Даны уравнения двух тел x1 t x2 6 5t

Даны уравнения движения двух тел: х1 = t и х2 = 6 — 5t. Постройте графики движения этих тел и определите место и время их встречи графически и аналитически.

Видео:Решение графических задач на равномерное движениеСкачать

Решение графических задач на равномерное движение

Ваш ответ

Видео:Физика - уравнения равноускоренного движенияСкачать

Физика - уравнения равноускоренного движения

решение вопроса

Видео:Уравнение движения тела дано в виде x=2−3t. ВычислиСкачать

Уравнение движения тела дано в виде x=2−3t. Вычисли

Похожие вопросы

  • Все категории
  • экономические 43,410
  • гуманитарные 33,633
  • юридические 17,906
  • школьный раздел 608,042
  • разное 16,856

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

Уравнение координаты при равноускоренном прямолинейном движении

теория по физике 🧲 кинематика

Уравнение координаты — зависимость координаты тела от времени:

Уравнение координаты при равноускоренном прямолинейном движении:

Даны уравнения двух тел x1 t x2 6 5t

x0 — координата тела в начальный момент времени, v0x —проекция начальной скорости на ось ОХ, ax —проекция ускорения на ось ОХ, x — координата тела в момент времени t

Зная уравнение координаты, можно определить координату тела в любой момент времени.

Пример №1. Движение автомобиля задано уравнением:

Даны уравнения двух тел x1 t x2 6 5t

Определить начальное положение автомобиля относительно тела отсчета, его начальную скорость и ускорение. Также найти положение тела относительно тела отсчета в момент времени t = 10 c.

Уравнение координаты — это многочлен. В уравнении выше оно включает в себя только 2 многочлена. Первый — 15 — соответствует начальной координате тела. Поэтому x0 = 15. Коэффициент перед квадратом времени второго многочлена соответствует ускорению тела. Поэтому a = 5 м/с 2 . Второй многочлен отсутствует. Это значит, что коэффициент перед t равен 0. Поэтому начальная скорость тела равна нулю: v0 = 0 м/с.

В момент времени t = 10 c координата автомобиля равна:

Даны уравнения двух тел x1 t x2 6 5t

Видео:Как решать уравнение с модулем Уравнение с модулями как решать Как раскрыть модуль в уравненииСкачать

Как решать уравнение с модулем Уравнение с модулями как решать Как раскрыть модуль в уравнении

Совместное движение двух тел

Иногда в одной системе отсчета рассматривается движение сразу двух тел. В этом случае движение каждого тела задается своим уравнением. Эти уравнения используются для нахождения различных параметров движения этих тел. Такой способ решения задач называется аналитическим.

Аналитический способ решения задачи на совместное движение тел

Чтобы найти место встречи двух тел, нужно:

  1. Построить уравнения зависимости x(t) обоих тел: x1(t) и x2(t).
  2. Построить уравнение вида x1 = x2.
  3. Найти время встречи двух тел tвстр.
  4. Подставить найденной время в любое из уравнений x1(t) или x2(t), чтобы вычислить координату xвстрч.

Пример №2. По одному направлению из одной точки начали двигаться два тела. Первое тело движется прямолинейно и равномерно со скоростью 3 м/с. Второе тело — равноускорено с ускорением 1 м/с 2 без начальной скорости. Определите, через какое время второе тело догонит первое. Вычислите, на каком расстоянии от тела отсчета это произойдет.

Составим уравнения для движения каждого из тел:

Даны уравнения двух тел x1 t x2 6 5t

Приравняем правые части этих уравнений и найдем время t:

Даны уравнения двух тел x1 t x2 6 5t

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Чтобы найти, какое расстояние они пройдут за это время, подставим известное время в любое из уравнений:

x = 3t = 3∙6 = 18 (м).

Графический способ решения задачи на совместное движение тел

Существует графический способ решения данной задачи. Для этого нужно:

  1. Построить графики x1(t) и x2(t).
  2. Найти точку пересечения графиков.
  3. Пустить перпендикуляр из этой точки к оси ОХ.
  4. Значение точки пересечения — координата места пересечения двух тел.

Таким способом можно определить, в какое время произойдет встреча двух тел. Нужно лишь провести перпендикуляр к оси времени после построения графиков перемещений.

Даны уравнения двух тел x1 t x2 6 5t

Графический способ решения задач требует высокой точности построения графиков. Поэтому он применяется редко!

Если в одной системе описывается движение двух тел, и одно тело начинает движение с опозданием tзапазд, то его уравнение координаты принимает

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Даны уравнения двух тел x1 t x2 6 5t

Пример №3. Мальчики соревнуются в беге. По команде «Старт!» Миша побежал с ускорением 1 м/с 2 и через 4 секунды достиг максимальной скорости, с которой дальше продолжил движение. Саша отреагировал с опозданием и начал движение спустя 1 с после команды с ускорением 1,5 м/с 2 , достигнув максимальной скорости через 3 секунды. Найти время, через которое Саша догонит Мишу.

Если Саша догонит Мишу до того, как мальчики станут двигаться с равномерной скоростью, уравнение движения с равномерной скоростью можно игнорировать. Если это так, то корнем уравнения будет время, не превышающее 4 с (через столько времени оба мальчика начнут двигаться равномерно).

В таком случае составим уравнения только для тех участков пути, на которых мальчики двигались равноускорено:

Даны уравнения двух тел x1 t x2 6 5t

Приравняем правые части уравнений и вычислим t:

Даны уравнения двух тел x1 t x2 6 5t

Даны уравнения двух тел x1 t x2 6 5t

В результате получаем два

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Материальная точка движется прямолинейно с постоянным ускорением. График зависимости её координаты от времени x=x(t) изображён на рисунке.

Даны уравнения двух тел x1 t x2 6 5t

В момент времени t=0 проекции её скорости υx и ускорения ax на ось Ох удовлетворяют соотношениям:

а) Даны уравнения двух тел x1 t x2 6 5t

б) Даны уравнения двух тел x1 t x2 6 5t

в) Даны уравнения двух тел x1 t x2 6 5t

г) Даны уравнения двух тел x1 t x2 6 5t

Алгоритм решения

  1. Определить характер движения материальной точки.
  2. Записать уравнение координаты материальной точки.
  3. С помощью графика зависимости координаты от времени и уравнения координаты определить проекции искомых величин.

Решение Графиком зависимости координаты от времени является парабола. Такой график соответствует равноускоренному прямолинейному движению. Уравнение координаты при равноускоренном прямолинейном движении имеет

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Алгоритм решения

  1. Записать исходные данные.
  2. Записать уравнение движения грузовика и преобразовать его с учетом условий задачи.
  3. Выразить скорость грузовика из уравнения его движения.
  4. Записать уравнение движения мотоциклиста.
  5. Найти время встречи мотоциклиста и грузовика из уравнения движения мотоциклиста.
  6. Подставить время в формулу скорости грузовика и вычислить ее.

Решение

  • Координата встречи грузовика и мотоциклиста: x = 150 м.
  • Время запаздывания мотоциклиста: tзапазд = 5 с.
  • Ускорение, с которым мотоциклист начал движение: a = 3 м/с 2 .

Запишем уравнение движения грузовика:

Даны уравнения двух тел x1 t x2 6 5t

Так как начальная координата равна нулю, это уравнение примет

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Даны уравнения двух тел x1 t x2 6 5t

Отсюда скорость движения грузовика равна:

Даны уравнения двух тел x1 t x2 6 5t

Запишем уравнение движения мотоциклиста:

Даны уравнения двух тел x1 t x2 6 5t

Так как начальная координата равна нулю, начальная скорость тоже нулевая, и мотоциклист начал движение позже грузовика, это уравнение примет вид:

Даны уравнения двух тел x1 t x2 6 5t

Найдем время, через которое грузовик и мотоциклист встретились:

Даны уравнения двух тел x1 t x2 6 5t

Подставим найденное время встречи в формулу для вычисления проекции скорости грузовика:

Даны уравнения двух тел x1 t x2 6 5t

pазбирался: Алиса Никитина | обсудить разбор | оценить

Видео:Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

Даны уравнения двух тел x1 t x2 6 5t

Задачи по физике — это просто!

Не забываем, что решать задачи надо всегда в системе СИ!

А теперь к задачам!

Элементарные задачи из курса школьной физики по кинематике.


Задача на составление описания движения и составление уравнения движения по заданному графику движения

Дано: график движения тела

Найти:
1. составить описание движения
2. составить уравнение движения тела.

Даны уравнения двух тел x1 t x2 6 5t

Проекцию вектора скорости определяем по графику, выбрав любой удобный для рассмотрения отрезок времени.
Здесь удобно взять t=4c

Даны уравнения двух тел x1 t x2 6 5t

Составляем уравнение движения тела:

Записываем формулу уравнения прямолинейного равномерного движения.

Подставляем в нее найденный коэффициент Vx (не забываем о минусе!).
Начальная координата тела (Xо) соответствует началу графика, тогда Xо=3

Даны уравнения двух тел x1 t x2 6 5t

Составляем описание движения тела:

Желательно сделать чертеж, это поможет не ошибиться!
Не забываем, что все физические величины имеют единицы измерения, их необходимо указывать!

Тело движется прямолинейно и равномерно из начальной точки Xо=3м со скоростью 0,75 м/с противоположно направлению оси X.

Задача на определение места и времени встречи двух движущихся тел (при прямолинейном равномерном движении)

Движение тел задано уравнениями движения для каждого тела.

Дано:
1. уравнение движения первого тела
2. уравнение движения второго тела

Найти:
1. координату места встречи
2. момент время (после начала движения), когда произойдет встреча тел

Даны уравнения двух тел x1 t x2 6 5t

По заданным уравнениям движения строим графики движения для каждого тела в одной системе координат.

Даны уравнения двух тел x1 t x2 6 5t

Точка пересечения двух графиков движения определяет:

1. на оси t — время встречи ( через сколько времени после начала движения произойдет встреча)
2. на оси X — координату места встречи (относительно начала координат)

В результате:

Два тела встретятся в точке с координатой -1,75 м через 1,25 секунд после начала движения.

Для проверки полученных графическим способом ответов можно решить систему уравнений из двух заданных
уравнений движения:

Даны уравнения двух тел x1 t x2 6 5t

Для тех, кто почему-то забыл, как построить график прямолинейного равномерного движения:

График движения — это линейная зависимость ( прямая), строится по двум точкам.
Выбираем два любых удобных для простоты расчета значения t1 и t2.
Для этих значений t подсчитываем соответствующие значения координат X1 и X2.
Откладываем 2 точки с координатами (t1, X1) и (t2, X2) и соединяем их прямой — график готов!

Задачи на составление описания движения тела и построение графиков движения по заданному уравнению прямолинейного равномерного движения

Задача 1

Дано: уравнение движения тела

Найти:

1. составить описание движения
2. построить график движения

Даны уравнения двух тел x1 t x2 6 5t

Заданное уравнение сравниваем с формулой и определяем коэффициенты.
Не забываем делать чертеж, чтобы еще раз обратить внимание на направление вектора скорости.

Задача 2

Дано: уравнение движения тела

Найти:
1. составить описание движения
2. построить график движения

Даны уравнения двух тел x1 t x2 6 5t

Задача 3

Дано: уравнение движения тела

Найти:
1. составить описание движения
2. построить график движения

Даны уравнения двух тел x1 t x2 6 5t

Задача 4

Дано: уравнение движения тела

Найти:
1. составить описание движения
2. построить график движения

Даны уравнения двух тел x1 t x2 6 5t

Тело находится в состоянии покоя в точке с координатой X=4м (состояние покоя — это частный случай движения, когда скорость тела равна нулю).

Задача 5

Дано:
начальная координата движущейся точки xo=-3 м
проекция вектора скорости Vx=-2 м/с

Найти:
1. записать уравнение движения
2. построить график движения
3. показать на чертеже векторы скорости и перемещения
4. найти координату точки через 10 секунд после начала движения
Даны уравнения двух тел x1 t x2 6 5t

🔥 Видео

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать

Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Задачи на движение двух объектовСкачать

Задачи на движение двух объектов

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Урок 15. Решение задач на графики движенияСкачать

Урок 15. Решение задач на графики движения

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

§19 Логарифмические уравненияСкачать

§19 Логарифмические уравнения

Контрольная работа. Уравнения с МОДУЛЕМСкачать

Контрольная работа. Уравнения с МОДУЛЕМ

Траектория и уравнения движения точки. Задача 1Скачать

Траектория и уравнения движения точки. Задача 1

Урок 12. Равномерное прямолинейное движениеСкачать

Урок 12. Равномерное прямолинейное движение

Уравнения и графики механических гармонических колебаний. 11 класс.Скачать

Уравнения и графики механических гармонических колебаний. 11 класс.

Равномерное прямолинейное движение - физика 9Скачать

Равномерное прямолинейное движение - физика 9

5 Лайфхаков Которые Помогут Решить Биквадратное УравнениеСкачать

5 Лайфхаков Которые Помогут Решить Биквадратное Уравнение
Поделиться или сохранить к себе: