Даны уравнения двух сторон прямоугольника 2x 3y 5 0 3x 2y 7

Задача 36077 Помогите, пожалуйста, с задачей. Даны.

Условие

Даны уравнения двух сторон прямоугольника 2x 3y 5 0 3x 2y 7

Помогите, пожалуйста, с задачей. Даны уравнения сторон прямоугольника 3х-4у+5=0, 4х+3у-7=0 и одна из его вершин А(-2;1). Составить уравнения двух других сторон прямоугольника.

Решение

Даны уравнения двух сторон прямоугольника 2x 3y 5 0 3x 2y 7

Очевидно, что точка А не принадлежит ни одной из данных сторон, подставляем ее координаты в уравнение и убеждаемся, что координаты не удовлетворяют ни первому , ни второму уравнению
3*(-2)-4*1+5=0- неверно
4*(-2)+3*1-7=0 -неверно

Так как прямые
3х–4у+5=0 и 4х+3у–7=0
пересекаются под прямым углом, то дальнейшее решение видно из рисунка.
На рисунке проводим через точку А две прямые, перпендикулярные данным ( или параллельные данным как хотите)
Можно и так и так.

Находим уравнение прямой перпендикулярной
3х–4у+5=0
y=(3/4)x+(5/4)
k=3/4

Значит k=-4/3 — угловой коэффициент перпендикулярной прямой

y=(-4/3)x+b
Чтобы найти b подставляем координаты точки А
1=(-4/3)*2+b
b=11/3
y=(-4/3)x+(11/3)
[b]4x+3y-11=0[/b]

Находим уравнение прямой перпендикулярной
4х+3у–7=0
y=(-4/3)x+(7/3)
k=-4/3

Значит k=3/4 — угловой коэффициент перпендикулярной прямой

y=(3/4)x+b
Чтобы найти b подставляем координаты точки А
1=(3/4)*2+b
b=-1/2
y=(3/4)x+(-1/2)
[b]3x-4y-1=0[/b] Даны уравнения двух сторон прямоугольника 2x 3y 5 0 3x 2y 7

Видео:Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать

Как составить уравнение прямой, проходящей через две точки на плоскости | Математика

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Калькулятор онлайн.
Решение системы двух линейных уравнений с двумя переменными.
Метод подстановки и сложения.

С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.

При вводе уравнений можно использовать скобки. При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2

В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &

Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p — 2&1/8q)

Решить систему уравнений

Видео:Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать

Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0

Немного теории.

Видео:найти уравнения биссектрис углов между прямымиСкачать

найти уравнения биссектрис углов между прямыми

Решение систем линейных уравнений. Способ подстановки

Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ left< begin 3x+y=7 \ -5x+2y=3 end right. $$

Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ left< begin y = 7—3x \ -5x+2(7-3x)=3 end right. $$

Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 Rightarrow -5x+14-6x=3 Rightarrow -11x=-11 Rightarrow x=1 $$

Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 cdot 1 Rightarrow y=4 $$

Пара (1;4) — решение системы

Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.

Видео:Как решать кубические уравнения Решите уравнение 3 степени 9 класс Разложить на множители ДелениеСкачать

Как решать кубические уравнения Решите уравнение 3 степени 9 класс Разложить на множители Деление

Решение систем линейных уравнений способом сложения

Рассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.

Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ left< begin 2x+3y=-5 \ x-3y=38 end right. $$

В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ left< begin 3x=33 \ x-3y=38 end right. $$

Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение ( x-3y=38 ) получим уравнение с переменной y: ( 11-3y=38 ). Решим это уравнение:
( -3y=27 Rightarrow y=-9 )

Таким образом мы нашли решение системмы уравнений способом сложения: ( x=11; y=-9 ) или ( (11; -9) )

Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.

Видео:Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

Калькулятор Уравнений. Решение Уравнений Онлайн

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

🔍 Видео

14. Угол между прямыми в пространствеСкачать

14. Угол между прямыми в пространстве

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Решите уравнение ★ x^6-2x^5-x^4+3x^3+x^2-2x-1=0Скачать

Решите уравнение ★ x^6-2x^5-x^4+3x^3+x^2-2x-1=0

Аналитическая геометрия, 6 урок, Уравнение прямойСкачать

Аналитическая геометрия, 6 урок, Уравнение прямой

Аналитическая геометрия, 5 урок, Уравнение плоскостиСкачать

Аналитическая геометрия, 5 урок, Уравнение плоскости

№5 Линейное уравнение 2-3(2х+2)=5-4х Простое уравнение со скобками 6кл 7кл 8кл 9кл 11кл ОГЭ ЕГЭСкачать

№5 Линейное уравнение 2-3(2х+2)=5-4х Простое уравнение со скобками 6кл 7кл 8кл 9кл 11кл ОГЭ ЕГЭ

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Составляем уравнение прямой по точкамСкачать

Составляем уравнение прямой по точкам

Записать уравнение прямой параллельной или перпендикулярной данной.Скачать

Записать уравнение прямой параллельной или перпендикулярной данной.

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примеры

Задача про соотношение сторон. Геометрия 7 класс.Скачать

Задача про соотношение сторон. Геометрия 7 класс.

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.

Найдите сторону треугольника, если другие его стороны равны 1 и 5Скачать

Найдите сторону треугольника, если другие его стороны равны 1 и 5

№2 Линейное уравнение 2+3х=-2х-13 Как решать простое уравнение Решите уравнение 5кл 6кл 7кл ОГЭ ЕГЭСкачать

№2 Линейное уравнение 2+3х=-2х-13 Как решать простое уравнение Решите уравнение 5кл 6кл 7кл ОГЭ ЕГЭ
Поделиться или сохранить к себе: