Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника

Дифференциальное уравнение свободных незатухающих коле­баний

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника

Здесь х — смещение колеблющейся материальной точки, t — время,

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника

где А — амплитуда колебаний, Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятникафаза колебаний, φ0 — начальная фаза колебаний φ= φ0 при t=0, ω0— круговая частота колебаний.

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника, где k — коэффициент квази­упругой силы (F= — kx), возникающей в системе при выходе ее из положения равновесия.

Период колебаний:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника

где L — длина маятника, g — ускорение свободного падения;

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника

где k — жесткость пружины;

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника

где J — момент инерции физического маятника относительно оси, проходящей через точку подвеса; L— расстояние между точкой подвеса и центром массы маятника.

Приведенная длина физического маятника

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника

Скорость материальной точки, совершающей гармонические ко­лебания,

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника

где Aω0=Vmax –амплитуда скорости.

Ускорение материальной точки при гармонических колебаниях:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника

где Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника-амплитуда ускорения.

Видео:Уравнения и графики механических гармонических колебаний. 11 класс.Скачать

Уравнения и графики механических гармонических колебаний. 11 класс.

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника

Простейшими из колебаний являются гармонические. Это колебания, при которых колеблющаяся величина изменяется со временем по закону синуса или косинуса.

Рассмотрим пружинный маятник (Рис. 1.7.1).

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника
Рис. 1.7.1. Пружинный маятник

В состоянии покоя сила тяжести уравновешивается упругой силой:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.1)

Если сместить шарик от положения равновесия на расстояние х, то удлинение пружины станет равным Δl0 + х. Тогда результирующая сила примет значение:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.2)

Учитывая условие равновесия (1.7.1), получим:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.3)

Знак «минус» показывает, что смещение и сила имеют противоположные направления.

Упругая сила f обладает следующими свойствами:

  1. Она пропорциональна смещению шарика из положения равновесия;
  2. Она всегда направлена к положению равновесия.

Для того, чтобы сообщить системе смещение х, нужно совершить против упругой силы работу:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.4)

Эта работа идет на создание запаса потенциальной энергии системы:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.5)

Под действием упругой силы шарик будет двигаться к положению равновесия со все возрастающей скоростью Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника. Поэтому потенциальная энергия системы будет убывать, зато возрастает кинетическая энергия Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(массой пружины пренебрегаем). Придя в положение равновесия, шарик будет продолжать двигаться по инерции. Это — замедленное движение и прекратится тогда, когда кинетическая энергия полностью перейдет в потенциальную. Затем такой же процесс будет протекать при движении шарика в обратном направлении. Если трение в системе отсутствует, шарик будет колебаться неограниченно долго.

Уравнение второго закона Ньютона в этом случае имеет вид:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.6)

Преобразуем уравнение так:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.7)

Вводя обозначение Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника, получим линейное однородное дифференциальное уравнение второго порядка:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.8)

Прямой подстановкой легко убедиться, что общее решение уравнения (1.7.8) имеет вид:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.9)

где а — амплитуда и φ — начальная фаза колебания — постоянные величины. Следовательно, колебание пружинного маятника является гармоническим (Рис. 1.7.2).

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника
Рис. 1.7.2. Гармоническое колебание

Вследствие периодичности косинуса различные состояния колебательной системы повторяются через определенный промежуток времени (период колебаний) Т, за который фаза колебания получает приращение 2π. Рассчитать период можно с помощью равенства:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.10)

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.11)

Число колебаний в единицу времени называется частотой:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.12)

За единицу частоты принимается частота такого колебания, период которого равен 1 с. Такую единицу называют 1 Гц.

Из (1.7.11) следует, что:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.13)

Следовательно, ω0 — это число колебаний, совершаемое за 2π секунд. Величину ω0 называют круговой или циклической частотой. Используя (1.7.12) и (1.7.13), запишем:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.14)

Дифференцируя (1.7.9) по времени, получим выражение для скорости шарика:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.15)

Из (1.7.15) следует, что скорость также изменяется по гармоническому закону и опережает смещение по фазе на ½π. Дифференцируя (1.7.15), получим ускорение:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.16)

1.7.2. Математический маятник

Математическим маятником называют идеализированную систему, состоящую из нерастяжимой невесомой нити, на которой подвешено тело, вся масса которого сосредоточена в одной точке.

Отклонение маятника от положения равновесия характеризуют углом φ, образованным нитью с вертикалью (Рис. 1.7.3).

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника
Рис. 1.7.3. Математический маятник

При отклонении маятника от положения равновесия возникает вращательный момент, который стремится вернуть маятник в положение равновесия:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.17)

Напишем для маятника уравнение динамики вращательного движения, учитывая, что момент его инерции равен ml 2 :

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.18)

Это уравнение можно привести к виду:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.19)

Ограничиваясь случаем малых колебаний sinφ ≈ φ и вводя обозначение:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.20)

уравнение (1.7.19) может быть представлено так:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.21)

что совпадает по форме с уравнением колебаний пружинного маятника. Следовательно, его решением будет гармоническое колебание:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.22)

Из (1.7.20) следует, что циклическая частота колебаний математического маятника зависит от его длины и ускорения свободного падения. Используя формулу для периода колебаний (1.7.11) и (1.7.20), получим известное соотношение:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.23)

1.7.3. Физический маятник

Физическим маятником называется твердое тело, способное совершать колебания вокруг неподвижной точки, не совпадающей с центром инерции. В положении равновесия центр инерции маятника С находится под точкой подвеса О на одной с ней вертикали (Рис. 1.7.4).

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника
Рис. 1.7.4. Физический маятник

При отклонении маятника от положения равновесия на угол φ возникает вращательный момент, который стремится вернуть маятник в положение равновесия:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.24)

где m — масса маятника, l — расстояние между точкой подвеса и центром инерции маятника.

Напишем для маятника уравнение динамики вращательного движения, учитывая, что момент его инерции равен I:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.25)

Для малых колебаний sinφ ≈ φ. Тогда, вводя обозначение:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.26)

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.27)

что также совпадает по форме с уравнением колебаний пружинного маятника. Из уравнений (1.7.27) и (1.7.26) следует, что при малых отклонениях физического маятника от положения равновесия он совершает гармоническое колебание, частота которого зависит от массы маятника, момента инерции и расстояния между осью вращения и центром инерции. С помощью (1.7.26) можно вычислить период колебаний:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.28)

Сравнивая формулы (1.7.28) и (1.7.23) получим, что математический маятник с длиной:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.29)

будет иметь такой же период колебаний, что и рассмотренный физический маятник. Величину (1.7.29) называют приведенной длиной физического маятника. Следовательно, приведенная длина физического маятника — это длина такого математического маятника, период колебаний которого равен периоду колебаний данного физического маятника.

Точка на прямой, соединяющей точку подвеса с центром инерции, лежащая на расстоянии приведенной длины от оси вращения, называется центром качания физического маятника. По теореме Штайнера момент инерции физического маятника равен:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.30)

где I0 — момент инерции относительно центра инерции. Подставляя (1.7.30) в (1.7.29), получим:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.31)

Следовательно, приведенная длина всегда больше расстояния между точкой подвеса и центром инерции маятника, так что точка подвеса и центр качания лежат по разные стороны от центра инерции.

1.7.4. Энергия гармонических колебаний

При гармоническом колебании происходит периодическое взаимное превращение кинетической энергии колеблющегося тела Ек и потенциальной энергии Еп, обусловленной действием квазиупругой силы. Из этих энергий слагается полная энергия Е колебательной системы:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.32)

Распишем последнее выражение

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.33)

Но к = mω 2 , поэтому получим выражение для полной энергии колеблющегося тела

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.34)

Таким образом полная энергия гармонического колебания постоянна и пропорциональна квадрату амплитуды и квадрату круговой частоты колебания.

1.7.5. Затухающие колебания .

При изучении гармонических колебаний не учитывались силы трения и сопротивления, которые существуют в реальных системах. Действие этих сил существенно изменяет характер движения, колебание становится затухающим .

Если в системе кроме квазиупругой силы действуют силы сопротивления среды (силы трения), то второй закон Ньютона можно записать так:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника.(1.7.34.а)

Для решения этого дифференциального уравнения необходимо знать, от каких параметров зависит сила трения. Обычно предполагают, что при не очень больших амплитудах и частотах сила трения пропорциональна скорости движения и, естественно, направлена противоположно ей:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника,(1.7.34.б)

где r – коэффициент трения, характеризующий свойства среды оказывать сопротивление движению. Подставим (1.7.34б) в (1.7.34а):

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника,(1.7.34.в)

где Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятникаβ – коэффициент затухания; ω 0 – круговая частота собственных колебаний системы.

Решение уравнения(1.7.34.в) существенно зависит от знака разности: Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника, где ω – круговая частота затухающих колебаний. При Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятникакруговая частота ω является действительной величиной и решение (1.7.34.в) будет следующим:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника.(1.7.35)

График этой функции показан на рис.1.7.5 сплошной кривой 1, а штриховой линией 2 изображено изменение амплитуды:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника.(1.7.35.а)

Период затухающих колебаний зависит от коэффициента трения и определяется формулой

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника.(1.7.35.б)

При очень малом трении Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятникапериод затухающего колебания близок к периоду незатухающего свободного колебания (1.7.35.б)

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятникаДифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника
Рис.1.7.5. Затухающее колебаниеРис.1.7.6. Апериодический процесс

Быстрота убывания амплитуды колебаний определяется коэффициентом затухания : чем больше β, тем сильнее тормозящее действие среды и тем быстрее уменьшается амплитуда. На практике, степень затухания часто характеризуют логарифмическим декрементом затухания , понимая под этим величину, равную натуральному логарифму отношения двух последовательных амплитуд колебаний, разделенных интервалом времени, равным периоду колебаний:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника;

Следовательно, коэффициент затухания и логарифмический декремент затухания связаны достаточно простой зависимостью:

λ=βT .(1.7.37)

При сильном затухании Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятникаиз формулы (1.7.37) видно, что период колебания является мнимой величиной. Движение в этом случае уже называется апериодическим . График апериодического движения в виде показан на рис. 1.7.6. Незатухающие и затухающие колебания называют собственными или свободными . Они возникают вследствие начального смещения или начальной скорости и совершаются при отсутствии внешнего воздействия за счет первоначально накопленной энергии.

1.7.6. Вынужденные колебания. Резонанс .

Вынужденными колебаниями называются такие, которые возникают в системе при участии внешней силы, изменяющейся по периодическому закону.

Предположим, что на материальную точку кроме квазиупругой силы и силы трения действует внешняя вынуждающая сила

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника,

где F 0 – амплитуда; ω – круговая частота колебаний вынуждающей силы. Составим дифференциальное уравнение (второй закон Ньютона):

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника,

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника,(1.7.38)

где Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника.

Решение дифференциального уравнения (3.19) является суммой двух колебаний: затухающих и незатухающих с амплитудой

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника,(1.7.39)

Амплитуда вынужденного колебания (1.7.39) прямо пропорциональна амплитуде вынуждающей силы и имеет сложную зависимость от коэффициента затухания среды и круговых частот собственного и вынужденного колебания. Если ω 0 и β для системы заданы, то амплитуда вынужденных колебаний имеет максимальное значение при некоторой определенной частоте вынуждающей силы, называемой резонансной .

Само явление – достижение максимальной амплитуды для заданных ω 0 и β – называют резонансом.

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника
Рис. 1.7.7. Резонанс

При отсутствии сопротивления Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятникаамплитуда вынужденных колебаний при резонансе бесконечно большая. При этом из ω рез =ω 0 , т.е. резонанс в системе без затухания наступает тогда, когда частота вынуждающей силы совпадает с частотой собственных колебаний. Графическая зависимость амплитуды вынужденных колебаний от круговой частоты вынуждающей силы при разных значениях коэффициента затухания показана на рис. 5.

Механический резонанс может быть как полезным, так и вредным явлением. Вредное действие резонанса связано главным образом с разрушением, которое он может вызвать. Так, в технике, учитывая разные вибрации, необходимо предусматривать возможные возникновения резонансных условий, в противном случае могут быть разрушения и катастрофы. Тела обычно имеют несколько собственных частот колебаний и соответственно несколько резонансных частот.

Если коэффициент затухания внутренних органов человека был бы не велик, то резонансные явления, возникшие в этих органах под воздействием внешних вибраций или звуковых волн, могли бы привести к трагическим последствиям: разрыву органов, повреждению связок и т.п. Однако такие явления при умеренных внешних воздействиях практически не наблюдаются, так как коэффициент затухания биологических систем достаточно велик. Тем не менее резонансные явления при действии внешних механических колебаний происходят во внутренних органах. В этом, видимо, одна из причин отрицательного воздействия инфразвуковых колебаний и вибраций на организм человека.

1.7.7. Автоколебания

Существуют и такие колебательные системы, которые сами регулируют периодическое восполнение растраченной энергии и поэтому могут колебаться длительное время.

Незатухающие колебания, существующие в какой-либо системе при отсутствии переменного внешнего воздействия, называются автоколебаниями , а сами системы – автоколебательными.

Амплитуда и частота автоколебаний зависят от свойств в самой автоколебательной системе, в отличие от вынужденных колебаний они не определяются внешними воздействиями.

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника
Рис. 1.7.8. Блок-схема автоколебаний

Во многих случаях автоколебательные системы можно представить тремя основными элементами (рис.1.7.8): 1) собственно колебательная система; 2) источник энергии; 3) регулятор поступления энергии в собственно колебательную систему. Колебательная система каналом обратной связи (рис. 6) воздействует на регулятор, информирую регулятор о состоянии этой системы.

Классическим примером механической автоколебательной системы являются часы, в которых маятник или баланс являются колебательной системой, пружина или поднятая гиря – источником энергии, а анкер – регулятором поступления энергии от источника в колебательную систему.

Многие биологические системы (сердце, легкие и др.) являются автоколебательными. Характерный пример электромагнитной автоколебательной системы – генераторы автоколебательных колебаний.

1.7.8. Сложение колебаний одного направления

Рассмотрим сложение двух гармонических колебаний одинакового направления и одинаковой частоты:

x 1 =a 1 cos(ω 0 t + α 1 ), x 2 =a 2 cos(ω 0 t + α 2 ).

