Общее решение yОН линейного неоднородного дифференциального уравнения L(y)=b(x) есть сумма общего решения yОО соответствующего однородного уравнения L(y) = 0 и какого — либо частного решения yЧН исходного неоднородного уравнения. Для уравнений с постоянными коэффициентами и правой частью специального вида это частное решение может быть найдено достаточно просто.
Функцию , где Pj(x) — некоторые полиномы (многочлены), назовём квазиполиномом. По теореме о наложении решений, если yj , j=1,2. m — решения уравнений L(y) = bj(x), то есть решение уравнения . Поэтому, не умаляя общности, будем считать, что правая часть уравнения L(y) = b(x) с постоянными коэффициентами имеет вид b(x) = P(x)e λx . В частности, если λ=α+βi — комплексное число, то наиболее общей правой частью указанного типа является функция
(1)
у которой P(x)и Q(x)- некоторые полиномы. Справедлив следующий результат.
Теорема. Линейное дифференциальное уравнение
с постоянными коэффициентами и правой частью вида (1) имеет частное решение
,
где k — кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x) , S(x) — полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x) , Q(x).
Видео:16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентамиСкачать
Диф уравнения со специальной правой частью примеры
Случай для линейного неоднородного дифференциального уравнения с постоянными коэффициентами и с правой частью имеющей вид полинома от x степени m
Для уравнения с постоянными коэффициентами в случае, когда правая часть имеет специальный вид, удается найти частное решение методом неопределенных коэффициентов (методом подбора частных решений).
Рассмотрим этот метод для уравнения n-го порядка вида
где a1, …, an — действительные числа, α — действительное число, Pm (x) — полином от x степени m, которая может быть равной нулю, так что этот полином может вырождаться в число, отличное от нуля.
Метод неопределенных коэффициентов состоит в том, что задается вид частного решения с неопределенными коэффициентами, которые определяются подстановкой в данное уравнение. Вид частного решения уравнения зависит от того, совпадает ли число α с корнями характеристического уравнения:
- Если α не является корнем характеристического уравнения, то частное решение имеет вид
где Qm (x) — полином степени m с коэффициентами, подлежащими определению.
Если α является корнем характеристического уравнения кратности k, то
т. е. частное решение приобретает множитель x k .
Случай для линейного неоднородного дифференциального уравнения с постоянными коэффициентами и с правой частью имеющей вид:
где α и b — действительные числа, P1 и P2 — полиномы от x, старшая степень которых равна m, так что один из них обязательно имеет степень m, а степень другого не превосходит m, и он может быть даже тождественно равен нулю.
Составим комплексное число α + ib, где действительная часть α есть коэффициент показателя множителя e αx , а мнимая часть b — коэффициент аргумента bx функций cos bx и sin bx.
Укажем вид частного решения уравнения (14.2) в двух случаях:
- Если число α + ib не является корнем характеристического уравнения, то
где Q1 и Q2 — полиномы степени m с неопределенными коэффициентами; причем надо брать оба эти полинома даже в том случае, когда один из полиномов P1 и P2 тождественно равен нулю.
Если число α + ib есть корень характеристического уравнения кратности k, то
т. е. частное решение приобретает множитель x k .
ПРИМЕР 15.2. Найти общее решение уравнения
y′′ − 2y′ + y = 8e3x .
РЕШЕНИЕ. Сначала рассмотрим соответствующее однородное уравнение
y′′ − 2y′ + y = 0.
Так как его характеристическое уравнение λ2 − 2λ +1 = 0 имеет корни
λ1,2 =1, то общее решение однородного уравнения будет иметь вид
y C ex C xex = 1 + 2 .
Теперь найдем частное решение неоднородного уравнения. Правая
часть является произведением числа и показательной функции e3x :
f (x) = 8e3x ⇒ α = 3, β = 0, s = 0.
При этом число α ±βi = 3 не является корнем характеристического урав-
нения. Поэтому частное решение y
неоднородного уравнения надо искать
в виде
y = Ae3x ,
где A – неизвестный коэффициент.
Имеем:
y′′ = 9Ae3x .
Подставим
y′′ в неоднородное уравнение и получим
9Ae3x − 2⋅3Ae3x + Ae3x = 8e3x ,
⇒ 4Ae3x = 8e3x ,
⇒ 4A = 8 или A = 2.
Таким образом,
y = 2e3x – частное решение неоднородного уравне-
ния, а его общее решение имеет вид
( 1 2 )
y = C ex + C xex + 2e3x .
Видео:Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать
Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами
Данная статья раскрывает вопрос о решении линейных неоднородных дифференциальных уравнений второго порядка с постоянными коэффициентами. Будет рассмотрена теория вместе с примерами приведенных задач. Для расшифровки непонятных терминов необходимо обращаться к теме об основных определениях и понятиях теории дифференциальных уравнений.
Рассмотрим линейное дифференциальное уравнение (ЛНДУ) второго порядка с постоянными коэффициентами вида y » + p · y ‘ + q · y = f ( x ) , где произвольными числами являются p и q , а имеющаяся функция f ( х ) непрерывная на интервале интегрирования x .
Перейдем к формулировке теоремы общего решения ЛНДУ.
Видео:Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1Скачать
Теорема общего решения ЛДНУ
Общим решением, находящимся на интервале х , неоднородного дифференциального уравнения вида y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 0 ( x ) · y = f ( x ) с непрерывными коэффициентами интегрирования на x интервале f 0 ( x ) , f 1 ( x ) , . . . , f n — 1 ( x ) и непрерывной функцией f ( x ) равняется сумме общего решения y 0 , которое соответствует ЛОДУ и каким-нибудь частным решением y
, где исходным неоднородным уравнением является y = y 0 + y
Отсюда видно, что решение такого уравнения второго порядка имеет вид y = y 0 + y
. Алгоритм нахождения y 0 рассмотрен в статье о линейных однородных дифференциальных уравнениях второго порядка с постоянными коэффициентами. После чего следует переходить к определению y
Выбор частного решения ЛНДУ зависит от вида имеющейся функции f ( x ) , располагающейся в правой части уравнения. Для этого необходимо рассмотреть отдельно решения линейных неоднородных дифференциальных уравнений второго порядка при постоянных коэффициентах.
Когда f ( x ) считается за многочлен n -ой степени f ( x ) = P n ( x ) , отсюда следует, что частное решение ЛНДУ находим по формуле вида y
= Q n ( x ) · x γ , где Q n ( x ) является многочленом степени n , r – это количество нулевых корней характеристического уравнения. Значение y
является частным решением y
= f ( x ) , тогда имеющиеся коэффициенты, которые определены многочленом
Q n ( x ) , отыскиваем при помощи метода неопределенных коэффициентов из равенства y
Вычислить по теореме Коши y » — 2 y ‘ = x 2 + 1 , y ( 0 ) = 2 , y ‘ ( 0 ) = 1 4 .
Решение
Иначе говоря, необходимо перейти к частному решению линейного неоднородного дифференциального уравнения второго порядка с постоянными коэффициентами y » — 2 y ‘ = x 2 + 1 , которое будет удовлетворять заданным условиям y ( 0 ) = 2 , y ‘ ( 0 ) = 1 4 .
Общим решением линейного неоднородного уравнения является сумма общего решения, которое соответствует уравнению y 0 или частному решению неоднородного уравнения y
, то есть y = y 0 + y
Для начала найдем общее решение для ЛНДУ, а после чего – частное.
Перейдем к нахождению y 0 . Запись характеристического уравнения поможет найти корни. Получаем, что
k 2 — 2 k = 0 k ( k — 2 ) = 0 k 1 = 0 , k 2 = 2
Получили, что корни различные и действительные. Поэтому запишем
y 0 = C 1 e 0 x + C 2 e 2 x = C 1 + C 2 e 2 x .
. Видно, что правая часть заданного уравнения является многочленом второй степени, тогда один из корней равняется нулю. Отсюда получим, что частным решением для y
= Q 2 ( x ) · x γ = ( A x 2 + B x + C ) · x = A x 3 + B x 2 + C x , где значения А , В , С принимают неопределенные коэффициенты.
Найдем их из равенства вида y
Тогда получим, что:
‘ = x 2 + 1 ( A x 3 + B x 2 + C x ) » — 2 ( A x 3 + B x 2 + C x ) ‘ = x 2 + 1 3 A x 2 + 2 B x + C ‘ — 6 A x 2 — 4 B x — 2 C = x 2 + 1 6 A x + 2 B — 6 A x 2 — 4 B x — 2 C = x 2 + 1 — 6 A x 2 + x ( 6 A — 4 B ) + 2 B — 2 C = x 2 + 1
Приравняв коэффициенты с одинаковыми показателями степеней x , получим систему линейных выражений — 6 A = 1 6 A — 4 B = 0 2 B — 2 C = 1 . При решении любым из способов найдем коэффициенты и запишем: A = — 1 6 , B = — 1 4 , C = — 3 4 и y
= A x 3 + B x 2 + C x = — 1 6 x 3 — 1 4 x 2 — 3 4 x .
Эта запись называется общим решением исходного линейного неоднородного дифференциального уравнения второго порядка с постоянными коэффициентами.
Для нахождения частного решения, которое удовлетворяет условиям y ( 0 ) = 2 , y ‘ ( 0 ) = 1 4 , требуется определить значения C 1 и C 2 , исходя из равенства вида y = C 1 + C 2 e 2 x — 1 6 x 3 + 1 4 x 2 + 3 4 x .
y ( 0 ) = C 1 + C 2 e 2 x — 1 6 x 3 + 1 4 x 2 + 3 4 x x = 0 = C 1 + C 2 y ‘ ( 0 ) = C 1 + C 2 e 2 x — 1 6 x 3 + 1 4 x 2 + 3 4 x ‘ x = 0 = = 2 C 2 e 2 x — 1 2 x 2 + 1 2 x + 3 4 x = 0 = 2 C 2 — 3 4
Работаем с полученной системой уравнений вида C 1 + C 2 = 2 2 C 2 — 3 4 = 1 4 , где C 1 = 3 2 , C 2 = 1 2 .
Применив теорему Коши, имеем, что
y = C 1 + C 2 e 2 x — 1 6 x 3 + 1 4 x 2 + 3 4 x = = 3 2 + 1 2 e 2 x — 1 6 x 3 + 1 4 x 2 + 3 4 x
Ответ: 3 2 + 1 2 e 2 x — 1 6 x 3 + 1 4 x 2 + 3 4 x .
Когда функция f ( x ) представляется в виде произведения многочлена со степенью n и экспоненты f ( x ) = P n ( x ) · e a x , тогда отсюда получаем, что частным решением ЛНДУ второго порядка будет уравнение вида y
= e a x · Q n ( x ) · x γ , где Q n ( x ) является многочленом n -ой степени, а r – количеством корней характеристического уравнения, равняющиеся α .
Коэффициенты, принадлежащие Q n ( x ) находятся по равенству y
Найти общее решение дифференциального уравнения вида y » — 2 y ‘ = ( x 2 + 1 ) · e x .
Решение
Уравнение общего вида y = y 0 + y
. Указанное уравнение соответствует ЛОДУ y » — 2 y ‘ = 0 . По предыдущему примеру видно, что его корни равняются k 1 = 0 и k 2 = 2 и y 0 = C 1 + C 2 e 2 x по характеристическому уравнению.
Видно, что правой частью уравнения является x 2 + 1 · e x . Отсюда ЛНДУ находится через y
= e a x · Q n ( x ) · x γ , где Q n ( x ) , являющимся многочленом второй степени, где α = 1 и r = 0 , потому как у характеристического уравнения отсутствует корень, равный 1 . Отсюда получаем, что
= e a x · Q n ( x ) · x γ = e x · A x 2 + B x + C · x 0 = e x · A x 2 + B x + C .
А , В , С являются неизвестными коэффициентами, которые можно найти по равенству y
‘ = e x · A x 2 + B x + C ‘ = e x · A x 2 + B x + C + e x · 2 A x + B = = e x · A x 2 + x 2 A + B + B + C y
‘ ‘ = e x · A x 2 + x 2 A + B + B + C ‘ = = e x · A x 2 + x 2 A + B + B + C + e x · 2 A x + 2 A + B = = e x · A x 2 + x 4 A + B + 2 A + 2 B + C
‘ = ( x 2 + 1 ) · e x ⇔ e x · A x 2 + x 4 A + B + 2 A + 2 B + C — — 2 e x · A x 2 + x 2 A + B + B + C = x 2 + 1 · e x ⇔ e x · — A x 2 — B x + 2 A — C = ( x 2 + 1 ) · e x ⇔ — A x 2 — B x + 2 A — C = x 2 + 1 ⇔ — A x 2 — B x + 2 A — C = 1 · x 2 + 0 · x + 1
Показатели при одинаковых коэффициентах приравниваем и получаем систему линейных уравнений. Отсюда и находим А , В , С :
— A = 1 — B = 0 2 A — C = 1 ⇔ A = — 1 B = 0 C = — 3
Ответ: видно, что y
= e x · ( A x 2 + B x + C ) = e x · — x 2 + 0 · x — 3 = — e x · x 2 + 3 является частным решением ЛНДУ, а y = y 0 + y = C 1 e 2 x — e x · x 2 + 3 — общим решением для неоднородного дифуравнения второго порядка.
Когда функция записывается как f ( x ) = A 1 cos ( β x ) + B 1 sin β x , а А 1 и В 1 являются числами, тогда частным решением ЛНДУ считается уравнение вида y
= A cos β x + B sin β x · x γ , где А и В считаются неопределенными коэффициентами, а r числом комплексно сопряженных корней, относящихся к характеристическому уравнению, равняющимся ± i β . В этом случае поиск коэффициентов проводится по равенству y
Найти общее решение дифференциального уравнения вида y » + 4 y = cos ( 2 x ) + 3 sin ( 2 x ) .
Решение
Перед написанием характеристического уравнения находим y 0 . Тогда
k 2 + 4 = 0 k 2 = — 4 k 1 = 2 i , k 2 = — 2 i
Имеем пару комплексно сопряженных корней. Преобразуем и получим:
y 0 = e 0 · ( C 1 cos ( 2 x ) + C 2 sin ( 2 x ) ) = C 1 cos 2 x + C 2 sin ( 2 x )
Корни из характеристического уравнения считаются сопряженной парой ± 2 i , тогда f ( x ) = cos ( 2 x ) + 3 sin ( 2 x ) . Отсюда видно, что поиск y
будет производиться из y
= ( A cos ( β x ) + B sin ( β x ) · x γ = ( A cos ( 2 x ) + B sin ( 2 x ) ) · x . Неизвестные коэффициенты А и В будем искать из равенства вида y
= cos ( 2 x ) + 3 sin ( 2 x ) .
‘ = ( ( A cos ( 2 x ) + B sin ( 2 x ) · x ) ‘ = = ( — 2 A sin ( 2 x ) + 2 B cos ( 2 x ) ) · x + A cos ( 2 x ) + B sin ( 2 x ) y
» = ( ( — 2 A sin ( 2 x ) + 2 B cos ( 2 x ) ) · x + A cos ( 2 x ) + B sin ( 2 x ) ) ‘ = = ( — 4 A cos ( 2 x ) — 4 B sin ( 2 x ) ) · x — 2 A sin ( 2 x ) + 2 B cos ( 2 x ) — — 2 A sin ( 2 x ) + 2 B cos ( 2 x ) = = ( — 4 A cos ( 2 x ) — 4 B sin ( 2 x ) ) · x — 4 A sin ( 2 x ) + 4 B cos ( 2 x )
Тогда видно, что
= cos ( 2 x ) + 3 sin ( 2 x ) ⇔ ( — 4 A cos ( 2 x ) — 4 B sin ( 2 x ) ) · x — 4 A sin ( 2 x ) + 4 B cos ( 2 x ) + + 4 ( A cos ( 2 x ) + B sin ( 2 x ) ) · x = cos ( 2 x ) + 3 sin ( 2 x ) ⇔ — 4 A sin ( 2 x ) + 4 B cos ( 2 x ) = cos ( 2 x ) + 3 sin ( 2 x )
Необходимо приравнять коэффициенты синусов и косинусов. Получаем систему вида:
— 4 A = 3 4 B = 1 ⇔ A = — 3 4 B = 1 4
= ( A cos ( 2 x ) + B sin ( 2 x ) · x = — 3 4 cos ( 2 x ) + 1 4 sin ( 2 x ) · x .
Ответ: общим решением исходного ЛНДУ второго порядка с постоянными коэффициентами считается
= = C 1 cos ( 2 x ) + C 2 sin ( 2 x ) + — 3 4 cos ( 2 x ) + 1 4 sin ( 2 x ) · x
Когда f ( x ) = e a x · P n ( x ) sin ( β x ) + Q k ( x ) cos ( β x ) , тогда y
= e a x · ( L m ( x ) sin ( β x ) + N m ( x ) cos ( β x ) · x γ . Имеем, что r – это число комплексно сопряженных пар корней, относящихся к характеристическому уравнению, равняются α ± i β , где P n ( x ) , Q k ( x ) , L m ( x ) и N m ( x ) являются многочленами степени n , k , т , m , где m = m a x ( n , k ) . Нахождение коэффициентов L m ( x ) и N m ( x ) производится, исходя из равенства y
Найти общее решение y » + 3 y ‘ + 2 y = — e 3 x · ( ( 38 x + 45 ) sin ( 5 x ) + ( 8 x — 5 ) cos ( 5 x ) ) .
Решение
По условию видно, что
α = 3 , β = 5 , P n ( x ) = — 38 x — 45 , Q k ( x ) = — 8 x + 5 , n = 1 , k = 1
Тогда m = m a x ( n , k ) = 1 . Производим нахождение y 0 , предварительно записав характеристическое уравнение вида:
k 2 — 3 k + 2 = 0 D = 3 2 — 4 · 1 · 2 = 1 k 1 = 3 — 1 2 = 1 , k 2 = 3 + 1 2 = 2
Получили, что корни являются действительными и различными. Отсюда y 0 = C 1 e x + C 2 e 2 x . Далее необходимо искать общее решение, исходя из неоднородного уравнения y
= e α x · ( L m ( x ) sin ( β x ) + N m ( x ) cos ( β x ) · x γ = = e 3 x · ( ( A x + B ) cos ( 5 x ) + ( C x + D ) sin ( 5 x ) ) · x 0 = = e 3 x · ( ( A x + B ) cos ( 5 x ) + ( C x + D ) sin ( 5 x ) )
Известно, что А , В , С являются коэффициентами, r = 0 , потому как отсутствует пара сопряженных корней, относящихся к характеристическому уравнению с α ± i β = 3 ± 5 · i . Данные коэффициенты находим из полученного равенства:
= — e 3 x ( ( 38 x + 45 ) sin ( 5 x ) + ( 8 x — 5 ) cos ( 5 x ) ) ⇔ ( e 3 x ( ( A x + B ) cos ( 5 x ) + ( C x + D ) sin ( 5 x ) ) ) » — — 3 ( e 3 x ( ( A x + B ) cos ( 5 x ) + ( C x + D ) sin ( 5 x ) ) ) = — e 3 x ( ( 38 x + 45 ) sin ( 5 x ) + ( 8 x — 5 ) cos ( 5 x ) )
Нахождение производной и подобных слагаемых дает
— e 3 x · ( ( 15 A + 23 C ) · x · sin ( 5 x ) + + ( 10 A + 15 B — 3 C + 23 D ) · sin ( 5 x ) + + ( 23 A — 15 C ) · x · cos ( 5 x ) + ( — 3 A + 23 B — 10 C — 15 D ) · cos ( 5 x ) ) = = — e 3 x · ( 38 · x · sin ( 5 x ) + 45 · sin ( 5 x ) + + 8 · x · cos ( 5 x ) — 5 · cos ( 5 x ) )
После приравнивания коэффициентов получаем систему вида
15 A + 23 C = 38 10 A + 15 B — 3 C + 23 D = 45 23 A — 15 C = 8 — 3 A + 23 B — 10 C — 15 D = — 5 ⇔ A = 1 B = 1 C = 1 D = 1
Из всего следует, что
= e 3 x · ( ( A x + B ) cos ( 5 x ) + ( C x + D ) sin ( 5 x ) ) = = e 3 x · ( ( x + 1 ) cos ( 5 x ) + ( x + 1 ) sin ( 5 x ) )
Ответ: теперь получено общее решение заданного линейного уравнения:
= = C 1 e x + C 2 e 2 x + e 3 x · ( ( x + 1 ) cos ( 5 x ) + ( x + 1 ) sin ( 5 x ) )
Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать
Алгоритм решения ЛДНУ
Любой другой вид функции f ( x ) для решения предусматривает соблюдение алгоритма решения:
- нахождение общего решения соответствующего линейного однородного уравнения, где y 0 = C 1 ⋅ y 1 + C 2 ⋅ y 2 , где y 1 и y 2 являются линейно независимыми частными решениями ЛОДУ, С 1 и С 2 считаются произвольными постоянными;
- принятие в качестве общего решения ЛНДУ y = C 1 ( x ) ⋅ y 1 + C 2 ( x ) ⋅ y 2 ;
- определение производных функции через систему вида C 1 ‘ ( x ) + y 1 ( x ) + C 2 ‘ ( x ) · y 2 ( x ) = 0 C 1 ‘ ( x ) + y 1 ‘ ( x ) + C 2 ‘ ( x ) · y 2 ‘ ( x ) = f ( x ) , а нахождение функций C 1 ( x ) и C 2 ( x ) посредствам интегрирования.
Найти общее решение для y » + 36 y = 24 sin ( 6 x ) — 12 cos ( 6 x ) + 36 e 6 x .
Решение
Переходим к написанию характеристического уравнения, предварительно записав y 0 , y » + 36 y = 0 . Запишем и решим:
k 2 + 36 = 0 k 1 = 6 i , k 2 = — 6 i ⇒ y 0 = C 1 cos ( 6 x ) + C 2 sin ( 6 x ) ⇒ y 1 ( x ) = cos ( 6 x ) , y 2 ( x ) = sin ( 6 x )
Имеем, что запись общего решения заданного уравнения получит вид y = C 1 ( x ) · cos ( 6 x ) + C 2 ( x ) · sin ( 6 x ) . Необходимо перейти к определению производных функций C 1 ( x ) и C 2 ( x ) по системе с уравнениями:
C 1 ‘ ( x ) · cos ( 6 x ) + C 2 ‘ ( x ) · sin ( 6 x ) = 0 C 1 ‘ ( x ) · ( cos ( 6 x ) ) ‘ + C 2 ‘ ( x ) · ( sin ( 6 x ) ) ‘ = 0 ⇔ C 1 ‘ ( x ) · cos ( 6 x ) + C 2 ‘ ( x ) · sin ( 6 x ) = 0 C 1 ‘ ( x ) ( — 6 sin ( 6 x ) + C 2 ‘ ( x ) ( 6 cos ( 6 x ) ) = = 24 sin ( 6 x ) — 12 cos ( 6 x ) + 36 e 6 x
Необходимо произвести решение относительно C 1 ‘ ( x ) и C 2 ‘ ( x ) при помощи любого способа. Тогда запишем:
C 1 ‘ ( x ) = — 4 sin 2 ( 6 x ) + 2 sin ( 6 x ) cos ( 6 x ) — 6 e 6 x sin ( 6 x ) C 2 ‘ ( x ) = 4 sin ( 6 x ) cos ( 6 x ) — 2 cos 2 ( 6 x ) + 6 e 6 x cos ( 6 x )
Каждое из уравнений следует проинтегрировать . Тогда запишем получившиеся уравнения:
C 1 ( x ) = 1 3 sin ( 6 x ) cos ( 6 x ) — 2 x — 1 6 cos 2 ( 6 x ) + + 1 2 e 6 x cos ( 6 x ) — 1 2 e 6 x sin ( 6 x ) + C 3 C 2 ( x ) = — 1 6 sin ( 6 x ) cos ( 6 x ) — x — 1 3 cos 2 ( 6 x ) + + 1 2 e 6 x cos ( 6 x ) + 1 2 e 6 x sin ( 6 x ) + C 4
Отсюда следует, что общее решение будет иметь вид:
y = 1 3 sin ( 6 x ) cos ( 6 x ) — 2 x — 1 6 cos 2 ( 6 x ) + + 1 2 e 6 x cos ( 6 x ) — 1 2 e 6 x sin ( 6 x ) + C 3 · cos ( 6 x ) + + — 1 6 sin ( 6 x ) cos ( 6 x ) — x — 1 3 cos 2 ( 6 x ) + + 1 2 e 6 x cos ( 6 x ) + 1 2 e 6 x sin ( 6 x ) + C 4 · sin ( 6 x ) = = — 2 x · cos ( 6 x ) — x · sin ( 6 x ) — 1 6 cos ( 6 x ) + + 1 2 e 6 x + C 3 · cos ( 6 x ) + C 4 · sin ( 6 x )
Ответ: y = y 0 + y
= — 2 x · cos ( 6 x ) — x · sin ( 6 x ) — 1 6 cos ( 6 x ) + + 1 2 e 6 x + C 3 · cos ( 6 x ) + C 4 · sin ( 6 x )
🔍 Видео
Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.Скачать
Видеоурок "Нахождение частных решений по виду правой части"Скачать
ЛОДУ 2 порядка c постоянными коэффициентамиСкачать
7. ДУ. ЛНДУ с правой частью спец вида (4270 Берман Г.Н)Скачать
Однородное дифференциальное уравнениеСкачать
Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать
18+ Математика без Ху!ни. Дифференциальные уравнения. Однородное уравнение.Скачать
ЛНДУ II п. со спец. правой ч. (sin, cos)Скачать
15. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентамиСкачать
6. Дифференциальные уравнения, приводящиеся к однороднымСкачать
13. Как решить дифференциальное уравнение первого порядка?Скачать
7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать
Метод неопределенных коэффициентов для линейного ДУ со специальной правой частью (квазимногочленом)Скачать
18. Линейные неоднородные дифференциальные уравнения 2 порядка с постоянными коэффициентами. часть 3Скачать
17. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами Ч2Скачать