Пусть сила трения равна нулю. В этом случае, если тело вывести из положения равновесия и отпустить, то оно будет ускоренно двигаться под действием упругой силы пружины 
Примеры решения задач
Пример № 1. Гармонические колебания материальной точки описываются уравнением 
| Дано: | Решение Уравнение гармонических колебаний имеет вид: x(t)=A∙cos(ω0∙t+φ0) (1) |
| А — ? ω0 — ? ν0 — ? Т — ? | Сравнение уравнения (1) с уравнением, приведённым в условии задачи, показывает, |
что А=0,02 м, ω0=6∙π ≈18,8 рад/с.
Поскольку ω0=2∙π∙ν0, то 
Период колебаний 
Ответ: А=0,02 м, ω0=6∙π ≈18,8 рад/с, ν0 =3 Гц, Т=0,33 с.
Пример № 2. Груз массой т=50 г, привязанный к пружине, удлиняет её на х0=4,9 см. Пружину дополнительно растянули на х=8 см и отпустили. Определите максимальную силу, действующую на груз.
| Дано: х=8 см | СИ: 8∙10 -2 м . | Решение Максимальная сила определяется уравнением: Fmax =т∙аmax. Ускорение есть вторая производная |
| Fmax — ? | Н | переменной х по времени. |
Таким образом, для решения задачи необходимо установить вид зависимости х(t)=А∙sin(ω0∙t+φ0). (1)
Амплитуду А можно определить из условия: А=х0=4,9∙10 -2 м.
Циклическая частота 
Сила тяжести груза компенсируется силой упругости пружины: m∙g=k∙x0, следовательно 


Дифференцируя выражение (1) по времени, можно найти скорость колебательного движения: υ(t)=А∙ω0∙cos(ω0∙t+φ0). (3)
Ускорение – производная скорости по времени: а(t)=А∙ω0 2 ∙sin(ω0∙t+φ0).
Максимальное значение ускорение достигает при синусе равном единице:
Amax=А∙ω0 2 . Тогда действующая на груз максимальная сила 
Подстановка численных значений даёт: Fmax =0,8 Н.
Пример № 3. Шарик массой т=10 г совершает гармонические колебания с амплитудой А=20 см и периодом T=4 с. В момент времени t0=0 координата шарика х0=А. Определите потенциальную и кинетическую энергию в момент времени t1=1 c.
| Дано: t1=1 c. | СИ: | Решение Поскольку в момент времени t0=0 координата шарика х0=А гармонические колебания шарика удобно описывать функцией косинуса без начальной фазы: x(t)=A∙cosωt. Здесь А=0,2 м, |
| Ек1 — ? Еп1 — ? | Дж | , где ![]() |
Подстановка численных значений даёт: Ек1=4,9∙10 -4 Дж.
Потенциальная энергия 
Задачи для самостоятельного решения
71. Запишите решение уравнения гармонического колебания с амплитудой А= =5 см, если за время t=1 мин совершается N=150 колебаний, а начальная фаза колебаний φ0=π/4.
72. Колебательное движение материальной точки задано уравнением: 
73. Материальная точка массой т=20 г совершает гармонические колебания с амплитудой А=5 см. Период колебаний Т=10 с. Определите значение скорости и ускорения материальной точки в момент времени, которому соответствует фаза φ=60°.
74. Движение материальной точки описывается уравнением: 
75. Тело массой т=10 г совершает гармонические колебания по закону: 
76. Материальная точка массой т=50 г совершает гармонические колебания по закону: 
77. Материальная точка массой т=20 г совершает гармонические колебания по закону: 
78. Полная энергия материальной точки, совершающей гармонические колебания Е=10 мкДж, а максимальная возвращающая сила Fmax=0,5 мH. Запишите кинематическое уравнение движения материальной точки, если период колебаний Т=4 с, а начальная фаза колебаний φ0=π/6.
79. К пружине, имеющей коэффициент упругости k=800 Н/м, подвешен груз и приведён в колебательное движение. Максимальная кинетическая энергия груза Е=2,5 Дж. Определите амплитуду колебаний.
80. Уравнение колебаний материальной точки массой т=10 г имеет вид: 
Затухающие механические колебания и их характеристики
Видео:5.4 Уравнение гармонических колебанийСкачать

Свободные колебания пружинного маятника. Общие сведения
Цель работы. Ознакомиться с основными характеристиками незатухающих и затухающих свободных механических колебаний.
Задача. Определить период собственных колебаний пружинного маятника; проверить линейность зависимости квадрата периода от массы; определить жесткость пружины; определить период затухающих колебаний и логарифмический декремент затухания пружинного маятника.
Приборы и принадлежности. Штатив со шкалой, пружина, набор грузов различной массы, сосуд с водой, секундомер.
1. Свободные колебания пружинного маятника. Общие сведения
Колебаниями называются процессы, в которых периодически изменяется одна или несколько физических величин, описывающих эти процессы. Колебания могут быть описаны различными периодическими функциями времени. Простейшими колебаниями являются гармонические колебания – такие колебания, при которых колеблющаяся величина (например, смещение груза на пружине) изменяется со временем по закону косинуса или синуса. Колебания, возникающие после действия на систему внешней кратковременной силы, называются свободными.
Рассмотрим одну из простейших колебательных систем – пружинный маятник, представляющий собой груз массой m, подвешенный на абсолютно упругой пружине с коэффициентом жесткости k
(рис. 1). Пусть l0 – длина пружины без подвешенного к ней груза. При подвешивании груза под действием силы тяжести пружина растянется на x1 так, что маятник будет находиться в положении равновесия вследствие равенства модулей силы тяжести mg и упругой силы Fупр: mg = kx1, стремящейся вернуть груз в положение равновесия (полагается, что деформации пружины идеально упругие и подчиняются закону Гука).
Если груз вывести из положения равновесия, отклонив на величину x, то сила упругости возрастает: Fупр = – kx2= – k(x1 + x). Дойдя до положения равновесия, груз будет обладать отличной от нуля скоростью и пройдет положение равновесия по инерции. По мере дальнейшего движения будет увеличиваться отклонение от положения равновесия, что приведет к возрастанию силы упругости, и процесс повторится в обратном направлении. Таким образом, колебательное движение системы обусловлено двумя причинами: 1) стремлением тела вернуться в положении равновесия и 2) инерцией, не позволяющей телу мгновенно остановиться в положении равновесия. В отсутствии сил трения колебания продолжались бы сколь угодно долго. Наличие силы трения приводит к тому, что часть энергии колебаний переходит во внутреннюю энергию и колебания постепенно затухают. Такие колебания называются затухающими.
Незатухающие свободные колебания
Сначала рассмотрим колебания пружинного маятника, на который не действуют силы трения – незатухающие свободные колебания. Согласно второму закону Ньютона c учетом знаков проекций на ось X

Из условия равновесия смещение, вызываемое силой тяжести: 



Это уравнение называется дифференциальным уравнением гармонических колебаний пружинного маятника. Из этого уравнения следует, что после прекращения внешнего воздействия, приводящего к первоначальному отклонению системы от положения равновесия, движение груза обусловлено только действием упругой силы (сила тяжести вызывает постоянное смещение).
Общее решение однородного дифференциального уравнения второго порядка (2) имеет вид

Данное уравнение называется уравнением гармонических колебаний. Наибольшее отклонение груза от положения равновесия А0 называется амплитудой колебаний. Величина 

есть круговая или циклическая частота собственных колебаний, связанная с периодом колебаний Т соотношением 

Рассмотрим свободные колебания пружинного маятника при наличии силы трения (затухающие колебания). В простейшем и вместе с тем наиболее часто встречающемся случае сила трения пропорциональна скорости υ движения:
где r – постоянная, называемая коэффициентом сопротивления. Знак минус показывает, что сила трения и скорость имеют противоположные направления. Уравнение второго закона Ньютона в проекции на ось Х при наличии упругой силы и силы трения
Данное дифференциальное уравнение с учетом υ = dx/dt можно записать

где 

Чтобы получить зависимость смещения x от времени t, необходимо решить дифференциальное уравнение (8). В случае малых затуханий (

где А0 и φ0 – начальная амплитуда и начальная фаза колебаний;


Движение груза в этом случае можно рассматривать как гармоническое колебание с частотой ω и переменной амплитудой, меняющейся по закону:

На графике функции (9), рис. 2, пунктирными линиями показано изменение амплитуды (10) затухающих колебаний.
Рис. 2. Зависимость смещения х груза от времени t при наличии силы трения
Для количественной характеристики степени затухания колебаний вводят величину, равную отношению амплитуд, отличающихся на период, и называемую декрементом затухания:

Часто используют натуральный логарифм этой величины. Такой параметр называется логарифмическим декрементом затухания:

Если за время t‘ амплитуда уменьшается в n раз, то из уравнения (10) следует, что

Отсюда для логарифмического декремента получаем выражение

Если за время t‘ амплитуда уменьшается в е раз (е = 2,71 – основание натурального логарифма), то система успеет совершить число колебаний

Следовательно, логарифмический декремент затухания – величина, обратная числу колебаний, совершаемых за то время, за которое амплитуда уменьшается в е раз. Чем больше θ, тем быстрее происходит затухание колебаний.
2. Методика эксперимента и экспериментальная установка
Рис. 3. Схема установки
Установка состоит из штатива 1 с измерительной шкалой 2. К штативу на пружине 3 подвешиваются грузы 4 различной массы. При изучении затухающих колебаний в задании 2 для усиления затухания используется кольцо 5, которое помещается в прозрачный сосуд 6 с водой.
В задании 1 (выполняется без сосуда с водой и кольца) в первом приближении затуханием колебаний можно пренебречь и считать гармоническими. Как следует из формулы (5) для гармонических колебаний зависимость T 2 = f (m) – линейная, из которой можно определить коэффициент жесткости пружины k по формуле

где 
Задание 1. Определение зависимости периода собственных колебаний пружинного маятника от массы груза.
1. Определить период колебаний пружинного маятника при различных значениях массы груза m. Для этого с помощью секундомера для каждого значения m трижды измерить время t полных n колебаний (n ≥10) и по среднему значению времени 

2. По результатам измерений построить график зависимости квадрата периода T2 от массы m. Из углового коэффициента графика определить жесткость пружины k по формуле (16).
Результаты измерений для определения периода собственных колебаний


Видео:МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ период колебаний частота колебанийСкачать

1.1. Уравнение гармонических колебаний
В этом разделе мы покажем, что уравнения колебательного движения многих систем, в сущности, одинаковы, так что различные физические процессы могут быть описаны одними и теми же математическими формулами.
Пружинный маятник — это система, состоящая из шарика массой m, подвешенного на пружине длиной 
Рис. 1.2. К выводу уравнения движения для пружинного маятника
В положении равновесия (рис. 1.2) сила тяжести 

где 
Если теперь оттянуть шарик от положения равновесия на расстояние x, то полное удлинение пружины станет равным 
Знак минус означает, что сила стремится уменьшить отклонение от положения равновесия. Полученное выражение соответствует упругой силе слабо деформированной пружины.
Запишем теперь уравнение второго закона Ньютона:
Его можно также представить в виде:
Математический маятник
Математический маятник — это идеализированная система, состоящая из невесомой и нерастяжимой нити, на которой подвешена масса, сосредоточенная в одной точке.
Будем характеризовать отклонение маятника от положения равновесия углом 
Рис. 1.3. К выводу уравнения движения математического маятника
При отклонении маятника от положения равновесия на материальную точку массой m действуют сила тяжести 


Проецируя его на направления нормали и касательной к траектории (окружности радиуса 
Модуль скорости 




Тогда второе из написанных выше уравнений движения приобретает вид
При малых отклонениях маятника от вертикали, когда 
Физический маятник
Физический маятник — это протяженное колеблющееся тело, закрепленное на оси. Его размеры таковы, что его невозможно рассматривать как материальную точку.
Пример физического маятника приведен на рис. 1.4.
Рис. 1.4. К выводу уравнения движения физического маятника
При отклонении маятника от положения равновесия на угол 
где m – масса маятника, а l – расстояние 0C между точкой подвеса 0 и центром масс C маятника.
Рассматривая 




Ограничимся рассмотрением малых отклонений от положения равновесия:
В этом случае уравнение колебаний принимает вид:
В случае, когда физический маятник можно представить как материальную точку, колеблющуюся на нити длиной l, момент инерции равен
и мы приходим к уравнению (1.6) движения математического маятника.
Колебания поршня в сосуде с идеальным газом
Рассмотрим цилиндр с площадью поперечного сечения 




Рис. 1.5. Колебания поршня, закрывающего сосуд с идеальным газом
В состоянии равновесия давление в газе под поршнем складывается из атмосферного давления 


Переместим поршень на расстояние x вверх. Объем сосуда увеличится и станет равным
Соответственно уменьшится давление. В силу предположения об отсутствии теплообмена, новое давление в газе можно найти из уравнения адиабаты Пуассона
Здесь 
При малых колебаниях, когда изменение объема газа 

выражение (1.11) можно разложить в ряд Тейлора:
На поршень действуют три силы: сила атмосферного давления 



Используя (1.13), уравнение движения поршня
🎬 Видео
Уравнения и графики механических гармонических колебаний. 11 класс.Скачать

Уравнения и графики механических гармонических колебаний. Практ. часть - решение задачи. 11 класс.Скачать

Выполнялка 53.Гармонические колебания.Скачать

Математические и пружинные маятники. 11 класс.Скачать

Гармонический осциллятор. Груз на пружине. 3 метода решения.Скачать

Урок 327. Гармонические колебанияСкачать

Гармонические колебанияСкачать

Физика 9 класс (Урок№11 - Гармонические колебания. Затухающие колебания. Резонанс.)Скачать

Гармонические колебания | Физика 9 класс #25 | ИнфоурокСкачать

Физика. 11 класс. Уравнение и графика гармонических колебаний /03.09.2020/Скачать

"Гармонические колебания, часть 2 (дифференциальное исчисление)"Скачать

КОЛЕБАНИЯ физика 9 класс решение задачСкачать

Урок 343. Затухающие колебания (часть 1)Скачать

Гармонические колебания | Физика 11 класс #8 | ИнфоурокСкачать

Урок 329. Задачи на гармонические колебания - 1Скачать

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫСкачать

"Гармонические колебания, часть 3 (без дифференциальных уравнений)"Скачать

, то есть ω=π/2, следовательно x(t)=0,2∙cos(π t/2) м.
, где 
