Гармоническое колебание можно задать с помощью вектора, длина которого равна амплитуде колебаний, а направление образует с некоторой осью угол, равный начальной фазе колебаний. Если этот вектор вращается с угловой скоростью ω 0 , то его проекция на выбранную ось будет изменяться по гармоническому закону. Исходя из этого, выберем некоторую ось Х и представим колебания с помощью векторов а 1 и а 2 (рис.1.7.9).

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника
Рис.1.7.9

Вектор а является суммой векторов а 1 и а 2 . Проекция вектора а на ось Х равна сумме проекций векторов а 1 и а 2 :

Следовательно, вектор а представляет собой результирующее колебание. Этот вектор вращается с той же угловой скоростью, что и векторы а 1 и а 2 . Таким образом, результирующее движение представляет собой гармоническое колебание с частотой ω 0 , амплитудой а и начальной фазой α. Используя теорему косинусов, находим значение амплитуды результирующего колебания:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.40)

Из рис.1.7.6 следует, что

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника.

Схемы, в которых колебания изображаются графически в виде векторов на плоскости, называются векторными диаграммами.

Из формулы 1.7.40 следует. Что если разность фаз обоих колебаний равна нулю, амплитуда результирующего колебания равна сумме амплитуд складываемых колебаний. Если разность фаз складываемых колебаний равна Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника, то амплитуда результирующего колебания равна Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника. Если частоты складываемых колебаний не одинаковы, то векторы, соответствующие этим колебаниям будут вращаться с разной скоростью. В этом случае результирующий вектор пульсирует по величине и вращается с непостоянной скоростью. Следовательно, в результате сложения получается не гармоническое колебание, а сложный колебательный процесс.

1.7.9. Биения

Рассмотрим сложение двух гармонических колебаний одинакового направления мало отличающихся по частоте. Пусть частота одного из них равна ω , а второго ω+∆ω, причем ∆ω 1 =a cos ωt, x 2 =a cos(ω+∆ω)t.

Сложив эти выражения и используя формулу для суммы косинусов, получаем:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.41)

(во втором множителе пренебрегаем членом Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятникапо сравнению с ω). График функции (1.7.41) изображен на рис. 1.7.10.

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника
Рис.1.7.10

Колебания (1.7.41) можно рассматривать как гармоническое колебание частотой ω, амплитуда которого изменяется по закону Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника. Эта функция является периодической с частотой в два раза превышающей частоту выражения, стоящего под знаком модуля, т.е. с частотой ∆ω. Таким образом, частота пульсаций амплитуды, называемая частотой биений, равна разности частот складываемых колебаний.

1.7.10. Сложение взаимно перпендикулярных колебаний (фигуры Лиссажу)

Если материальная точка совершает колебания как вдоль оси х, так и вдоль оси у, то она будет двигаться по некоторой криволинейной траектории. Пусть частота колебаний одинакова и начальная фаза первого колебания равна нулю, тогда уравнения колебаний запишем в виде:

х=а cos ωt, y=b cos(ωt+α),(1.7.42)

где α – разность фаз обоих колебаний.

Выражение (1.7.42) представляет заданное в параметрическом виде уравнение траектории, по которой движется точка, участвующая в обоих колебаниях. Если исключить из уравнений (1.7.42) параметр t, то получим уравнение траектории в обычном виде:

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.43)

Уравнение (1.7.43) представляет собой уравнение эллипса, оси которого ориентированы произвольно относительно координатных осей х и у. Ориентация эллипса и величина его полуосей зависят от амплитуд а и b и разности фаз α. Рассмотрим некоторые частные случаи:

α=mπ (m=0, ±1, ±2, …). В этом случае эллипс вырождается в отрезок прямой

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника,(1.7.44)

где знак плюс соответствует нулю и четным значениям m (рис 1.7.8.а), а знак минус – нечетным значениям m (рис.1.7.8.б). Результирующее колебание является гармоническим с частотой ω, амплитудой Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника, совершающимся вдоль прямой (1.7.44), составляющей с осью х угол Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятникаДифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(рис.1.7.11).

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника
Рис.1.7.11.а

Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника
Рис.1.7.11. б

  • α=(2m+1)Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника

  • (m=0, ±1, ±2, …). В этом случае уравнение имеет вид

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника

    Это уравнение эллипса, оси которого совпадают с осями координат, а его полуоси равны амплитудам (рис. 1.7.12). Если амплитуды равны, то эллипс становится окружностью.

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника
    Рис.1.7.12

    Если частоты взаимно перпендикулярных колебаний отличаются на малую величину ∆ω, их можно рассматривать как колебания одинаковой частоты, но с медленно изменяющейся разностью фаз. В этом случае уравнения колебаний можно записать

    x=a cos ωt, y=b cos[ωt+(∆ωt+α)]

    и выражение ∆ωt+α рассматривать как разность фаз, медленно изменяющуюся со временем по линейному закону. Результирующее движение в этом случае происходит по медленно изменяющейся кривой, которая будет последовательно принимать форму, отвечающую всем значениям разности фаз от -π до+π.

    Если частоты взаимно перпендикулярных колебаний не одинаковы, то траектория результирующего движения имеет вид довольно сложных кривых, называемых фигурами Лиссажу . Пусть, например, частоты складываемых колебаний относятся как 1 : 2 и разность фаз π/2. Тогда уравнения колебаний имеют вид

    x=a cos ωt, y=b cos[2ωt+π/2].

    За то время, пока вдоль оси х точка успевает переместиться из одного крайнего положения в другое, вдоль оси у, выйдя из нулевого положения, она успевает достигнуть одного крайнего положения, затем другого и вернуться. Вид кривой показан на рис. 1.7.13. Кривая при таком же соотношении частот, но разности фаз равной нулю показана на рис.1.7.14. Отношение частот складываемых колебаний обратно отношению числа точек пересечения фигур Лиссажу с прямыми, параллельными осям координат. Следовательно, по виду фигур Лиссажу можно определить соотношение частот складываемых колебаний или неизвестную частоту. Если одна из частот известна.

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника
    Рис.1.7.13

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника
    Рис.1.7.14

    Чем ближе к единице рациональная дробь, выражающая отношение частот колебаний, тем сложнее получающиеся фигуры Лиссажу.

    1.7.11. Распространение волн в упругой среде

    Если в каком-либо месте упругой (твёрдой жидкой или газообразной) среды возбудить колебания её частиц, то вследствие взаимодействия между частицами это колебание будет распространяться в среде от частицы к частице с некоторой скоростью υ. процесс распространения колебаний в пространстве называется волной .

    Частицы среды, в которой распространяется волна, не вовлекаются волной в поступательное движение, они лишь совершают колебания около своих положений равновесия.

    В зависимости от направлений колебаний частиц по отношению к направлению, в котором распространяется волна, различают продольные и поперечные волны. В продольной волне частицы среды колеблются вдоль распространения волны. В поперечной волне частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волн. Упругие поперечные волны могут возникнуть лишь в среде, обладающей сопротивлением сдвигу. Поэтому в жидкой и газообразной средах возможно возникновения только продольных волн. В твёрдой среде возможно возникновение как продольных, так и поперечных волн.

    На рис. 1.7.12 показано движение частиц при распространении в среде поперечной волны. Номерами 1,2 и т. д. обозначены частицы отстающие друг от друга на расстояние, равное (¼ υT), т.е. на расстояние, проходимое волной за четверть периода колебаний, совершаемых частицами. В момент, времени принятый за нулевой, волна, распространяясь вдоль оси слева направо, достигла частицы 1, вследствие чего частица начала смещаться из положения равновесия вверх, увлекая за собой следующие частицы. Спустя четверть периода частица 1 достигает крайнего верхнего положения равновесия частица 2. По пришествие ещё четверти периода первая часть будет проходить положение равновесия, двигаясь в направлении сверху вниз, вторая частица достигнет крайнего верхнего положения, а третья частица начнёт смещаться вверх из положения равновесия. В момент времени равный T, первая частица закончит полный цикл колебания и будет находиться в таком же состоянии движения, как чальный момент. Волна к моменту времени T, пройдя путь (υT), достигнет частицы 5.

    На Рис. 1.7.13 показано движение частиц при распространении в среде продольной волны. Все рассуждения, касающиеся поведения частиц в поперечной волне, могут быть отнесены и к данному случаю с заменой смещений вверх и вниз смещениями вправо и влево.

    Из рисунка видно, что при распространении продольной волны в среде создаются чередующиеся сгущения и разряжения частиц (места сгущения обведены на рисунке пунктиром), перемещающиеся в направлении распространения волны со скоростью υ.

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника
    Рис. 1.7.15

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника
    Рис. 1.7.16

    На рис. 1.7.15 и 1.7.16 показаны колебания частиц, положения, равновесия которых лежат на оси x. В действительности колеблются не только частицы, расположенные вдоль оси x, а совокупность частиц, заключённых в некотором объёме. Распространяясь от источников колебаний, волновой процесс охватывает всё новые и новые части пространства, геометрическое место точек, до которых доходят колебания к моменту времени t, называется фронтом волны (или волновым фронтом). Фронт волны представляет собой ту поверхность, которая отделяет часть пространства, уже вовлеченную в волновой процесс, от области, в которой колебания ещё не возникли.

    Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью . Волновую поверхность можно провести через любую точку пространства, охваченного волновым процессом. Следовательно, волновых поверхностей существует бесконечное множество, в то время как волновой фронт каждый момент времени только один. Волновые поверхности остаются не подвижными (они проходят через положения равновесия частиц, колеблющихся в одной фазе ). Волновой фронт всё время перемещается.

    Волновые поверхности могут быть любой формы. В простейших случаях они имеют форму плоскости или сферы. Соответственно волна в этих случаях называется плоской или сферической. В плоской волне волновые поверхности представляют собой множество параллельных друг другу плоскостей, в сферической волне – множество концентрических сфер.

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника
    Рис. 1.7.17

    Пусть плоская волна распространяется вдоль оси x . Тогда все точки сферы, положения, равновесия которых имеет одинаковую координату x (но различие значения координат y и z), колеблются в одинаковой фазе.

    На Рис. 1.7.17 изображена кривая, которая даёт смещение ξ из положения равновесия точек с различными x в некоторый момент времени. Не следует воспринимать этот рисунок как зримое изображение волны. На рисунке показан график функций ξ ( x, t) для некоторого фиксированного момента времени t. Такой график можно строить как для продольной так и для поперечной волны.

    Расстояние λ, на короткое распространяется волна за время, равное периоду колебаний частиц среды, называется длиной волны . Очевидно, что

    λ=υT(1.7.45 )

    где υ – скорость волны, T – период колебаний. Длину волны можно определить также как расстояние между ближайшими точками среды, колеблющимися с разностью фаз, равной 2π (см. рис. 1.7.14)

    Заменив в соотношении(1.7.45) T через 1/ν (ν – частота колебаний), получим

    λν=υ .(1.7.46)

    К этой формуле можно придти также из следующих соображений. За одну секунду источник волн совершает ν колебаний, порождая в среде при каждом колебании один «гребень» и одну «впадину» волны. К тому моменту, когда источник будет завершать ν — е колебание, первый «гребень» успеет пройти путь υ. Следовательно, ν «гребней» и «впадин» волны должны уложиться в длине υ.

    1.7.12. Уравнение плоской волны

    Уравнением волны называется выражение, которое дает смещение колеблющейся частицы как функцию ее координат x, y, z и времени t :

    (имеются в виду координаты равновесного положения частицы). Эта функция должна быть периодической относительно времени t , и относительно координат x, y, z. . Периодичность по времени вытекает из того, что точки, отстоящие друг от друга на расстоянии λ , колеблются одинаковым образом.

    Найдем вид функции ξ в случае плоской волны, предполагая, что колебания носят гармонический характер. Для упрощения направим оси координат так, чтобы ось x совпадала с направлением распространения волны. Тогда волновые поверхности будут перпендикулярными к оси x и, поскольку все точки волновой поверхности колеблются одинаково, смещение ξ будет зависеть только от x и t :

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника
    Рис.1.7.18

    Пусть колебания точек, лежащих в плоскости x = 0 (рис. 1.7.18), имеют вид

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника

    Найдем вид колебания точек в плоскости, соответствующей произвольному значению x . Для того, чтобы пройти путь от плоскости x =0 до этой плоскости, волне требуется время Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника( υ – cкорость распространения волны). Следовательно, колебания частиц, лежащих в плоскости x , будут отставать по времени на τ от колебаний частиц в плоскости x = 0 , т.е. будут иметь вид

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника

    Итак, уравнение плоской волны (продольной, и поперечной), распространяющейся в направлении оси x , выглядит следующим образом:

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.47)

    Величина а представляет собой амплитуду волны. Начальная фаза волны α определяется выбором начала отсчета x и t . При рассмотрении одной волны начало отсчета времени и координаты обычно выбирают так, чтобы α была равной нулю. При совместном рассмотрении нескольких волн сделать так, чтобы для всех них начальные фазы равнялись нулю, как правило, не удается.

    Зафиксируем какое – либо значение фазы, стоящей в уравнении (1.7.47), положив

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.48)

    Это выражение определяет связь между временем t и тем местом x , в котором фаза имеет зафиксированное значение. Вытекающее из него значение dx/dt дает скорость, с которой перемещается данное значение фазы. Продифференцировав выражение (1.7.48), получим

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника.(1.7.49)

    Таким образом, скорость распространения волны υ уравнении (1.7.47) есть скорость перемещения фазы, в связи с чем, ее называют фазовой скоростью.

    Согласно (1.7.49) dx/dt> 0, следовательно, уравнение (1.7.47) описывает волну, распространяющуюся в сторону возрастания x .

    Волна, распространяющаяся в противоположном направлении, описывается уравнением

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.50)

    Действительно, приравняв константе фазу волны (1.7.50) и продифференцировав получившееся равенство, придем к соотношению

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника,

    из которого следует, что волна (1.7.50) распространяется в сторону убывания x .

    Уравнению плоской волны можно придать симметричный относительно x и t вид. Для этого введем величину

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника,(1.7.51)

    которая называется волновым числом. Умножив числитель и знаменатель последнего выражения на частоту ν, и вспомнив, что Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника, можно представить волновое число в виде

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника.(1.7.52)

    Раскрыв в уравнении волны

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника

    круглые скобки и используя волновое число, придем к следующему уравнению плоской волны, распространяющейся вдоль оси :

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.53)

    Уравнение волны, распространяющейся в сторону убывания x :

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника

    При выводе формулы (1.7.53) мы предполагали, что амплитуда колебаний не зависит от x . Для плоской волны это наблюдается в том случае, когда энергия волны не поглощается средой. При распространении в поглощающей энергию среде интенсивность волны с удалением от источника колебаний постепенно уменьшается – наблюдается затухание волны. Опыт показывает, что в однородной среде такое затухание происходит по экспоненциальному закону:

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника

    Соответственно уравнение плоской волны, с учетом затухания , имеет следующий вид:

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника(1.7.54)

    (a 0 – амплитуда в точках плоскости x = 0).

    © ФГОУ ВПО Красноярский государственный аграрный университет, 2013

    Видео:Урок 327. Гармонические колебанияСкачать

    Урок 327. Гармонические колебания

    Гармонические колебания

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника

    О чем эта статья:

    9 класс, 11 класс, ЕГЭ/ОГЭ

    Видео:Математический маятник или откуда формула периодаСкачать

    Математический маятник или откуда формула периода

    Механические колебания

    Механические колебания — это физические процессы, которые точно или приблизительно повторяются через одинаковые интервалы времени.

    Колебания делятся на два вида: свободные и вынужденные.

    Видео:10 класс, 19 урок, График гармонического колебанияСкачать

    10 класс, 19 урок, График гармонического колебания

    Свободные колебания

    Это колебания, которые происходят под действием внутренних сил в колебательной системе.

    Они всегда затухающие, потому что весь запас энергии, сообщенный в начале, в конце уходит на совершение работы по преодолению сил трения и сопротивления среды (в этом случае механическая энергия переходит во внутреннюю). Из-за этого свободные колебания почти не имеют практического применения.

    Видео:математический маятник ЕГЭ ФИЗИКА колебания частота периодСкачать

    математический маятник ЕГЭ ФИЗИКА колебания частота период

    Вынужденные колебания

    А вот вынужденные колебания восполняют запас энергии внешним воздействием. Если это происходит каждый период, то колебания вообще затухать не будут.

    Вынужденные колебания — это колебания, которые происходят под действием внешней периодически меняющейся силы.

    Частота, с которой эта сила воздействует, равна частоте, с которой система будет колебаться.

    Например, качели. Если вас кто-то будет на них качать, каждый раз давая толчок, когда вы приходите в одну и ту же точку — такое колебание будет считаться вынужденным.

    Это колебание все еще будет считаться вынужденным, если вас будут раскачивать из положения равновесия. Просто в данном случае амплитуда (о которой речь пойдет чуть ниже) будет увеличиваться с каждым колебанием.

    Видео:Урок 343. Затухающие колебания (часть 1)Скачать

    Урок 343. Затухающие колебания (часть 1)

    Автоколебания

    Иногда вынужденному колебанию не нужно внешнего воздействия, чтобы случиться. Бывают такие системы, в которых это внешние воздействие возникает само из-за способности регулировать поступление энергии от постоянного источника.

    У автоколебательной системы есть три важных составляющих:

    • сама колебательная система
    • источник энергии
    • устройство обратной связи, обеспечивающей связь между источником и системой

    Часы с кукушкой — пример автоколебательной системы. Гиря на ниточке (цепочке) стремится вращать зубчатое колесо (храповик). При колебаниях маятника анкер цепляет за зубец, и вращение приостанавливается.

    Но в результате маятник получает толчок, компенсирующий потери энергии из-за трения. Потенциальная энергия гири, которая постепенно опускается, расходуется на поддержание незатухающих колебаний.

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника

    Видео:Опыты по физике. Генератор незатухающих электромагнитных колебаний на транзистореСкачать

    Опыты по физике. Генератор незатухающих электромагнитных колебаний на транзисторе

    Характеристики колебаний

    Чтобы перейти к гармоническим колебаниям, нам нужно описать величины, которые помогут нам эти колебания охарактеризовать. Любое колебательное движение можно описать величинами: период, частота, амплитуда, фаза колебаний.

    Период — это время одного полного колебания. Измеряется в секундах и обозначается буквой T.

    Формула периода колебаний

    T = t/N

    N — количество колебаний [—]

    Также есть величина, обратная периоду — частота. Она показывает, сколько колебаний совершает система в единицу времени.

    Формула частоты

    ν = N/t = 1/T

    N — количество колебаний [—]

    Амплитуда — это максимальное отклонение от положения равновесия. Измеряется в метрах и обозначается либо буквой A, либо x max .

    Она используется в уравнении гармонических колебаний:

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника

    Видео:Математические и пружинные маятники. 11 класс.Скачать

    Математические и пружинные маятники. 11 класс.

    Гармонические колебания

    Простейший вид колебательного процесса — простые гармонические колебания, которые описывают уравнением:

    Уравнение гармонических колебаний

    x — координата в момент времени t [м]

    t — момент времени [с]

    (2πνt) в этом уравнении — это фаза. Ее обозначают греческой буквой φ

    Фаза колебаний

    t — момент времени [с]

    Фаза колебаний — это физическая величина, которая показывает отклонение точки от положения равновесия. Посмотрите на рисунок, на нем изображены одинаковые фазы:

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника

    Например, в тех же самых часах с кукушкой маятник совершает колебания. Он качается слева направо и приходит в самую правую точку. В той же фазе он будет находиться, когда придет в ту же точку, идя справа налево. Если мы возьмем точку на сантиметр левее самой правой, то идя в нее не слева направо, а справа налево, мы получим уже другую фазу.

    На рисунке ниже показаны положения тела через одинаковые промежутки времени при гармонических колебаниях. Такую картину можно получить при освещении колеблющегося тела короткими периодическими вспышками света (стробоскопическое освещение). Стрелки изображают векторы скорости тела в различные моменты времени.

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника

    Если изменить период, начальную фазу или амплитуду колебания, графики тоже изменятся.

    На рисунке ниже во всех трех случаях для синих кривых начальная фаза равна нулю, а в последнем (с) — красная кривая имеет меньшую начальную фазу.

    В первом случае (а) красная кривая описывает колебание, у которого амплитуда больше колебания, описанного синей линией.

    Во втором случае (b) красная кривая отличается от синей только значением периода — у красной период в два раза меньше.

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника

    Видео:Физика 9 класс. §25 Гармонические колебанияСкачать

    Физика 9 класс. §25 Гармонические колебания

    Математический маятник

    Математический маятник — отличный пример гармонических колебаний. Если мы подвесим шарик на нити, то это еще не будет математическим маятником — пока он только физический.

    Математическим этот маятник станет, если размеры шарика много меньше длины нити (тогда этими размерами можно пренебречь и рассматривать шарик как материальную точку), растяжение нити очень мало, а масса нити во много раз меньше массы шарика.

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника

    Математическим маятником называется система, которая состоит из материальной точки массой m и невесомой нерастяжимой нити длиной l, на которой материальная точка подвешена, и которая находится в поле силы тяжести (или других сил).

    Период малых колебаний математического маятника в поле силы тяжести Земли определяется по формуле:

    Формула периода колебания математического маятника

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника

    l — длина нити [м]

    g — ускорение свободного падения [м/с 2 ]

    На планете Земля g = 9,8 м/с 2

    Видео:Физика 9 класс (Урок№11 - Гармонические колебания. Затухающие колебания. Резонанс.)Скачать

    Физика 9 класс (Урок№11 - Гармонические колебания. Затухающие колебания. Резонанс.)

    Пружинный маятник

    Пружинный маятник — это груз, прикрепленный к пружине, массой которой можно пренебречь.

    В пружинном маятнике колебания совершаются под действием силы упругости.
    Пока пружина не деформирована, сила упругости на тело не действует.

    Формула периода колебания пружинного маятника

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника

    m — масса маятника [кг]

    k — жесткость пружины [Н/м]

    Видео:Свободные электромагнитные колебания. 11 класс.Скачать

    Свободные электромагнитные колебания. 11 класс.

    Закон сохранения энергии для гармонических колебаний

    Физика — такая клевая наука, в которой ничего не исчезает бесследно и не появляется из ниоткуда. Эту особенность описывает закон сохранения энергии.

    Рассмотрим его на примере математического маятника.

    Дифференциальное уравнение свободных незатухающих гармонических колебаний математического маятника

    • Когда маятник отклоняют на высоту h, его потенциальная энергия максимальна.
    • Когда маятник опускается, потенциальная энергия переходит в кинетическую. Причем в нижней точке, где потенциальная энергия равна нулю, кинетическая энергия максимальна и равна потенциальной энергии в верхней точке. Скорость груза в этой точке максимальна.

    Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!

    📺 Видео

    МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ период колебаний частота колебанийСкачать

    МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ период колебаний частота колебаний

    Урок 335. Анализ графика гармонических колебанийСкачать

    Урок 335. Анализ графика гармонических колебаний

    Свободные и вынужденные колебанияСкачать

    Свободные и вынужденные колебания

    Якута А. А. - Механика - Гармонические колебания. Собственные затухающие колебанияСкачать

    Якута А. А. - Механика - Гармонические колебания. Собственные затухающие колебания

    Физика 11 класс (Урок№7 - Свободные и вынужденные электромагнитные колебания. Колебательный контур.)Скачать

    Физика 11 класс (Урок№7 - Свободные и вынужденные электромагнитные колебания. Колебательный контур.)

    МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫСкачать

    МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ

    Урок 325. Колебательное движение и его характеристикиСкачать

    Урок 325. Колебательное движение и его характеристики

    9. Колебания физического маятникаСкачать

    9.  Колебания физического маятника

    Как решить уравнение колебаний? | Олимпиадная физика, механические гармонические колебания, 11 классСкачать

    Как решить уравнение колебаний? | Олимпиадная физика, механические гармонические колебания, 11 класс
    Поделиться или сохранить к себе: