Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

Затухающие колебания в контуре и их уравнение

Существуют колебания в системе без источника энергии, называемые затухающими. Рассмотрим реальный контур с сопротивлением не равным нулю. Для примера используют контур с включенным сопротивлением R , с емкостью конденсатора C , с катушкой индуктивности L , изображенный на рисунке 1 . Колебания, происходящие в нем, — затухающие.

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

Именно наличие сопротивления становится главной причиной их затухания. Данный процесс возможен посредствам потерь энергии на выделение джоулева тепла. Аналог сопротивления в механике – действие сил трения.

Видео:Урок 355. Затухающие электромагнитные колебания.Скачать

Урок 355. Затухающие электромагнитные колебания.

Характеристики затухающих колебаний

Затухающие колебания характеризуют коэффициентом затухания β . Применив второй закон Ньютона, получим:

m a = — k x — y v , d 2 x d t 2 + r m d x d t + k m x = 0 , ω 0 2 = k m , β = r 2 m .

Из записи видно, что β действительно является характеристикой контура. Реже вместо β применяют декремент затухания δ ,

Значение a ( t ) является амплитудой заряда, силы тока и так далее, δ равняется количеству колебаний, а N e — период времени уменьшения амплитуды в e раз.

Для R L C контура применима формула с ω частотой.

При небольшой δ ≪ 1 говорят, что β ≪ ω 0 ω 0 = 1 L C — собственная частота, отсюда ω ≈ ω 0 .

При рассмотрении затухающих колебаний последовательного контура колебательный контур характеризуется добротностью Q :

Q = 1 R L C = ω 0 L R , где R , L и C — сопротивление, индуктивность, емкость, а ω 0 — частота резонанса. Выражение L C называют характеристическим или волновым сопротивлением. Для параллельного контура формула примет вид:

Q = R L C = R ω 0 L .

R является входным сопротивлением параллельного контура.

Эквивалентное определение добротности применяется при слабых затуханиях. Его выражают через отношение энергий:

Q = ω 0 W P d = 2 π f 0 W P d , называемое общей формулой.

Видео:70. Затухающие колебанияСкачать

70. Затухающие колебания

Уравнения затухающих колебаний

Рассмотрим рисунок 1 . Изменение заряда q на конденсаторе в таком контуре описывается дифференциальным уравнением:

q ( t ) = q 0 e ( — β t ) cos ω t + a ‘ 0 = q 0 e — β t cos ( ω t ) .

Если t = 0 , то заряд конденсатора становится равным q 0 , и ток в цепи отсутствует.

Если R > 2 L C изменения заряда не относят к колебаниям, разряд называют апериодическим.

Значение сопротивления, при котором колебания превращаются в апериодический разряд конденсатора, критическое R k .

Функция изображается аналогично рисунку 2 .

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

Записать закон убывания энергии, запасенной в контуре W ( t ) при W ( t = 0 ) = W 0 с затухающими колебаниями. Обозначить коэффициент затухания в контуре β , а собственную частоту — ω 0 .

Решение

Отправная точка решения – это применение формулы изменения заряда на конденсаторе в R L C — контуре:

q ( t ) = q 0 e ( — β t ) cos ω t + a ‘ 0 = q 0 e — β t cos ( ω t ) .

Предположим, что при t = 0 , a ‘ 0 = 0 . Тогда применим выражение

Для нахождения I ( t ) :

I ( t ) = — ω 0 q 0 e ( — 2 β t ) sin ( ω t + α ) , где t g α = β ω .

Очевидно, что электрическая энергия W q запишется как:

W q = q 2 2 C = q 0 2 2 C e ( — 2 β t ) cos 2 ( ω t ) = W 0 e ( — 2 β t ) cos 2 ( ω t ) .

Тогда значение магнитной энергии контура W m равняется:

W m = L 2 ω 0 2 q 0 2 e ( — 2 β t ) sin 2 ω t + a = W 0 e — 2 β t sin 2 ω t + a .

Запись полной энергии будет иметь вид:

W = W q + W m = W 0 e ( — 2 β t ) ( cos 2 ( ω t ) + sin 2 ( ω t + a ) ) = = W 0 e ( — 2 β t ) 1 + β ω 0 sin ( 2 ω t + α ) .

Где sin α = β ω 0 .

Ответ: W ( t ) = W 0 e ( — 2 β t ) 1 + β ω 0 sin ( 2 ω t + a ) .

Применив результат предыдущего примера, записать выражение для энергии, запасенной в контуре W ( t ) , при медленно затухающих колебаниях. Начертить график убывания энергии.

Решение

Если колебания в контуре затухают медленно, то:

Очевидно, выражение энергии, запасенной в контуре, вычислим из

W ( t ) = W 0 e ( — 2 β t ) 1 + β ω 0 sin ( 2 ω t + a ) , предварительно преобразовав до W ( t ) = W 0 e ( — 2 β t ) .

Такое упрощение возможно по причине выполнения условия β ω 0 ≪ 1 , sin ( 2 ω t + a ) ≤ 1 , что означает β ω 0 sin ( 2 ω t + a ) ≪ 1 .

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

Ответ: W ( t ) = W 0 e ( — 2 β t ) . Энергия в контуре убывает по экспоненте.

Видео:Затухающие колебания Лекция 11-1Скачать

Затухающие колебания Лекция 11-1

Дифференциальное уравнение свободных затухающих колебаний (механических и электромагнитных) и его решение. Автоколебания

Рассмотрим свободные затухающие коле­бания— колебания, амплитуда которых из-за потерь энергии реальной колебатель­ной системой с течением времени умень­шается. Простейшим механизмом умень­шения энергии колебаний является ее пре­вращение в теплоту вследствие трения в механических колебательных системах,

а также омических потерь и излучения электромагнитной энергии в электриче­ских колебательных системах.

Закон затухающих колебаний опреде­ляется свойствами колебательных систем. Обычно рассматривают линейные систе­мы— идеализированные реальные систе­мы, в которых параметры, определяющие физические свойства системы, в ходе про­цесса не изменяются. Линейными система­ми являются, например, пружинный маят­ник при малых растяжениях пружины (когда справедлив закон Гука), колеба­тельный контур, индуктивность, емкость и сопротивление которого не зависят ни от тока в контуре, ни от напряжения. Различ­ные по своей природе линейные системы описываются идентичными линейными дифференциальными уравнениями, что по­зволяет подходить к изучению колебаний различной физической природы с единой точки зрения, а также проводить их моде­лирование, в том числе и на ЭВМ.

Дифференциальное уравнение свобод­ных затухающих колебанийлинейной системы задается в виде

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

где s — колеблющаяся величина, описы­вающая тот или иной физический про­цесс, d=const — коэффициент затухания,w0 — циклическая частота свободных не­затухающих колебаний той же колебатель­ной системы, т. е. при d=0 (при отсутствии потерь энергии) называется собственной частотойколебательной системы.

Решение уравнения (146.1) рассмот­рим в виде

где u=u(t). После нахождения первой и второй производных выражения (146.2) и подстановки их в (146.1) получим

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

Решение уравнения (146.3) зависит от знака коэффициента перед искомой вели­чиной. Рассмотрим случай, когда этот ко­эффициент положителен:

w 2 =w 2 0-d 2 (146.4)

(если (w 2 -d 2 )>0, то такое обозначение мы вправе сделать). Тогда получим урав­нение типа (142.1)

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

решением которого является функция и=А0cos(wt+j)

Таким образом, решение уравнения (146.1) в случае малых затуханий (d 2 2 0)

— амплитуда затухающих колебаний

a0— начальная амплитуда. Зависимость (146.5) показана на рис.208 сплошной линией, а зависимость (146.6) — штри­ховыми линиями. Промежуток времени t=1/d, в течение которого амплитуда за­тухающих колебаний уменьшается в е раз, называется временем релаксации.

Затухание нарушает периодичность колебаний, поэтому затухающие колеба­ния не являются периодическими и, строго говоря, к ним неприменимо понятие перио­да или частоты. Однако если затухание мало, то можно условно пользоваться по­нятием периода как промежутка времени между двумя последующими максимума­ми (или минимумами) колеблющейся фи­зической величины (рис. 208). Тогда пери­од затухающих колебаний с учетом формулы

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

Если A(t) и A(t+T)— амплитуды двух последовательных колебаний, соответству­ющих моментам времени, отличающимся на период, то отношение

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

называется декрементом затухания, а его

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

— логарифмическим декрементом затуха­ния;Ne — число колебаний, совершаемых за время уменьшения амплитуды в е раз. Логарифмический декремент затухания — постоянная для данной колебательной системы величина.

Для характеристики колебательной системы пользуются понятием добротно­стиQ, которая при малых значениях лога­рифмического декремента равна

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

(так как затухание невелико (d 2 2 0), то Т принято равным Т0).

Из формулы (146.8) следует, что до­бротность пропорциональна числу колеба­ний Ne, совершаемых системой за время релаксации.

Применим выводы, полученные для свободных затухающих колебаний линей­ных систем, для колебаний различной фи­зической природы — механических (в ка­честве примера рассмотрим пружинный маятник) и электромагнитных (в качестве примера рассмотрим электрический коле­бательный контур).

1. Свободные затухающие колебания пружинного маятника.Для пружинного маятника (см. § 142) массой т, совершаю­щего малые колебания под действием уп­ругой силы F=-kx, сила трения про­порциональна скорости, т. е.

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

где r — коэффициент сопротивления;знак минус указывает на противоположные на­правления силы трения и скорости.

При данных условиях закон движения маятника будет иметь вид

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

Используя формулу w0=Ök/m (см. (142.2)) и принимая, что коэффици­ент затухания

получим идентичное уравнению (146.1) дифференциальное уравнение затухающих колебаний, маятника:

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

Из выражений (146.1) и (146.5) вытекает, что маятник колеблется по закону

х=A0е — d t cos(wt+j) с частотой w=Ö(w 2 0-r2/4m 2 ) (см. (146.4)).

Добротность пружинного маятника,

согласно (146.8) и (146.10), Q=1/rÖkm.

Видео:Урок 343. Затухающие колебания (часть 1)Скачать

Урок 343. Затухающие колебания (часть 1)

Дифференциальное уравнение затухающих колебаний в электрическом контуре

В электрических цепях колебания затухают из-за наличия омических сопротивлений в элементах цепи. Для анализа затухающих электрических колебаний рассмотрим эквивалентную схему контура (рис. 19).

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

Рис. 19. Эквивалентная схема электрического колебательного контура

Электрический ток I в контуре существует благодаря кулоновским силам заряженного конденсатора С и сторонним силам, возникающим в катушке индуктивности L. В некоторый момент времени конденсатор имеет заряд q , а напряжение между его пластинами равно U. При разряде конденсатора в катушке возникает э.д.с. самоиндукции eL, пропорциональная скорости изменения тока:

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

Согласно закону Ома ток в цепи:

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

Преобразуем уравнение (3.4) к уравнению одной переменной, а именно, — напряжения U на обкладках конденсатора.

Ток в цепи равен убыли заряда q на конденсаторе: Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

Заряд конденсатора равен:

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

Подставив формулы (3.7), (3.8) в формулу (3.4), получим

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

Данное дифференциальное уравнение описывает затухающие колебания напряжения на обкладках конденсатора в электрическом контуре. Решение дифференциального уравнения (3.9) имеет вид

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

где (3 — коэффициент затухания

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

со — циклическая частота затухающих колебаний

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

где ю0 — частота колебаний в отсутствии затуханий:

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

Период затухающих колебаний Т равен

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

При значении коэффициента затухания (3 = о>0 возникает апериодический режим разряда конденсатора (режим критического затухания). Из формул (3.12-3.14) следует, что колебания возможны лишь при условии

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

то есть, если Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

Если R > , то частота и период становятся мнимыми, колебания

не возникают, разряд конденсатора становится апериодическим. Сопротивление контура, равное

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

называется критическим сопротивлением. Величина, равная J—,

называется волновым сопротивлением контура.

По аналогии с механическими затухающими колебаниями введем понятие декремента затухания. Декрементом затухания называется отношение двух последующих (разделенных интервалом временем равным периоду) амплитуд колебаний:

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

Декремент затухания D характеризует быстроту затухания колебаний и показывает, во сколько раз уменьшается амплитуда колебаний за время, равное одному периоду. Натуральный логарифм отношения (3.18) называется логарифмическим декрементом затухания: Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

Логарифмический декремент X затухания колебаний в электрическом контуре будет иметь следующее выражение:

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

Амплитуда колебаний в контуре убывает по экспоненциальному закону:

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

При t = амплитуда затухающих колебаний уменьшается в

2,72 раза, (т.е., в е раз). Это время обозначается т и называется временем релаксации колебательной системы. Время релаксации колебательной системы любой природы — это время, за которое амплитуда колебаний уменьшается в е = 2,72 раза.

Из формул (ЗЛ1), (3Л 8) -(3.20) следует

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

Кроме коэффициента затухания, декремента, логарифмического декремента и времени релаксации для характеристики затухающих колебаний используется понятие добротности. Добротность Q электрического контура (как и любой колебательной системы) пропорциональна отношению полной энергии колебаний W(t) к потерям энергии AW за один период Т:

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

Полная энергия колебательного контура равна максимальной энергии магнитного поля в катушке индуктивности:

Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

потери энергии AW равны тепловым потерям энергии на активном сопротивлении контура R за один период колебаний: Дифференциальное уравнение для затухающих электромагнитных колебаний и его решение

где 1эфф = -4L — действующее или эффективное значение силы тока в

Следовательно, добротность электрического колебательного контура будет равна:

📹 Видео

Уравнения и графики механических гармонических колебаний. 11 класс.Скачать

Уравнения и графики механических гармонических колебаний. 11 класс.

Свободные электромагнитные колебания. 11 класс.Скачать

Свободные электромагнитные колебания. 11 класс.

71. Вынужденные колебанияСкачать

71. Вынужденные колебания

Вынужденные электромагнитные колебания. Автоколебания. 11 класс.Скачать

Вынужденные электромагнитные колебания. Автоколебания. 11 класс.

Физика 11 класс (Урок№7 - Свободные и вынужденные электромагнитные колебания. Колебательный контур.)Скачать

Физика 11 класс (Урок№7 - Свободные и вынужденные электромагнитные колебания. Колебательный контур.)

Затухающие колебания на экране осциллографа.Скачать

Затухающие колебания на экране осциллографа.

Урок 327. Гармонические колебанияСкачать

Урок 327. Гармонические колебания

Урок 347. Вынужденные колебания. Резонанс (часть 1)Скачать

Урок 347. Вынужденные колебания. Резонанс (часть 1)

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами

Урок 353. Колебательный контурСкачать

Урок 353. Колебательный контур

Механические и электромагнитные колебанияСкачать

Механические и электромагнитные колебания

Колебания в электрической цепи и дифференциальные уравненияСкачать

Колебания в электрической цепи и дифференциальные уравнения

Решение задач по теме "Электромагнитные колебания в контуре"Скачать

Решение задач по теме "Электромагнитные колебания в контуре"

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ период колебаний частота колебанийСкачать

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ период колебаний частота колебаний

Уравнения и графики механических гармонических колебаний. Практ. часть - решение задачи. 11 класс.Скачать

Уравнения и графики механических гармонических колебаний. Практ. часть - решение задачи. 11 класс.
Поделиться или сохранить к себе: