенку за единицу времени, легко вычисляется с помощью (IV-9), q = ^ = X (T₁ — ^ 7′) 4 -/⁷. (1V-10) перепишите уравнение Фурье (P-54) в цилиндрической системе координат с цилиндрическим wall. To сделайте это, декартовы координаты и Цилиндрические координаты (рис. IV-2), x = r cos B, y = r sin B, z = R.

После проведения изменения этой переменной форма уравнения цилиндрической системы координат (P-54) равна dT / dTT- = а-э ДГ * _ ДТ Р ДГ &т р * ДВ. Рассмотрим 1D процесс стационарной теплопроводности на бесконечной цилиндрической стенке (рис. IV-3).Если на рисунке IV-2.Соотношение Прямоугольные и цилиндрические координаты T рис. 1в-3.Теплопроводность цилиндрической стенки, внутренней (r = r) и внешней (r-RJ) поверхности стенки.

Они не зависят от угла Вига, искомое температурное поле не зависит от этих переменных, и если оно стационарно, то уравнение (IV-11) имеет вид (FT (g) 1 dT ® Q dr-r dr (IV-12) при заданном граничном условии типа 1 R = r₁T =Г= = ₂ ₂t =t 決定 определяет распределение температуры по всей толщине стенки. Формула (IV-12) Переписывание (IV-13) (IV-14) Теперь 1 раз integration. As в результате после 2-го интеграла получаем общее решение уравнения. (IV-14): T(g)= CJn g 4-C₂. (IV-15) постоянная интеграция C! И С₂ должно быть определено из граничного условия(IV-13).Р= rxT₁=С₁1пг₁+С₂]и (IV-16)⁼ГГ2Т2⁷ ⁷1ПГ₂4″ С₂.

Если вы решите для (IV-16) относительно Ca, вы найдете первую интегральную константу Ca≥1n-и вторую константу Ca₂C = Tj-Cjlnr ^-br ^ linr ^ 1гг-ЛПП. ’1′ 1 замена Найдя значения Cb и C₂ в Формуле (IV-15), получим искомое распределение температуры по всей толщине цилиндрической стенки In-T ® =Tₗ+(T,-T₁) — I. (IV-17) ’ I следовательно T(g) Логарифмически зависит от радиусной координаты r. плотность теплового потока q определяется по закону Фурье. Основываясь на (IV-17), существует проходящее количество тепла.

Цилиндрическую стенку, которая указывает на единицу длины трубы, можно определить по формуле: Q-qF-q-2nr = inK (T1-T.). (IV-19) — — — в ri Q естественно не зависит от R. Тепло не будет накапливаться anywhere. By по аналогии с многослойной цилиндрической стенкой(1-6) принимается тепловое сопротивление многослойной цилиндрической стенки (рис. IV-4). Равна сумме тепловых сопротивлений отдельных слоев. На основе этого утверждения можно использовать формулу (IV-19) для создания формулы, определяющей количество тепла, которое проходит через нее.

Q-присваивается единице длины стены. Преобразуйте уравнение сферической стенки (P-54) в сферическую систему координат. Используйте его для этого Следующая зависимость между Декартовыми координатами и сферическими координатами (рис. IV-5): x = r sinccosф, y = r sin 8 sinФ, z = r cos 8.Проводимость многослойной цилиндрической стенки В В сферической системе координат форма уравнения (P-54) равна dTha2?Как туда добраться, 2 at, 1 d F. dT ₜdtL3r3g dr’g2sinea ae /1_g2sin26dF2] (IV-2I) рассмотрим стационарный процесс Теплопроводность внутренней поверхности (r = rx) и наружной поверхности (r =r₂) сферической стенки (оболочки) (рис. IV-6) соответственно.

Т₂. Семь Т₂ является постоянным. То есть она не зависит от направления, которое определяется углом 8 и cp. Поэтому требуемое температурное поле сферической стенки не зависит от этих переменных、 Функция радиальной переменной r. вид дифференциального уравнения (1V-2I) в этом случае равен IV-5.Корреляция декартовых и сферических координат IV-6. Для решения задачи теплопроводности граничного значения сферической конформации (IV-22, IV-23) необходимо определить распределение температуры по всей толщине сферической стенки. Переписывание Формулы (IV-22) (Ив-24) m2dr доктор! сначала в результате первого интеграла получается dr r* второй .

Интеграл дает Г ® =Г (IV-25).Общее использование граничных условий (IV-23) Решите уравнение (1V-25) для определения любых констант Ci и C2:r — — — rx m — — ^ + c2, T A = — — — ^ + C2. для r = r2 G # Если вы решите эти уравнения относительно C и C₂, вы получите 1 _ _ _ _ _ 1_ Заменяет G «-G1 G1 gg и G₂-G1 Cx и C₂ общим решением (IV-25).Упрощенный, наконец m = r = +(T₁-t₁) r yr от Gg-gx (IV-26) (IV-26), температура T (g) Она изменяется по толщине сферической стенки вдоль гиперболы. Определите тепловой поток из раствора (IV-26) — CL-L) ’ 1 ’» количество тепла, передаваемого через сферу 1 yy-yy.

В единицу времени, 2 =₉Г=₉.4лг2 = 4ях (л-Г₂) -!он равен а^ -. (IV-27) / ■ » — ’ 1 не зависит от r по тем же причинам, что и для цилиндрических стенок.§ 2.Теплопроводность тела с Внутренние источники тепла процессы теплопроводности в твердых телах обусловлены внешними условиями, то есть распределением температуры и теплового потока Подвод (отвод) тепла от поверхности тела и образующейся в результате внешней среды.

Математически это выражалось в выделении определенных граничных условий на поверхности тела. Рассмотрим процесс теплопередачи, когда помимо такого внешнего источника тепла существует еще и внутренний источник (сток), который распределяется определенным образом. Объем тела. Вы можете привести много примеров таких processes. It ограничивается упоминанием о том, что тепло образуется, когда электрический ток протекает через проводник.

Тепло Количество тепловыделяющих элементов выделяется и в замедлителях реактора. Когда в рассматриваемом объеме тела происходит определенная химическая реакция, он высвобождается(поглощается) В таком вопросе теплопроводности желательным обычно является распределение температуры внутри тела субъекта, а мощность внутреннего источника тепла (стока) принимается во внимание Это было дано. Мощность источника (стока) — это количество тепла, которое выделяется (поглощается) единицей объема тела за единицу времени.

Эта сумма показана в qᵥ、 Килоджоули / кубический метр / сек (kA s /l13-sec).В зависимости от характера процессов, происходящих в рассматриваемом теле, источник тепла (Сток) может выбираться по-разному. Или концентрируйтесь на определенной части или точке объема тела в течение определенного времени, или равномерно распределяйтесь по всему объему, в зависимости от температуры. Уравнения Теплопроводность при наличии внутреннего источника тепла описывается в виде cp% — = Ky’t +qᵥ. (IV-28) изменение теплоты на единицу объема за 01 единицу времени、 .

Здесь имеет место не только процесс теплопроводности, который является первым членом в правой части формулы (IV-28), но и выделение (поглощение) тепла в единице объема qv, которое мы рассмотрим ниже. Рассматривается задача о постоянном во времени и равномерно распределенном по всему источнику тепла. Теплопроводность бесконечной стенки с внутренним источником тепла плоскость YY и неограниченная стенка (рисунок IV-7) очищаются с обеих сторон при постоянной температуре жидкости Tf. Коэффициент теплопередачи .

A и выход равномерно распределены Объем qᵥ стенки источника тепла равен given. It необходимо найти распределение температуры по всей толщине стенки. Состояние поверхности стенки x = — I n x = I является постоянным, то есть, В зависимости от координат y и z температура будет функцией только от x, а уравнение (IV-28) будет иметь вид xs_ ⁼vv IV IV’2⁾.Однако, — 1 — = а(Тх ₌ / — г.) (IV-30) dx x = 1 * последний и В других случаях источник тепла может зависеть не только от координат, но и от температуры. Для аналогичных условий симметрия на поверхности x—I .

Температурное поле для плоскости x = 0 может быть заменено условием dx x-o (IV-31).От температуры очищающего раствора вводят Счетную температуру (IV-32)и затем кромку Задача (IV-29 напишите qydx2X dx x> = Q. интегрируйте уравнение (IV-33).d / _ _ _ _ _ Chu ’dx dx j X и IV-31) re — (IV-33) (IV) B 7 1 Tf X g *’ / 1 1 x рисунок IV-7.Теплопроводность плоской стенки с источником тепла после первого уплотнения приобретает вид (IV-35), а после второго уплотнения общий раствор (IV-33) получается в виде x 4-Cj. х 4-Cₜ. Граничное условие (IV-36) (IV-34) используется для определения констант /

Cx и C₂. Из (IV-35) и 2-го граничного условия (IV-34), C,= 0. dx (IV-37) в начале условия, где x = I (IV-34), получаем 2A. то есть, подставляя значение константы произведения С₂ в (IV-37), получаем решение вида (IV-38). Решение квадратично зависит от x (параболически).С другой стороны, если не было внутреннего источника, зависимость была линейной[ссылка(Iv-8)].Представьте себе решение(IV-38) Обобщенная координата. Если вы выбираете как раздел/2Liv, то все термины (IV-38), количество с размером температуры, и половина своей толщины / характерного размера стены.

  • Левая сторона (IV-39) (IV-39) является безразмерной температурой поиска. А правая сторона содержит независимые переменные в виде безразмерных координат-y и комплексных параметров Виде био-стандартом. Следовательно, (IV-39)-это (P1-13a) * q.. l2(характеристическая температура Oo = — ^ y — |является специфической функцией вида, которая получается на основе анализа) Решите уравнение (IV-33) с граничным условием (IV-34).Теплопроводность цилиндрической стенки с источником тепла делают цилиндрическую стенку (рис. IV-8) однородной.

Распределенный по всей его толщине источник тепла охлаждается снаружи жидкостью с температурой Tf коэффициентом теплопередачи a и прочностью источника тепла qᵥ.It требуется Найти распределение температуры= = T-Tf по толщине стенки. •В этом случае вводить параметрические критерии не требуется. Если полый цилиндр в вопросе можно рассматривать Для d (g) используется уравнение dr2g, поскольку если температура окружающей среды.

Есть рисунок 1В-8.Теплопроводность цилиндрической стенки с источником тепла chu g, Cx dr X 2. Людмила Фирмаль

Tf постоянна, то желаемое распределение температуры зависит только от радиальных координат. на внешней поверхности цилиндрической стенки dr X (IV-40) r = r, предполагая, что теплообмен происходит по закону Ньютона,=: ab |(IV-41)dr r =rₜ (Ив-42) рублей. df> dr тогда dr dr J X если записать формулу (IV-40) в виде интеграла, то получится 1 2. ′ g (IV-44) итерационно интегрируют и получают общее решение уравнения (IV-43) 0 =—+Cilⁿr+ C»- Используйте (IV-45) A 4 граничных условия (IV-41) и (IV-42) для определения любых констант Cx и C₂.

Из условия (IV-42), M, C, ₀dr r ^rₜ2X q», то есть из условия (IV-41) определим С₂ отсюда (IV-45) и подставив значение и С₂ получим конкретное решение формулы(IV-40). Представьте себе решение (IV-46) с цилиндрической стенкой (IV-46) с обобщенными координатами(1V-46).Разделите все члены (IV-46) и выберите внешний (охлаждающий) радиус в качестве характерного размера С поверхности r2 цилиндрической стенки получаем O 4X. левая сторона (IV-47) является безразмерной искомой температурой, как и в(1V-39), а независимая переменная переходит в правую сторону. Джи! составной параметр в виде ссылки Biot, в виде g₂.

Как и в случае (IV-39), Формула (IV-47)является специфической функцией вида(1P-13a).Для цилиндрических стержень (r,= 0)обобщенная зависимость (IV-47) принимает вид (IV-48)§ 3. Теплопроводность тела с 2-мерным температурным полем 2-мерное температурное поле T-f (x, y) Получение аналитических решений, удовлетворяющих дифференциальным уравнениям и граничным условиям, рекомендуется для объектов простой формы. Для тела сложной формы решением является.

Громоздкие, в некоторых случаях недоступные. Тогда для фактического расчета аналитическое решение либо упрощается одним из численных методов аппроксимации, либо ставится задача Решайте численно в электронных вычислительных машинах и тому подобное. Мы найдем аналитическое решение дифференциального уравнения для некоторых граничных условий, которые будут представлены ниже.

Для двумерного Формат температурного поля уравнения T = T (x, y) (P-54) имеет вид^ 4-^ = 0. в качестве решения dhadu1 (IV-49)мы применяем метод разделения переменных. Найти решение уравнения в виде Произведение 2 функций, то есть T = f(x, y)= X (x)Y (y), (IV-50), где X (x) — функция только переменной x. Y (y) является функцией только переменной y. Формула т из(IV-50) (1V-49), после деления на X и Y, _dtY__________ 1 вы получите d * XY dy * XX1 (IV-51).Поскольку левая сторона (IV-51) не зависит от x и равна значению (правая сторона), это если вы не зависите от y, общие (оба) значения не зависят от x или y. таким образом, общее значение (для обеих частей) уменьшается до постоянного значения. Это полезно для принятия формы k2.

Как и в (IV-56), напишите общее решение (IV-53) X = Cxeⁱkx+C₂e〜ⁱkx, (IV-59).Здесь (и С₂-произвольные константы. Однако формулы e1x и е-1 actually на самом деле фактические значения х, кроме Х = 0.Используя Эйлера официальный e±ТТХ₌потому что£Х±З Син х (ИЖ-60) (ИЖ-59)* х — сов / экс-ЖБ грех КХ. (ИЖ-61) Можно написать общее решение Формулы (IV-59) на основе (IV-60) в виде T = x XU =(AcosЛх4-Bsin KX) (SEC>〜J-de-K>) (IV-62).

Применяйте его для решения конкретных задач. Теплопроводность плоских стенок с 2-мерным температурным полем рассмотрим конкретную задачу теплопроводности плоских стенок (рис. IV-9).Пусть T-форма температурного поля на стене = /(х,//), температуры в направлении оси Z во всех точках (вдоль стены толщина) X = СЈ е ’ * — r4C₂e -и KX = Ки(coskx + я грешу опций)-| −4- СГ (потому что / с GX-мне грех КХ)=(СЈ-Ф-C₂) потому что с KX + я (Cₜ-C₂) грех КХ — = а потому что КХ ^ — ПБ грех КХ -, (а = с ^ СГ, 5 = ^ −0.).

Тот же смысл. Избыточная температура(гл. Уравнение Лапласа (P-56) для этой задачи в 111,§ 2) имеет вид dx2du2. Граничное условие типа 1 O = T-Ta = 0 задается для x = 0 и x = L. где 0-искомая избыточная температура стенки. Ta-поддерживается температура боковой стенки Постоянный. (IV-63) (IV-64) 0 — > 0 как y — > — oo. (IV-66) (рисунок 1V-9) рисунок IV-9. Теплопроводность в 2D температурном поле, Т= / (*•У) где 7 — температура на нижнем конце (см. Рисунок). 1В-9) стены поддерживаются постоянными.

Решением уравнения (IV-63) будет уравнение (1V-62). в последнем случае абсолютная переменная температуры T заменяется избыточной переменной F. Используя граничные условия (IV-64 и IV-66), определите постоянные коэффициенты A, B, C, D. Из первого условия(1V-64) выполните x-0 и A-0. x = 0 должен быть равен нулю, но cosx |z₌ ₀ = coso = 1, то есть если он не равен пуле, то коэффициент a должен быть равен нулю. Поскольку нас интересуют нетривиальные решения, а именно, они не равны нулю Аналогично коэффициент B равен нулю, поэтому если x = L, то требуется sinkL 0.Значение нетривиального решения, удовлетворяющего границе уравнения (IV-63) .

Условие (IV-64) называется собственным значением, а нетривиальное решение этой задачи называется собственной функцией, соответствующей заданному eigenvalue. So кл- ПЛ, вот н= 0、1、2、3、…в результате k>/ / L, k₂-2n / L,…kₙ= !! Си.,…Из условия (IV-66) следует, что коэффициент C = 0 (y — * oo, если e * y неограничен) Рост.) При A = 0, C-0 решение(1V-62) не может принимать вид^-BDe sin ^-^-x ^ =£e sin ^ — ^ ^ x ^ (IV-67) решение (IV-67) удовлетворяет дифференциальному уравнению (1V-63). любое натуральное значение n. из полученного решения (IV-67) видно, что для 7 -Ta 0 условие (IV-65) не выполняется для выбора E-En. 0 после этого .

Единственным решением проблемы является тривиальное решение 0 = 0.С другой стороны, сумма любых 2 (и, следовательно, любого конечного числа) решений линейных однородных производных Уравнение также является решением. Если мы суммируем число решений типа (IV-67) до бесконечности, то увидим, что мы можем выбрать E = En так, чтобы условие (IV-65) было выполнено(или、 Условие (IV-66)] и бесконечная сумма d = 2£e_T «sin (- ^x’) (IV-68) сходятся, а краевые задачи (IV-63), (IV-64), (IV-65) и (IV-66) сходятся.

Как найти Ep Используйте граничное условие (IV-68) (IV-65). если y = 0, то форма выражения (IV-68) равна (IV-69). чтобы понять формулу (IV-69), вспомним следующее положение из математики. Функция является F (x)с периодом 2n дифференцируема или, по крайней мере, кусочно дифференцируема и может быть расширена рядом Фурье следующих форм: где a0, an и bn Величина, которая называется коэффициентом ряда Фурье и определяется по формуле: lnp-j /(x) cosnxJx (l = 1,2 t 3,…(IV-71) — — — l l°0 = ’ T (IV-713) — — — l l 6n = — J — (F (x) sin nxdx(n = l, 2, 3. ). л.(ИЖ-72) с / — — — Л. Если F (х) нечетная функция (χχ) потому что NX-это странно. Помнишь? В случае нечетной функции выполняется равенство f (- x)= — f (x).

Тогда об этом л§f (x) dx = 0-и, следовательно, в случае (IV-71) an = jf (x) cos nx dx = 0(n = 1, 2, 3,…). — Я имею в виду… Вид ряда Фурье нечетных функций (IV-70) имеет вид f(x)= S b sin px. Чтобы определить bn из (IV-73) n = I (IV-72), для четной функции используйте равенство f (- X) 0), то, изменив переменную, можно переписать Формулы (IV-73) и (IV-75) в виде ZW = BS&». грех (- ПХ) (IV-76) и L sino теперь возвращаются к Формуле (IV-69).

Положим Dx)=в этом случае Формулы (IV-69)и(IV-76) идентичны. Таким образом, выражение (IV-69) представляет собой ряд Фурье следующих констант: Интервал 10, ZJ(Z7 > 0).Константа En равна Ln и по формуле (IV-77) y-x)/ x, где n = 1,2,3……….(IV-77) 0 n = 1, 3, 5, cos pl—1 = n = 2, 4, 6, cos pl-4-1 и En = 0.Конкретные решения (IV-68) могут быть записаны в окончательном виде (IV-78).Здесь мы используем следующие результаты: если функция Dx) с периодом разлагается равномерно В случае сходящегося ряда последний должен быть ближе к Фурье. (Серия (IV-78) четко сходится равномерно.

Отметим, что согласно (IV-78), температура стенки в любой точке не зависит. Теплопроводность в случае учета отсутствия теплового потока на стене. Из полученного решения также ясно, что если = 0, то решение 0 = 0.§ 4. При передаче тепла от жидкости (а.) до падения теплопроводности в ребрах определенных пересечений через сплошную стенку к газу (А₂), общее тепловое сопротивление!K определяется. 4 -= по формуле (1-12)-+ 4-± ИЖ — ⁷⁹ > к-Аль — Xa₂ последний срок 1 /a₂ вносит наибольший вклад в общее тепловое сопротивление, 1, а в некоторых случаях и 2-х значное число больше, чем первых 2-х значное число членов 1 / aP обычно, a₂ не может быть увеличен.

Кроме того, для усиления теплопередачи поверхность стенки со стороны газа увеличена ребрами. Рассмотрим теплопроводность некоторой кромки Раздел 1112).Упростите фактический процесс и предположите следующее: 1)температура ребра T изменяется только вдоль оси Z. 2) тепло передается только в окружающую среду Верхняя (Lb) и нижняя (Lb) поверхности ребра. 3) коэффициент передачи тепла от края нервюры к окружающей среде a постоянн значение, и поток тепла Формула = a (T-T.), (IV-80), где Tf-температура окружающей среды.

Выведем дифференциальное уравнение теплопроводности для ribs. To для этого создадим уравнение теплового равновесия выделенного объема qz2hb-qz + bz2hb-a (2b & z) (T-Tj)= ребро в виде 0 (рисунок IV-10).Разделите все члены полученного уравнения на 2 hb и найдите ограничение Az O (IV-81) dz h. подставьте (IV-81) вместо q. Значение из уравнения закона Фурье (1-Za). в результате получаем искомое дифференциальное уравнение теплопроводности для рассматриваемого ребра dza.

Дополнительные граничные условия: 1) t = Tda (IV-83) решение z = O, z-L обозначается обобщенной переменной (III-13a).Введение температурных безразмерных параметров (IV-84) ’W-координата 2 tf= -^ -. (IV-85) (IV-82) эталонный Bi = — y и параметрический эталонный P = — (для характерных размеров ребер、 Его длина L и половина толщины L). в этом случае наиболее удобное для решения сочетание критериев Bi и P принимает вид: условие задачи обобщенной переменной описывается следующим образом:.

Дифференциальные уравнения (IV-82) (IV-86) дополнительные граничные условия (IV-87) и решение системы br = o = 1 (IV-88) (IV-86, IV-87, IV-88) получены с помощью гиперболической функции в виде Или позвольте мне ввести характеристики эффективности реберной кости 8-NZ-(THN) sh NZ (IV-89) chN (l-Z) ch N (IV-90).Используйте отношение тепло которое на самом деле в качестве его меры Тепло, рассеиваемое поверхностью ребра, рассеивается, если температура всей поверхности ребра равна Tw. As в рассматриваемом случае и эффективность ребер Формула fOdZ-т — — — — — — — — — — — 5-L «1-г > I» (IV-91) о (IV-92) может быть определена.

Дифференциальное уравнение теплопроводности в прямоугольных координатах

Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах Дифференциальное уравнение теплопроводности в прямоугольных координатах

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

📸 Видео

6-1. Уравнение теплопроводностиСкачать

6-1. Уравнение теплопроводности

Закон и уравнение теплопроводностиСкачать

Закон и уравнение теплопроводности

Решение уравнения теплопроводности методом конечных разностейСкачать

Решение уравнения теплопроводности методом конечных разностей

Лекция №1.1 Явная и неявная схемы для уравнения теплопроводностиСкачать

Лекция №1.1 Явная и неявная схемы для уравнения теплопроводности

12.1 Как остывает кирпич (уравнение теплопроводности)Скачать

12.1 Как остывает кирпич (уравнение теплопроводности)

Уравнение теплопроводности в кольцеСкачать

Уравнение теплопроводности в кольце

Горицкий А. Ю. - Уравнения математической физики. Часть 2 - Уравнение теплопроводностиСкачать

Горицкий А. Ю. - Уравнения математической физики. Часть 2 - Уравнение теплопроводности

Вывод уравнения теплопроводностиСкачать

Вывод уравнения теплопроводности

Одномерное уравнение теплопроводности. Виды краевых задачСкачать

Одномерное уравнение теплопроводности. Виды краевых задач

Интуитивное понимание формулы теплопроводности (часть 11) | Термодинамика | ФизикаСкачать

Интуитивное понимание формулы теплопроводности (часть 11) | Термодинамика | Физика

Уравнения математической физики. Уравнение теплопроводности (диффузии).Скачать

Уравнения математической физики. Уравнение теплопроводности (диффузии).

Уравнение теплопроводности на полупрямой (решение задачи)Скачать

Уравнение теплопроводности на полупрямой (решение задачи)

Радкевич Е.В. - Уравнения математической физики - 9. Уравнение теплопроводностиСкачать

Радкевич Е.В. - Уравнения математической физики - 9. Уравнение теплопроводности

8.1 Решение уравнения теплопроводности на отрезкеСкачать

8.1 Решение уравнения теплопроводности на отрезке

Решение неоднородного уравнения теплопроводностиСкачать

Решение неоднородного уравнения теплопроводности

Стационарное решение одномерного уравнения теплопроводности.Скачать

Стационарное решение одномерного уравнения теплопроводности.
Поделиться или сохранить к себе: