X=3t, Y=t в квадрате, берем производные, получим
Vx=3, Vy=2t
Скорость равна V= квадратный корень из (Vx в квадрате+Vy в квадрате) = квадратный корень из (9+16)= 5.
Как это сложно. Здесь без академика не обойтись
x= 3*2c.
y= 2*2c.
x= 6
y= 4
как сложно 1 класс
Видео:Уравнение движения тела дано в виде x=2−3t. ВычислиСкачать
Даны уравнения движения точки x 3 2t 1 y 2t 1
Глава 7. Кинематика точки.
7.4. Переменное ускорение точки в прямоугольной системе координат.
7.4.1. Ускорение точки а = 0,5 ti + 0,2t 2 j. Определить модуль ускорения в момент времени t = 2 с. (Ответ 1,28)
7.4.2. Дан график ускорения а = f(t) прямолинейно движущейся точки. Определить скорость точки в момент времени t = 2 с, если при tо=0 скорость vo = 0. (Ответ 2)
7.4.3. Дан график ускорения с = f(t) прямолинейно движущейся точки. Определить скорость точки в момент времени t = 20 с, если при tо = 0 скорость v0 = 0. (Ответ 100)
7.4.4. Определить ускорение точки Н в момент времени, когда угол φ = 60°, если длина ОА = АВ = 20 см, а закон изменения угла φ = 3t. (Ответ -1,8)
7.4.5. Определить ускорение точки В в момент времени t = 5 с, если длина кривошипа ОА = 15 см, а закон изменения угла φ = 4t. (Ответ -2,19)
7.4.6. Скорость точки v = 0,9 ti + t 2 j. Определить модуль ускорения точки в момент времени t = 1,5 с. (Ответ 3,13)
7.4.7. Положение кривошипа ОА определяется углом φ = 2t. Определить проекцию ускорения ах точки А в момент времени t = 1с, если длина ОА = 1 м. (Ответ 1,66)
7.4.8. Даны проекции скорости на координатные оси vx = 3 t, vy = 2t 2 , vz = t 3 . Определить модуль ускорения в момент времени t = 1 с. (Ответ 5,83)
7.4.9. Движение точки задано уравнениями dx/dt = 0,3t 2 и у = 0,2 t 3 Определить ускорение в момент времени t = 7 с. (Ответ 9,39)
7.4.10. Положение линейки АВ определяется углом φ = 0,2 t. Определить в см/с 2 проекцию ускорения точки М на ось Оу в момент времени t = 3с, если расстояние AM = 50 см.
(Ответ -1,13)
7.4.11. Даны уравнения движения точки: х = 0,3 t 3 , у = 2t 2 , где х и у — в см. Определить, в какой момент времени t ускорение точки равно 7 см,/с 2 . (Ответ 3,19)
7.4.12. Положение точки на плоскости определяется ее радиусом-вектором r = 0,3t 2 i + 0,1t 3 j. Определить модуль ускорения точки в момент времени t = 2 с. (Ответ 1,34)
7.4.13. Даны уравнения движения точки х = cos πt, у = sin πt. Определить модуль ускорения в момент времени t = 1с. (Ответ 9,87)
7.4.14. Дано ускорение точки а = 2ti + t 2 j. Определить угол в градусах между вектором а и осью Ох в момент времени t = 1с. (Ответ 26,6)
7.4.15. Дано уравнение траектории точки х = 0,1 у 2 . Закон движения точки в направлении оси Оу выражается уравнением у = t 2 . Определить компоненту ускорения ах в момент времени t = 2 с. (Ответ 4.8)
7.4.16. Даны уравнения движения точки: х = 0,01t 3 , у = 200 — 10t Определить ускорение в момент времени, когда точка пересекает ось Ох. (Ответ 1,2)
7.4.17. Даны уравнения движения точки: х = 8 — t 2 , у = t 2 — cos t. Определить проекцию ускорения ау в момент времени, когда координата х = 0. (Ответ 1,05)
7.4.18. Ускорение прямолинейного движения точки а = t. Определить скорость точки в момент времени t = 3 с, если при t0 = 0 скорость v0 = 2 м/с. (Ответ 6,5)
7.4.19. Точка движется прямолинейно с ускорением а = 0,2 t. Определить момент времени t, когда скорость точки будет равна 2 м/с, если при t0 = 0 скорость v0 = 0. (Ответ 4,47)
7.4.20. Точка движется по прямой Ох с ускорением ах = 0,7t. Определить координату х точки в момент времени t = 5 с, если при t0 = 0 скорость v0 = 0 и координата х0 = 0. (Ответ 14,6)
Видео:Траектория и уравнения движения точки. Задача 1Скачать
Даны уравнения движения точки x 3 2t 1 y 2t 1
Яблонский задание К.1. Определение скорости и ускорения точки по заданным уравнениям ее движения.
По заданным уравнениям движения точки M установить вид ее траектории и для момента времени t=t1 (с) найти положение точки на траектории, ее скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории. Необходимые для решения данные приведены в таблице 20.
Дополнение к заданию К.1. Данное задание может быть использовано для определения скорости и ускорения точки при ее движении по пространственной траектории. Для этого к двум уравнениям движения (см. табл. 20) добавляется третье уравнение (табл. 22).
Общий порядок выполнения задания в этом случае такой же, как и в приведенном примере.
🌟 Видео
Решение графических задач на равномерное движениеСкачать
Кинематика точкиСкачать
Кинематика точки. Авторы: Борисов Никита, Ларионов Егор, Петрашова Полина. Решение задачи.Скачать
Физика - уравнения равноускоренного движенияСкачать
Уравнение движенияСкачать
Физика 10 класс (Урок№2 - Равномерное прямолинейное движение материальной точки.)Скачать
Уравнение движения. Как найти время и место встречи двух тел ???Скачать
Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать
Д1 Дифференциальные уравнения движения материальной точкиСкачать
Кинематика точки Задание К1Скачать
Дифференциальное уравнение движения материальной точки.Скачать
20. Физический смысл параметрического задания прямой в пространствеСкачать
Кинематика. Из координаты получаем скорость и ускорениеСкачать
1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать
Кинематика. Закон движения. Урок 3Скачать
Физика. Решение задач. Уравнение движения тела,движущегося равномерно. Выполнялка 26Скачать
ЕГЭ по математике. Профильный уровень. Задание 7. Закон движения. ПроизводнаяСкачать
Урок 15. Решение задач на графики движенияСкачать